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Abstract- In this paper, person–independent computational emotion recognition using multimodal physiological signals - in this study,
plethysmogram, skin conductance change, respiration rate and skin temperature - is investigated. Psychophysical experiments are
conducted using Japanese kanji words in order to excite three emotions, such as positive, negative and neutral, in subjects and thus
elicit physiological signals. The concept of machine learning approaches, such as multilayer neural networks, support vector machines,
decision trees and random forests, is used to design emotion recognition systems, and the recognition systems are trained and tested
using gathered data under the psychophysical experiments to investigate their characteristics. In experiments of computational emotion
recognition, the maximum average recognition rates are 38% using multilayer neural networks, 40% using support vector machines
equipped with a Gaussian kernel function, 37% using decision trees and 33% using random forests for all three emotions. The results
of the emotion recognition experiments show that using multimodal physiological signals with a machine learning approach is feasible
and appropriate for person–independent computational emotion recognition.

Keywords- Emotion Recognition; Japanese Kanji Words; Physiological Signal; Neural Networks; Support Vector Machines;
Decision Trees; Random Forests

I.INTRODUCTION

In human communication, nonverbal information, such as intentions and emotions, plays an important role. In particular, emo-
tional information enables people to communicate with each other more smoothly. Thus, it is evident that the exchange of
nonverbal information is pivotal in all forms of communication and is occasionally more important than verbal information. Fur-
thermore, this suggests that nonverbal communication forms the basis of human communication. In addition to human-to-human
communication, communication between humans and machines is becoming increasingly common. To achieve more intimate
and human–like interactions between humans and machines, the use of both verbal and nonverbal information will be essential
in human–machine interface systems and human–computer interactions [1].

Emotion recognition using computers is an interesting but difficult task [2, 3]. People can recognise emotional speech with
an accuracy of around 60% and emotional facial expressions with an accuracy of around 70–98%. In studies on computational
emotion recognition/affective computing [4], emotional speech was recognised at a rate of 50–60% [5], and facial expressions
had a recognition rate of 80–90% [6, 7]. However, a limited number of emotional categories and consciously and purposefully
expressed emotions have usually been investigated because such emotions are easier in terms of recognition, control and data
collection. To improve the recognition accuracy obtained in such single–modal emotion recognition, many studies have attempted
to exploit the advantage of using multimodal information, especially by fusing audio-visual information. On the other hand,
physiological signals, such as electrodermal activity, heart rate, electrocardiograms, electromyograms and blood volume pressure,
are also useful for evaluating emotions [8–18]; this is because these vital signs are generally controlled by the autonomic nervous
system, which is affected by felt emotions. The physiological signal datasets used in most previous studies were obtained
using visual elicitation methods in which the subjects look at selected photographs or watch movies in a laboratory setting,
and a recognition rate of over 80% on an average has been achieved. However, the recognition rate depends strongly on the
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datasets; that is, the number of emotional categories and the kinds of emotional categories to use were different on the datasets,
moreover the datasets were usually composed of specific subjects with specific stimuli in laboratory conditions although person
independence and context independence are important and a desirable quality in emotion recognition. Another possible way of
evaluating emotion from physiological information is electroencephalography, or the use of brainwaves, which is an index of
the central nervous system [19–21]. Brainwaves might be effective in evaluating emotions because emotions are excited in the
limbic system and are deeply related to cognitive processing. However, in such a method, special equipment and/or electrodes
are necessary to collect brainwave data, and advanced ability to handle the equipment/sensors and process the data is also pre–
requisites.

