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Abstract - Price forecasting has become an important activity for market participants in electric power industry for developing their 
bidding strategies. The work presented in this paper makes use of particle swarm optimization based local linear wavelet neural 
networks (LLWNN) to find the Market Clearing Price (MCP) for a given period, with a certain confidence level.  The results of the 
new method show significant improvement in the price forecasting process. 
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I. INTRODUCTION 

The electric power industry in many countries all   around the world is evolving into an era of market economy with 
deregulation and free competition. The understanding of electric power supply as a public service is being replaced by the 
notion that a competitive market is a more appropriate mechanism to supply energy to consumers with high reliability and low 
cost . A key element of the electricity sector restructuring is the establishment of a market-driven price for electricity. The 
pricing system of electricity plays an important role in a competitive market. In the power market, the electricity price depends 
on the evolution of balance between the demand for electricity and the available supply. At the same time, many other market 
factors also influence the electricity price, such as economic growth, weather, the power-plant mix, the prices of fuels and the 
strategic behavior of large players (usually on the generation side). An active, fully competitive and liquid spot market for 
wholesale electricity will translate the physical risk of inadequate capacity into a financial risk of high prices and place higher 
requirements on price forecasting. Producers and consumers rely on price forecasting information to propose their 
corresponding bidding strategies. If a producer has an accurate forecast of the prices, it can develop a bidding strategy to 
maximize its profit. On the other hand, a consumer can make a plan to minimize his own electricity cost if an accurate price 
forecast is available. 

Due to the complicated bidding strategies linked with the gaming by market participants and special electric price 
characteristics [1], such as high frequency, nonstationary behavior, multiple seasonality, calendar effect, high volatility, high 
percentage of unusual prices, hard nonlinear behavior, etc. and limited information to the market participants, an accurate 
electricity price forecasting is a challenging task. In the past few years different techniques have been proposed to forecast 
electricity price. Stationary time series and non-stationary time series models, neural network and its extended models [2-
7],support vector machine(SVM) [8-9], and an input/output hidden Markov model(IOHMM) [10], etc. have been applied for 
electricity price forecasting. Auto regressive integrated moving average (ARIMA) [11], dynamic regression (DR) and transfer 
function (TF) [12], and generalized auto regressive conditional heteroscedasticity (GARCH) [13] are the most widely used 
time series models. Although, time series techniques are well established to have good performance, however, due to the use of 
linear modeling most of them have difficulties in predicting the hard nonlinear behaviors and rapid changes of the price 
signals. As electricity price is a non-linear function of its input features, the behavior of electricity price signal can not be 
completely captured by the time series techniques. On the other hand, artificial intelligence (AI) techniques have been 
extensively used by many researchers for the electricity price forecasting. 

A wavelet neural network (WNN)-- , first proposed by Zhang et al. [14] as an alternative to the classical feed- forward 
neural network (FFNN) for approximating arbitrary nonlinear functions, inspired by both the FFNN and wavelet theory has 
been emerged as a powerful new type of ANN. A shortcoming of WNN is that for higher dimensional problems many hidden 
layer units are needed. Curse- of –dimensionality is mainly an unsolved problem in WNN theory which brings some 
difficulties in applying the WNN to high dimensional problems. 

In order to take advantage of the local capacity of the wavelet basis functions while not having too many hidden units, an 
alternative type of wavelet neural network known as local linear wavelet neural network (LLWNN) has been proposed [15]. 

The Particle Swarm Optimization (PSO), a population based optimization method first proposed by Kennedy and Eberhart 
[16] is introduced for training the local linear wavelet neural network. To the best of the authors’ knowledge, a PSO based 
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Local Linear Wavelet Neural Network (LLWNN) has not yet been tested for electricity price forecasting. In this paper an 
LLWNN model which smoothly bases function of hidden layer neurons according to training data set maps the input-output 
space by adapting the shape of wavelet is examined for electricity price prediction of the Ontario electricity market. The 
proposed model does not require external decomposer/composer. So risk of losing high frequency components of electricity 
price signal is averted. It is found that prediction of electricity price based on LLWNN model gives better performance because 
of its favorable property of modeling the non-stationary high frequency signals such as electricity price. 

The rest of the paper is organized as follows: Section II describes main characteristics of the electricity price series. 
Electricity price forecasting using LLWNN model is described in section III. Training of LLWNN model by PSO algorithm is 
described in section IV. Section V describes the statistical measures used to evaluate the forecasting performance. Section VI 
presents results and discussions on electricity price forecast of Ontario electricity market. Finally, section VII provides 
concluding remarks. 

