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Abstract- The study of the dynamic behaviour of disordered structures often implies the analysis of the sensitivity of the structural 

response to the random parameters which characterize its stiffness and damping. This consideration actually involves the solution of 

many more differential equations than the “ordered” structure (i.e., the structure not affected by randomness of material or 

geometry). In order to reduce the computational effort, a methodology is proposed, which makes use of the nonlinear normal modes 

to investigate both the dynamic behaviour of the structure, and its sensitivity to random parameters. 

Keywords- Random Dynamics; Disordered Structures; Nonlinear Normal Modes; Nonlinear Structures; Sensitivity Analysis 

I. INTRODUCTION 

Engineering design requires the computation of response quantities such as displacements, stress state, vibration 

frequencies against a given set of design parameters. Due to the complexity of structures or manufacture errors and inaccuracy 

in measurement, design parameters may be uncertain. The uncertainties of structural parameters may lead to large and 

unexpected excursion of the response and may lead to drastic reductions in safety. Moreover, the dynamic response of a 

mechanical system with uncertain parameters possesses probabilistic features which depend on the probability distribution of 

the system parameters. The reliability analysis for such structures strongly depends on the variation of the parameters and 

consequently a probabilistic approach is necessary for adequate reliability analysis. 

The problem may be faced by means of Monte Carlo simulation (MCS), which allows statistical evaluation based on a 

large number of “deterministic” analyses with different values of the random parameters. This approach is very expensive, 

since it lies on the generation of a defined number of samples of the uncertain parameters and on the solution of the 

corresponding deterministic (linear or non-linear) problems, and is usually performed as a test for analytical approaches. In 

general, this kind of approach requires a strong computational effort in case of non-linear behaviour. Even if MCS is the most 

used among the stochastic analysis methods for structural problems, as the number of degrees of freedom (DOFs) of the 

structure and the number of uncertain parameters increase, the Monte Carlo structural analyses become very heavy from a 

computational point of view and, in some cases, the computational effort makes them inapplicable. 

For this reason some non-statistical alternative procedures have been proposed in the literature. These alternative 

procedures mainly consist in a direct approach using probabilistic, instead of statistic, theory. This is usually pursued in both 

static and dynamic setting by using expansion methods, where the stiffness matrix of the structural problem is split in a 

deterministic part (obtained with the mean value of random parameters) and a part which accounts for the fluctuation of the 

random variables about its mean value. 

In order to evaluate the probabilistic response, Taylor expansions or Neumann expansions ([1], [2] and [3]) are adopted to 

avoid inversion of matrices depending on the random parameters. These methods, in conjunction with discretization of random 

fields using Karhunen-Loeve expansion ([4]) or the spectral approach ([3] and [5]), allow to obtain approximate solutions in 

terms of moments of the response. 

Most of them, as pointed out before, are based on perturbation techniques, so that the stochastic finite element (SFE) 

method is often identified as the classical finite element (FE) method coupled with a perturbation approach ([6] and [7]). 

Unfortunately, these approaches show the drawback of being less and less accurate as the level of the uncertainty of the 

parameters increases. Moreover, even if the uncertainty is low, they ensure accuracy only for the second order statistics of the 

response. Consequently, they can be applied only in the case of Gaussianity of the response, which is rarely the case, even if 

the basic uncertain parameters are modelled as Gaussian. In fact, due to the non-linear relationship between the system 

response and the basic random variables, the response is usually strongly non-Gaussian, even for linear systems. The classical 

SFE techniques can then be applied only to perform a second order analysis to get qualitative information on the system 

behaviour and for low levels of parameter uncertainties. 

Particularly, a method due to Liu et al. [1] shows how to obtain an estimation of the time history of first two moments for 

the structural response in a linear or non-linear system. This work was improved by Chiostrini & Facchini [8] where a 

stochastic input has also been taken into account. The first two moments of the response at hand can be evaluated taking into 

account a Taylor expansion of the structural response centred on the mean value of random parameters. The method is efficient 
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when the dependence between the response and the random parameter is approximately a polynomial of the same degree as the 

expansion, but a major drawback is that it implies a heavy computational effort, as the number of equations of motion to be 

solved increases dramatically. 