In this paper, we investigate computational emotion recognition from multimodal physiological signals [22] under the fol-
lowing assumptions. (1) Consciously and purposefully elicited emotions are considered because they are easier to stimulate in
humans. (2) Three emotional states (positive, negative and neutral) are selected in light of several studies on computational
emotion recognition systems. These emotions are elicited by presenting Japanese kanji words that have a positive, negative or
neutral affective valence to human subjects. Because the kanji words are ideographs and have both a morphologic/logographic
and phonetic script, their features are different from those of phonetic scripts such as the English alphabet. The attributes of
kanji words, e.g. imagery, ease of learning, representation and affective valence, have been investigated; single or compound
kanji words have been found to have an affective effect on Japanese [23, 24]. (3) A combination of four physiological signals,
the plethysmogram, skin conductance change, respiration rate and skin temperature, is considered because these signals can be
easily obtained without any special equipment or expertise in handling/processing the data. In psychology, Russell [25] proposed
that emotions could be explained using a two–dimensional plane of emotional valence (pleasure–displeasure) vs. arousal valence
(aroused–sleepy). For example, the emotional valence can be evaluated using the heart rate, whereas the arousal valence can
be estimated using electrodermal activity. (4) An emotion recognition system achieves person–independence by training with
several different human subjects. The final objective of computational emotion recognition is to make it person–independent
under unconscious conditions, but this is a difficult issue that will require long–term research. Therefore, in this study, we try to
achieve person–independent emotion recognition by gathering data from multiple subjects in limited emotional categories and
using machine learning approaches [26]. The rest of this paper is arranged as follows. In Section 2, the collection of physiolog-
ical signals using multimodal sensors during psychophysical experiments is described. In Section 3, a computational emotion
recognition system based on machine–learning approaches and the results of computational emotion recognition experiments are
presented.

II.DATA COLLECTION

A.Physiological Signal Sensing System

Figure 1 shows a schematic of a multimodal physiological signal sensing system for gathering physiological signals from a
human subject. The sensing system comprises four sensors and two personal computers: one is used to present stimuli to a
subject, and the other is used to acquire the physiological signals (plethysmogram, skin conductance change, respiration rate and
skin temperature) from the subject.

The plethysmogram is measured by a pulse oximeter that consists of a sensor clip (PP-C012, TEAC Co.) and a physiological
signal amplifier. This sensor clip uses a reflective optical sensor and measures the pulse wave pattern of a fingertip. The sensor
clip, with a diameter of 1 cm, is mounted on the subject’s fingertips and the finger is wrapped in a piece of cloth to secure the
sensor clip.

The skin conductance change is measured by a skin conductance metre that consists of two electrodes (PPS-EDA, TEAC Co.),
an electrodermal activity (EDA) unit (AP-U030, TEAC Co.) and the physiological signal amplifier. The disposable Ag/AgCl
electrodes are mounted on the subject’s fingertips. The change in skin conductance at the fingertips is measured by the variation

Subject

Pulse sensor clip
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Kanji image

EDA unit
Physiological
signal amplifier

Personal computer

Thermoelectric amplifier

Belt sensor

Thermal
sensor clip
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Fig. 1 Schematic of multimodal physiological signal sensing system
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negative

neutral
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Fig. 2 Japanese kanji words (Left to right for ’negative’: death, kill, sorrow, illness, disgust. Left to right for ’neutral’: field, word, right, figure,
village. Left to right for ’positive’: happiness, laughter, pleasure, sunny, fortune)

TABLE 1 EVALUATION RESULTS OF KANJI WORD IN THE PSYCHOLOGICAL EXPERIMENT

Positive Negative Neutral

Subject
a 4 4.5 4 5 4 1 1 2 1 1 3 3 3 3 3
b 5 4.5 4 4.5 4.5 1 1.5 2 1.5 2 3 3 4 3 3
c 5 4 4 5 4.5 2 1 2 1 2 3 3 3 3 3
d 5 5 4.5 4 5 1 1 2 2 1.5 3 3 3 3 3
e 5 5 5 5 5 1 1 1 1 1 3 3 3.5 3 3
f 4 4 4.5 4 4 2 2 2.5 2 1.5 3 3 3 3 3
g 2 4.5 3.5 4 5 1 2 2 1 2 4 3 3 4.5 4
h 5 5 5 5 5 1 1 1.5 1 1.5 3 3 3 3 3
i 4 5 4.5 4 5 1.5 1 2 2 2 3 3 3 3 3
j 5 4.5 5 5 5 1 1 2 2 2 3 3 2 3 4
k 5 5 5 4 4 1 1 2 1 1 3 3 3 3 3
l 5 5 5 5 5 1 1 1 1 1 4 3 4 4 4
m 4.5 5 5 4 5 1 1 1 1 2 3 3 4 3 3

in electrical current in the EDA unit.

The respiration rate is measured by a respiration sensor that consists of a hook-and-loop belt sensor (AP-C021, TEAC Co.)
and the physiological signal amplifier. The belt extends around the subject’s chest cavity and is held in place by a small elastic
band, which stretches as the subject’s chest cavity expands. The amount of stretch in the belt is measured as a change in voltage.