II. PRICE-DATA ANALYSIS 

To develop an appropriate model for price forecasting, we examine the main characteristics of the hourly price series in this 
section. To illustrate the forecasting procedure the electricity prices for the Ontario power market from 1st June 2004 to 26th 
Dec., 2004 is used for prediction. An analysis reported in [18], [19], [20] was to find out whose parameters could be used to 
successfully predict the average Market Clearing Price (MCP). According to the data samples for each hour of the day and 
each day of the month, it is clear that the price dynamics have multiple seasonal patterns, corresponding to a daily and weekly 
periodicity, respectively, and are also influenced by a calendar effect, i.e. weekends and holidays. These properties are just the 
same as those of load. However, in contrast to the load-time series, there are several particular properties of price. The hourly 
price curve is varied and fluctuates with a high frequency, and there is also a high percentage of an abrupt change or spikes in 
the price curve (mainly in periods of high demand).  

The price presents high volatility and non-constant mean. The abrupt changes and volatility of price can be reflected as a 
switch in the price series dynamics owing to the discrete behaviors in competitors’ strategies. In other words, there exist 
different regimes in the price–time series, which generally give rise to piece-wise-stationary dynamics.  Based on such 
analysis, we use a hybrid model to classify the non-stationary price-data set to several piecewise stationary data subsets, on 
which highly accurate learning and prediction can be expected, compared with the conventional approaches. 

If price at hour h (Ph) is to be forecasted, the price information of previous hours up to “m” hours i.e. mhhh ppp --- .....,2,1  

should be taken as a part of the input of short-term price forecasting (STPF) model. The auto co-relation function (ACF) can be 
used to identify the degree of association between data in the price series separated by different time lags i.e. previous price. 
Other kind of sensitivity analysis can also be very helpful in determining the variable which has significant influence on the 
system price. In order to identify the load influence on price, load at hour to be predicted at different lagged hours (

mhhh ddd --- .....,2,1 ) is also included as an exogenous variable in the input set of the forecasting models. The historical hourly 

data of 7 days prior to the day whose price to be predicted have been considered to build the forecasting model. Hence the total 
data points are equal to 7 x 24 = 168. Since the proposed model uses price data 7 hours ago to predict the price ,hp 168-7=161 

input vectors are used to develop the forecast model. 

III. ELECTRICITY PRICE FORECASTING USING LLWNN 

The LLWNN model for the hourly Ontario energy price is developed to forecast for three time periods. The first period 
comprises two consequent weeks from April 26 to May 9, 2004, which are referred as Week-1, and Week-2 respectively in this 
paper, the Ontario market presented its lowest spring demand during this period. The second period contains summer peak 
demand weeks from July 26 to August 8, 2004, which are referred to as Week-3 to Week-4, respectively. The last period 
includes two high demands winter weeks in 2004, starting on December 13 and ending on December 26, and these weeks are 
referred as Week-5 and Week-6, respectively. One hour ahead price forecasting using seven hours before price data, twenty-
four hours ahead forecasting using seven days before price data have been used in the proposed model. After the one step 
ahead training, the next hour prediction is evaluated. Multiple steps ahead are reached via recursion i.e. by feeding input 
variables with model’s outputs. The next hour forecasts are performed for every hour of the day. The model is retrained at the 
end of each day to incorporate the most recent information. The concatenation of 7 days training windows, for a particular day, 
is shifted one day-ahead and forecasts for the next 24 hours are computed. 

According to wavelet transformation theory, wavelet in the following form is a family of functions generated from one 
single function ψ(x) by the operation of dilation and translation. Ψ(x) which is localized in both time space and the frequency 
space is called a mother wavelet. 
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The parameters ia  and ib  are the scale and translation parameters, respectively. According to the previous researches, the 

two parameters can either be predetermined based on wavelet transformation theory or be determined by a training algorithm. 

In the standard form of wavelet neural network, the output of a WNN is given by 
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The above wavelet neural network is a kind of basis function neural network in the sense of that the wavelets consists of 
the basis function. An intrinsic feature of the basis function networks is the localized activation of the hidden layer units, so 
that the connection weights associated with the units can be viewed as locally accurate piecewise constant models whose 
validity for a given input is indicated by the activation functions. Compared to the multilayer perceptron neural network, this 
local capacity provides some advantages such as the learning efficiency and the structure transparency. However, the problem 
of basis function networks is also led by it. Due to the crudeness of the local approximation, a large number of basis function 
units have to be employed to approximate a given system. A shortcoming of the wavelet neural network is that for higher 
dimensional problems many hidden layer units are needed. 