In order to reduce the number of such equations, a nonlinear normal modes approach is presented in this paper, as it has 

recently been examined in [16]. 

It is well known that the normal modes are of fundamental importance in the theory of linear dynamic conservative and 

non-conservative systems, as they can be used to decouple the equations governing the motion and analytically evaluate the 

dynamic response of the examined system. 

Such an approach is clearly inapplicable in the nonlinear theory. Nevertheless, it is possible to define nonlinear normal 

modes (NNMs) as particular synchronous periodic solutions of the non-linear motion equations, but no link of such motions to 

the principle of superposition can be considered. 

Several techniques can be found in specialized literature for determining the response of nonlinear systems; for free 

vibration problems system modes can be usefully employed to construct reduced order models: such procedures have been 

well developed for both linear and nonlinear systems by [13] and [14]. 

One such technique, introduced by [10], [11] and [12], defines the normal mode of a nonlinear oscillatory system in terms 

of invariant manifolds in the phase space that are tangent to the linear eigenmodes at the equilibrium point. In such a 

formulation, a master mode is selected, and the normal mode is constructed by a formulation in which the remaining linear 

modes of the system, i.e., the slave modes, depend on the master mode in a manner consistent with the system dynamics. This 

dependence defines the invariant manifold for the nonlinear normal mode (NNM).  

The construction of the NNM invariant manifold is equivalent to the determination of the constraint relationships for all of 

the slave coordinates with the master coordinate; once these constraint relationships are obtained, the system dynamics can be 

restricted to the invariant manifold, resulting in a minimal-sized model that depends only on the master coordinates. By 

studying the dynamics of the reduced-order model, it is possible to recover the associated modal dynamics of the original 

nonlinear system. 

Pesheck et al. [15] used numerical solutions of the invariant manifold equations to extend the invariant manifold approach 

to more general systems, including strongly nonlinear ones. In this approach, the master coordinates were expressed in polar 

coordinate form, and a Galerkin-based solution technique was introduced to solve the invariant manifold equations. In their 

work, they emphasize the fact that model reduction using NNMs can be achieved due to the important property of invariance, 

which is common to linear and non-linear normal modes. 

II. SOME THEORETICAL REMARKS 

A. Analysis of disordered systems 

The governing equation of motion of a general non-linear Multiple Degrees of Freedom (MDOF) mechanical system 

affected by randomness in its parameters, and subject to a forcing process F(t), may be written in the following form: 

    tFxxbgxΜ   ,,  (1) 

In the preceding equation, M is the mass matrix, x is the vector containing the structural degrees of freedom, g is a general 

(nonlinear) restoring function which can depend on the displacements x, the velocities x and eventually on a set of random 

parameters, b. A dot over the variables denotes derivation with respect to time. 

The aim is to express the dependency of the system response x(t) on the random vector b as a series expansion centred on 

the mean of b (denoted by mb):  

  (2) 

For sake of simplicity, the following notations will be adopted from now on:  
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The first term of the RHS term in equation (2) can be computed substituting the random vector b with its mean mb in the 
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equation of motion (1), thus obtaining 

    tFxxmgxΜ b   ,,  (4) 

The first and second derivatives of the system response can be obtained by successively differentiating the equation of 

motion (1) with respect to the components of the random vector, and successively substituting the random vector b with its 

mean mb, thus obtaining: 
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In equation (5), the tangent damping and stiffness matrices are defined as the derivatives of the non-linear restoring 

function g with respect to the system response and velocity: 
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As an example, if the restoring function g can be expressed by the product of a displacement-dependent matrix by the 

vector of the degrees of freedom, then the tangent damping matrix vanishes; the tangent stiffness matrix and its derivatives can 

be expressed as 
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 (7) 

The forcing processes f1
(l)

(t) and f2
(l,m)

(t) in equation (5) depend on the derivatives of function g with respect to the random 

parameters bh and can be expressed as 
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So far, three different systems of differential equations of motion (4) and (5) have been obtained: in the general case of a 

system with N degrees of freedom and affected by randomness in Nb parameters, a total number of  N (1+Nb+Nb
2
) equations 

must be solved, which implies a heavy computational effort. Therefore, a simplifying approach is examined, namely the 

nonlinear normal modes. 