The skin temperature is measured by a thermal metre that consists of a sensor clip (AP-C050, TEAC Co.), a thermoelectric
amplifier (AP-U019, TEAC Co.) and the physiological signal amplifier. The sensor clip is mounted on the subject’s fingertip. The
change in the skin temperature at the fingertip is measured by the variations in electrical voltage in the thermoelectric amplifier.

The outputs from these sensors are amplified in the physiological signal amplifier (Polymate AP1000, TEAC Co., 32 ch, AD
converter: 16 bit, maximum sampling frequency: 2 kHz) and are input to one of the personal computers (CF-R6, Panasonic).

B.Psychological Experiments

In our experiment, three emotions, positive, negative and neutral, were considered. These emotions were stimulated using
Japanese kanji words that were selected because their meanings were expected to elicit the corresponding emotions from Japanese
people. To evaluate whether a kanji word excites each emotion, questionnaire investigations of subjects who did not take part
in the experiment involving the multimodal physiological signal sensing system were conducted. A total of 13 subjects (males,
Japanese, age: 21–24) participated in the evaluation experiment. The questionnaire on feeling emotions was evaluated with five
grades ranging from ’negative’ (score: 1) to ’positive’ (score: 5) for each kanji word. Figure 2 shows the 15 kanji words [27]
that were chosen to elicit each emotion.

Table 1 shows the results of the questionnaires and Fig. 3 illustrates the average score for each emotion. Each score accurately
corresponds to the classifications. Applying the Wilcoxon rank sum test to all the combinations of the scores for kanji words,
yielded differences with a significance level of 5%. Applying the Friedman test to the average scores for the emotions, yielded
differences with a significance level of 5%. These results indicate that most subjects could feel each emotion when exposed to
the kanji words.

C.Psychophysical Experiments

By using the multimodal physiological signal sensing system, physiological signals were collected in psychophysical experiments
that used the kanji words as stimuli to excite emotions. By considering a guide to gathering physiological data for affective recog-
nition described in an earlier study [8], the psychophysical experiments were conducted following an event-excited, laboratory
setting, feeling, open-recording and emotion-purpose methodology. The experiments were conducted in a private room in our
laboratory where the illumination, sounds and room temperatures were controlled to maintain uniformity.
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Fig. 3 Average score for each emotion evaluated by human subjects in psychological experiments (*: p < 0.05)

Fig. 4 Experimental setup of physiological signal measurement

In the psychophysical experiment, a total of 15 subjects (14 males and 1 female, Japanese, age: 21–24) participated. A text
image illustrating a kanji word drawn in black on a white background was presented on the display of a personal computer. While
the text image was presented to the subject, raw physiological signals were collected from each subject twice for each of the three
emotions by using the physiological signal measurement system, as shown in Fig. 4. The subject was asked to passively view
the text image. One trial of the experiment was conducted as follows.

1. Baseline: Measuring the physiological signals without any stimulus.

2. Stimulating emotion: Measuring the physiological signals for 30 s while/after presenting a kanji word on the display of
the personal computer. The displayed kanji word is randomly selected from the stimulus datasets.

3. Evaluating emotion: The subject evaluates her/his emotions by answering a questionnaire that investigates whether she/he
can feel the emotion. In the questionnaire, the emotions were evaluated with seven grades ranging from ’negative’ (score:
1) to ’positive’ (score: 7).

4. Conclude the experiment if all kanji words are evaluated; otherwise, return to Step 2.

In the psychophysical experiment, 450 samples of physiological signals together with the emotional classification labels were
collected. Table 2 shows the results of the emotion evaluation obtained using the questionnaires and Fig. 5 shows the average
score for each emotion. Applying the Wilcoxon rank sum test to all the combinations of the scores for kanji words, yielded
differences with a significance level of 5%. Applying the Friedman test to the average scores among the emotions, yielded differ-
ences with a significance level of 5%. Thus, we consider that most subjects could feel each emotion during the psychophysical
experiment conducted to gather physiological signals.