In order to take advantage of the local capacity of the wavelet basis functions while not having too many hidden units, 
LLWNN has been used as an alternative neural network. 

The difference between a local linear wavelet neural network (LLWNN) and a conventional wavelet neural network 
(WNN) is that the connection weights between the hidden layer and output layer of conventional WNN are replaced by a local 
linear model. The output of LLWNN is given by 
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Where, instead of the straight forward weight wi (piecewise constant model), a linear model 

niniii xwxwwv +++= ..........110 is introduced. 

The activities of the linear models iv (i=1,2,--------n) are determined by the associated  locally active wavelet functions 

ψi(x) (i= 1,2,-------,n), thus iv  is only locally significant.  

The architecture of the   proposed model is shown in Fig.-1.  

 
Fig.1 – General structure of a local linear wavelet neural network. 
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Here m = n is the order of the dynamical system which is predetermined constant.  

The mother wavelet is 
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Where x = 22
2

2
1 ................... nppp +++  

IV. LEARNING ALGORITHM 

The usually used learning algorithm for LLWNN is gradient decent method to get all the unknown parameters of network 
i.e. translation and dilation coefficients, weights which are randomly initialized at beginning since the function computed by 
the LLWNN model is differentiable with respect to all mentioned unknown parameters. But its disadvantages are slow 
convergence speed and easy stay at local minimum. Hence the proposed model is trained by the PSO algorithm. 

Particle swarm optimization is basically developed through simulation of bird flocking in two-dimension space. The 
position of each agent is represented by XY axis position and also the velocity is expressed by vx and vy.  Modification of the 
agent position is realized by the position and the velocity information.  

Bird flocking optimizes a certain objective function. Each agent knows its best value so far (pbest) and its XY position. 
Moreover, each agent knows the best value so far in the group (gbest) among pbest. Mainly each agent tries to modify its 
position using the following information. 

(a) The distance between the current position and pbest. 

(b) The distance between the current position and gbest.  

Velocity of each agent can be modified by the following equation:  

 v平瓶嫩囊实国v平瓶十规囊ĺǴ柜ƅ囊时纵ŢŖȖ̜Ϝ平石̜平瓶邹十规挠ĺǴ柜ƅ挠纵龟ŖȖ̜Ϝ石̜平瓶邹 (6) 

where, vi

k 
is the velocity of agent i at iteration k,  w  is called inertia factor, c1 and c2  are known as acceleration coefficients, si 

k 

is the current position of agent i at iteration k, pbest
i 
is the previous best of agent i and gbest is the global best particle of the 

group.  

Using the above equation, a certain velocity, which gradually gets close to pbest and gbest, can be calculated. The current 
position (searching point in the solution space) can be modified by the following equation:  

 
11 ++ += k

i
k
i

k
i VSS  (7) 

The first term of (6) is the previous velocity of the agent. The second and third terms are used to change the velocity of the 
agent.  

The inertia weight w is introduced to improve PSO performance. Suitable selection of inertia weight w provides a balance 
between global and local exploration and exploitation.  

The general flow chart of PSO for optimizing a local linear wavelet neural network can be described as follows:  

Step.1 Generation of initial condition of each agent Initial searching points (
0
iS ) and velocity (

0
iV ) of each agent are 

usually generated randomly within the allowable range. Note that the dimension of search space   consists of all the parameters 
used in the local linear wavelet neural network as shown in Equations (1) and  (3). The current searching point is set to pbest 
for each agent. The best-evaluated value of pbest is set to gbest and the agent number with the best value is stored.  

Step.2 Evaluation of searching points of each agent. The objective function value is calculated for each agent. If the value 
is better than the current pbest of the agent, the pbest value is replaced by the current value. If the best value of pbest is better 
than the current gbest, gbest is replaced by the best value and the agent number with the best value is stored. 

Step.3 Modification of each searching point  

The current searching point of each agent is changed using (6) and (7). 

Step.4 Checking the exit condition. 
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The current iteration number reaches the predetermined maximum iteration number, then exits otherwise goes to Step 2. 

V. ACCURACY MEASURES 

Several errors measures defined in [17] have been used to evaluate the performance of LLWNN based forecasting model. 
Mean absolute percentage error (MAPE) is used to assess prediction accuracy of the developed models in the paper. 