The systems (4) and (5) can be rearranged in only one matrix expression as 
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Vector y contains all the degrees of freedom of the system, and all their first and second derivatives with respect to the 

random variables bh: 
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It is clear that the vector y can be subdivided in three blocks, the first one made by N components Nxx 1 , the second 

by bNN   derivatives 
bNNxx ,1,1   and the third one by by 2

b
NN    second derivatives 

bbNNNxx ,11,1  .  

Accordingly, the mass, damping and stiffness matrices can be arranged by the corresponding blocks: 
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The damping matrix C
(t)

 is completely analogous to the stiffness matrix K
(t)

, with the tangent damping matrix CT  in place 

of KT. 

Eventually, the forcing term is made up by 

 
            

t
mllt tttt





 

,
21

,, ffbxxgFf   (12) 

with l and m ranging from 1 to Nb. 

Once the vector y has been computed, the first statistical moments of the h-th DOF can be obtained as 
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B. Implementation of non-linear normal modes 

Non-linear normal modes may be seen as a particular synchronous periodic solution of the non-linear equations of motion; 

although this definition can be effectively employed to establish algorithms to compute NNMs, in the present paper an 

equivalent definition is exploited, following [15], which builds upon the invariant manifold formulation developed by Shaw 

and Pierre [10], [11] and [12]. This non-linear extension of modal analysis allows to generate reduced-order models by 

restricting non-essential modes (or degrees of freedom) to an invariant manifold parameterized by a set of retained modes (or 

degrees of freedom). 

It is to be kept in mind that the differential equations defined by (9) are non-linear due to following facts: 

 Function g is a nonlinear function of displacements and velocities; 

 Damping and stiffness tangent matrices are displacement and velocity-dependent. 

Nevertheless, a linear part in damping and stiffness matrices can usually be identifiable and it will be denoted by C(L)
(t)

  and 

KL
(t)

 , respectively. The equation of motion can be therefore recast as 
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The case taken into examination in the present work deals with the free oscillations of an undamped Duffing oscillator; in 

this case, the equations of motion can be diagonalized, obtaining 

  ηfΩηη   (15) 

where  = y is a vector of normalized modal co-ordinates,  is the matrix containing the linearized modal shapes of the 

system ( 14 ), Ω  is the diagonal stiffness matrix whose elements are the squared circular frequencies of the linearized system, 

2
k

 ,  ηf  contains any additional linear or non-linear term, and each overdot indicates a time derivative. 

In a single-mode invariant manifold formulation [12], all degrees of freedom are constrained to be functions of a chosen 

co-ordinate pair, as follows, where the subscript m indicates the „master‟ node of interest. If m denotes the master degree of 

freedom, its evolution in time, in a set of cylindrical coordinates, is described by the expression: 

  cosam   ;  sinmm a  (16) 
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The time history of amplitude a and phase  of the master DOF must satisfy 
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The time histories of the remaining degrees of freedom (“slave” degrees) can be expressed by means of proper functions 

   ,aPii   ;   ,aQii   (18) 

Functions Pi and Qi are unknown, but their dependency on the amplitude and phase of the master DOF can be modelled by 

means of the following differential system (see [15] and [9] for details): 
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The obtained equations are independent of time. Such equations describe the geometry of the considered non normal mode. 

When the evaluation of the non-normal mode is completely performed, the corresponding vector y can be evaluated by 

means of 
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The projection in the lagrangian coordinates and the resolution of the second group of equations (15) gives the desired 

approximation for the dependence of the system response x on the random parameters vector b. 