III.COMPUTATIONAL EMOTION RECOGNITION EXPERIMENTS

A.Feature Extraction

Figure 6 shows examples of the raw physiological signals measured from a subject during the psychophysical experiments; the
sampling frequency is 200 Hz. To conduct computational emotion recognition, the features of each physiological signal must be
extracted from the raw signals. In this study, statistical and physiology–dependent features [8] of each physiological signal are
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TABLE 2 EVALUATION RESULTS OF KANJI WORD IN THE PSYCHOPHYSICAL EXPERIMENT

Positive Negative Neutral

Subject
A 7 7 7 7 7 1 1 1 1 1 4 4 6 4 4
B 5.5 6 6 5 5.5 1 3.5 2 3 2 4.5 4 4.5 4.5 4
C 6 6.5 6 6 5 1 2 3 2.5 2.5 4 4 4 4.5 4
D 6 5.5 6.5 5.5 6 1 1 2 2 2 3.5 3.5 3 4 4
E 5 4.5 4.5 5 4.5 2 3 4 2.5 3 4 5 3.5 5 4
F 7 6.5 6.5 6 6.5 1.5 1.5 2.5 1 2 4 3 3 2.5 3
G 7 7 7 6 6.5 1 1 1.5 2 1.5 4.5 4 4 4 4
H 6.5 7 7 6 6.5 2 1 2 2 1 4 4.5 5 5 4.5
I 7 5.5 6 6 5 1 1.5 3 2 1.5 5 4.5 5 4.5 4.5
J 6 7 7 6.5 5 1.5 1 1.5 2.5 2 4 4.5 3 4 4.5
K 5 5.5 5.5 5.5 4.4 2 2 3 2.5 2.5 4 4 4 4 4
L 6.5 6.5 6.5 5.5 4.4 1 1 3 2.5 2 4 4 2.5 4.5 4
M 5 5 5 5 6 1.5 2 3 2 3 4 4 4.5 4 4
N 4.5 4 3 3 4 3 3.5 3 3.5 4.5 3.5 4 3 3.5 3.5
O 5.5 7 6.5 6 5.5 1 1 2 2.5 2 4 4 4 3.5 4
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Fig. 5 Average score for each emotion evaluated by human subjects in psychophysical experiments for gathering physiological signals (*:
p < 0.05)

considered. The statistical features are as follows.

µX =
1
K

K∑
k=1

Xk (1)

σX =

√√√√ 1
K − 1

K∑
k=1

{Xk − µX}2 (2)

δX =
1

K − 1

K−1∑
k=1

|Xk+1 − Xk| (3)

δ̄X =
δX

σX
(4)

γX =
1

K − 2

K−2∑
k=1

|Xk+2 − 2Xk+1 + Xk| (5)

γ̄X =
γX

σX
(6)

αX = max Xk (7)
βX = min Xk (8)

Here, Xk indicates the physiological signal X = {P,S,R, T } for sample number k and K is the total number of samples in
one trial of the psychophysical experiment. The symbols P , S, R and T represent the plethysmogram, skin conductance change,
respiration rate and skin temperature, respectively.

The heartbeat rate H is estimated from the plethysmogram. By applying fast Fourier transform analysis to the pulse waveform
Pk convolved with a Hamming window, the reciprocal of the frequency that has the maximum power spectrum is defined
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Fig. 6 Examples of raw physiological signals (Top to bottom: plethysmogram, skin conductance change, respiration rate and skin temperature.
Left to right: positive, negative and neutral emotions.)

as the heartbeat rate Hk. To reduce the noise and the baseline fluctuations in the skin conductance change, a form of contrast
normalisation, X̄k = Xk−min Xk

max Xk−min Xk
, is applied to the skin conductance change waveform Sk convolved with a Hanning window.

The skin temperature waveform Tk is also applied to the form for contrast normalisation. The physiology–dependent features are
as follows.

fX =
1

Kn

Kn∑
k=1

Xk (9)

dX =
1

Kn − 1
(XKn − X1) (10)

Here X = {H, S̄, T̄ }, and Kn is the total number of samples to which the convolution is applied. The respiration waveform
Rk is modified by the mean of the overall respiration data to compensate for day–to–day variations in sensor placement: R̄k =
Rk − 1

Ka

∑Ka

k=1 Rk where Ka is the total number of samples for a subject. Two features, µR̄ and σR̄, and the first four 0.1–Hz
bands of the power spectral density in the range of 0.0–0.4 Hz in the respiration waveform piR̄ (i = 1, · · · , 4) were used as the
physiology–dependent features.

The feature vector utilised in the experiments for computational emotion recognition is defined using 32 statistical features
and 12 physiology–dependent features.