The absolute error (AE) is defined as  

 
ta
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,
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=  (8) 

The daily mean absolute error (DMAE) can become computed as follows: 

 DMAE = å
=
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The daily mean absolute percentage error 
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The weekly mean absolute error  

 (WMAE) = å
=

168

1168
1

t
tAE  (11) 

And 

The weekly mean absolute percentage error 

   (WMAPE) = å
=

168

1168
100

t
tAE  (12) 

VI. RESULTS & ANALYSIS 

The effectiveness of the LLWNN model is demonstrated on SMP prediction in Ontario electricity market for the year 2004.       
The forecasted price obtained with proposed model during spring test weeks (Week-1, Week-2) are shown in Fig.2 and Fig.4 
along with actual price and the corresponding error is shown in Fig. 3. and  Fig.5. 

  
Fig. 2. Dynamic system output and model output for Week-1 data set Fig. 3. Hourly error for Week-1 data set 
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Fig. 4. Dynamic system output and model output for  Week-2 data set. Fig. 5. Hourly error for Week-2 data set. 

  

Fig. 6. Dynamic system output and model output for Week-3 data set. Fig. 7. Hourly error for Week-3 data set 

  

Fig. 8. Dynamic system output and model output for Week-4 data set. Fig. 9. Hourly error for Week-4 data set. 

  

Fig. 10. Dynamic system output and model output for Week-5 data set. Fig. 11. Hourly error for Week-5 data set. 
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Fig. 12. Dynamic system output and model output for Week-6 data set. Fig. 13. Hourly error for Week -6 data set 

The forecasted price obtained with proposed model during summer test weeks (Week-3, Week-4) are shown in Fig.6 and  
Fig.8 along with actual price and the corresponding error is shown in Fig. 7 and Fig.9. 

The forecasted prices obtained with proposed model during winter test weeks (Week-5, Week-6) are shown in Fig.10 and 
Fig.12 along with actual price and the corresponding error is shown in Fig. 11 and Fig.13. 

It can be seen from figures that the predicated electricity price of the test weeks are quite close to the actual one. The 
weekly MAPEs of the generated forecasts, using the models developed in this paper for the six weeks under study, are 
presented in Table I.  

For comparison purposes, the weekly MAPEs of the generated forecast, using  heuristic method (PM1),independent 
electricity system operator (IESO) model(PM2), multiple linear regression (MLR) model (PM3), neural network (NN) model 
(PM4), wavelet NN model (PM5) [18] are also presented in this table. 

Accuracy of LLWNN model is better than the other models in Week-2, Week-3, Week-5 and Week-6. Overall, accuracy of 
LLWNN model is better than the other models The best results were achieved for Week-3, which was one of the high demand 
weeks of 2004 summer. Despite the high demand, prices on all seven days were in the expected range during this week. 

TABLE I WMAPE IN ONTARIO MARKET FOR SIX WEEKS 

Test period Week no. PM 1 PM 2 PM 3 P M 4 PM 5 LLWNN 
Apr. 26 to May 2,2004 Week-1 21.70 23.78 16.26 16.56 15.21 15.3413 

May 3-9,2004 Week-2 17.80 25.26 19.23 19.34 18.62 17.0082 
July 26 to Aug. 1,2004 Week-3 22.92 10.41 17.69 17.45 17.91 9.7870 

Aug. 2-8,2004 Week-4 37.77 16.22 20.55 20.27 18.72 19.8554 
Dec. 13-19,2004 Week-5 24.60 22.06 16.73 17.03 16.61 14.5401 
Dec. 20-26,2004 Week-6 24.55 23.51 18.54 19.69 18.02 14.5834 

 Average 24.89 20.21 18.17 18.39 17.51 15.1858 

The highest forecast errors occurred during Week-4. In this week, the prices are unusually volatile for the first two days of 
the week and unusually steady for the rest. 

Local Linear Wavelet Neural Network trained by PSO algorithm has been convergent at iteration 380 with average weekly 
mean absolute percentage error (WMAPE) of 15.1858 for test data set. We believe that   these results are reasonably accurate 
for a study spanning one whole year. Very less training time shows the higher convergence rate of LLWNN model to predict the 
wind power generation with higher accuracy. A LLWNN performs better than all considered methods, because both smooth 
global and sharp local variations of electricity price signal can be effectively represented by the wavelet basis activation function 
for hidden layer neurons without any external decomposer / composer and also not having too many hidden units. 

Considering all these points, the performance of the proposed model is satisfactory.  

VII. CONCLUSIONS 

In this paper, energy price forecasting by using a local linear wavelet neural network (LLWNN) model is used. The 
characteristic of the network is that the straight forward weight is replaced by a local linear model and thereby it needs only 
smaller wavelets for a given problem than the common wavelet neural networks. It is also observed that  accuracy  of LLWNN 
model is better than other models with high converges and out -performed in the forecasting of the electricity price  because of 
its favorable property for modeling the non-stationary and high frequency signal such as electricity price. 
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