III. APPLICATION: THE UNDAMPED DISORDERED DUFFING OSCILLATOR 

As an illustrative example, the non-linear undamped multidimensional Duffing system is considered: 

 0Cx)Kx(xKxxM
t  λ  (21) 

The following parameters have been chosen to characterize the oscillator: M=[1 0;0 2], K=[10 -5;-5 5],  C=[1 -0.5;-0.5 1] ; 

 is a random parameter whose mean will be taken in the following two examples m=0.001 and 0.01 respectively. 

The governing equations of the system response and its derivatives are 
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and 
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This set of equations can be solved separately; first, system (22) is solved and the associated linear system gives 1=1.047 

rad/s, 2= 3.377 rad/s and = [0.369 -0.929; 0.657 0.261].  

The non-linear mode shapes are generated for the first group of equations while the second and third group of equations are 

solved directly integrating the differential equations. This is possible because the first group of equations does not depend from 

the derivate ones of x. A possible future development of the method is to solve also according to group and the third by means 

of use of the NNMs. 
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The application is made with m=0.001 and results are shown in Fig. 1 and Fig. 2, while the results obtained for m=0.01 in 

Fig. 3 and Fig. 4. The numeric simulations for the free oscillation are shown in Fig. 5 to Fig. 8 for m=0.001 and for m=0.01. 

 

Fig. 1 Non-linear modal shape P2 for λm =0.001 and Na=2, Nφ=4 

 

Fig. 2 Non-linear modal shape Q2 for λm =0.001 and Na=2, Nφ=4 

 

Fig. 3 Non-linear modal shape P2 for λm =0.01 and Na=2, Nφ=4 
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Fig. 4 Non-linear modal shape Q2 for λm =0.01 and Na=2, Nφ=4 

 

Fig. 5 Numerical simulation of phase φ and amplitude a obtained for λm =0.001 

 

Fig. 6 Numerical simulation of the two degrees of freedom obtained for λm =0.001 
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Fig. 7 Numerical simulation of phase φ and amplitude a obtained for λm =0.01 

 

Fig. 8 Numerical simulation of the two degrees of freedom obtained for λm =0.01 

The comparison of the NNMs method and the numerical Monte Carlo simulations, shown in Fig. 5 to Fig. 8, gives 

undistinguishable results. In order to compute the expected value and the standard deviation of the DOFs x1 and x2 the 

following approximations in [1] and [8] are used: 
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In the following figures, the variations of x1 and x2 with  and time t are reported. The coefficient of variation assumed for 

 in the numerical simulations is 50%. 
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Fig. 9 Numerical simulation of the system response x1(t,) obtained with m =0.01 

 

Fig. 10 Numerical simulation of the system response x2(t,) obtained with m =0.01 

In order to validate the method, 1000 dynamic analyses with m=0.01 and coefficient of variation 50% have been simulated. 

In the corresponding probability distribution is shown. 

 

Fig. 11 Histogram and underlying normal probability distribution for the numerical simulation obtained with m =0.01 and C.o.V. 50% 
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The comparison between the adopted method and the simulations is shown in the following figures. The NNM's method 

and the simulations give undistinguishable results. 

 

Fig. 12 Numerical simulation of the expected value system response E[x1] and E[x2] obtained with m =0.01 

 

Fig. 13 Numerical simulation of the standard deviation of the system response x1 and x2 obtained with m =0.01 

IV. CONCLUSIONS 

The study of the dynamical behaviour of disordered structures often implies a huge number of differential equations to be 

solved, even by means of the simplest approaches. Such drawback often makes it impossible to adequately represent the 

dependence of the structural response on the random parameters involved. A procedure which makes use of non-linear normal 

modes has been tested to reduce the dimension of the differential system to be solved. An application for a 2-DOFs duffing 

undamped oscillator with one random parameter has been shown. 

The conventional approach would require 6 differential equations to be solved; instead, once the normal modes have been 

computed, only 2 differential equations are needed, thus assessing the usefulness of the proposed approach. 

The comparison with Monte Carlo simulation is undistinguishable from the results given by the NNMs approach. 
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