B.Emotion Recognition System

This study investigated and compared the following standard machine learning approaches to achieve computational emotion
recognition systems.

1. Multilayer neural networks (MNNs) with standard back-propagation learning

2. Support vector machines (SVMs) with varying kernel functions

3. Decision trees (DTs) with a Gini diversity index

4. Random forests (RFs) for ensemble learning

As a reference for these machine-learning approaches, a learning vector quantization method (LVQ), a linear classifier based on
a Fisher linear discriminant analysis (FLDA), and a nonlinear classifier based on the Bayes rule (naive Bayes classifier, NBC)
were conducted.
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TABLE 3 CONFUSION MATRIX OF COMPUTATIONAL EMOTION RECOGNITION USING PHYSIOLOGICAL FEATURES (THREE EMOTIONS)

All features Principal components Selected features
In \ Out negative neutral positive negative neutral positive negative neutral positive

MNNs
negative 0.30 0.31 0.39 0.38 0.35 0.27 0.33 0.31 0.36
neutral 0.37 0.34 0.29 0.35 0.36 0.26 0.24 0.39 0.37
positive 0.35 0.31 0.34 0.34 0.35 0.41 0.27 0.36 0.37

In \ Out negative neutral positive negative neutral positive negative neutral positive

SVMs(g)
negative 0.38 0.33 0.29 0.41 0.27 0.32 0.17 0.49 0.34
neutral 0.38 0.31 0.31 0.42 0.31 0.27 0.13 0.57 0.30
positive 0.38 0.29 0.33 0.45 0.25 0.30 0.12 0.41 0.47

In \ Out negative neutral positive negative neutral positive negative neutral positive

SVMs(p)
negative 0.41 0.31 0.28 0.42 0.30 0.28 0.26 0.53 0.21
neutral 0.39 0.29 0.32 0.41 0.31 0.28 0.33 0.40 0.27
positive 0.42 0.26 0.32 0.44 0.27 0.29 0.41 0.38 0.21

In \ Out negative neutral positive negative neutral positive negative neutral positive

DTs
negative 0.23 0.37 0.40 0.30 0.28 0.42 0.29 0.42 0.29
neutral 0.29 0.46 0.25 0.28 0.35 0.37 0.33 0.40 0.27
positive 0.35 0.42 0.23 0.36 0.29 0.35 0.27 0.32 0.41

In \ Out negative neutral positive negative neutral positive negative neutral positive

RFs
negative 0.25 0.35 0.40 0.30 0.38 0.32 0.29 0.40 0.31
neutral 0.34 0.27 0.39 0.34 0.35 0.31 0.37 0.30 0.33
positive 0.35 0.39 0.26 0.40 0.30 0.30 0.24 0.36 0.40

In \ Out negative neutral positive negative neutral positive negative neutral positive

LVQ
negative 0.32 0.38 0.30 0.37 0.37 0.26 0.32 0.41 0.27
neutral 0.37 0.35 0.28 0.34 0.33 0.33 0.33 0.37 0.30
positive 0.38 0.30 0.32 0.28 0.32 0.42 0.26 0.33 0.41

In \ Out negative neutral positive negative neutral positive negative neutral positive

FLDA
negative 0.27 0.40 0.33 0.25 0.42 0.33 0.17 0.45 0.38
neutral 0.38 0.29 0.33 0.29 0.41 0.30 0.17 0.52 0.31
positive 0.39 0.33 0.28 0.37 0.33 0.30 0.16 0.37 0.47

In \ Out negative neutral positive negative neutral positive negative neutral positive

NBC
negative 0.43 0.35 0.22 0.28 0.39 0.33 0.37 0.31 0.32
neutral 0.51 0.21 0.28 0.43 0.35 0.22 0.41 0.31 0.28
positive 0.51 0.34 0.15 0.41 0.36 0.23 0.36 0.31 0.33

C.Emotion Recognition Results

In the experiments on computational emotion recognition, first the parameters for each recognition system were tuned using
bootstrap datasets generated from the collected samples of physiological signals so as to achieve a higher recognition rate. The
size of the bootstrap dataset was the same as that of the samples of physiological signals, and the total number of dataset was
100. Consequently, the MNNs were tuned to a 44–5–3 network topology. In the SVMs, the inverse kernel width of the Gaussian
kernel function was 10−2, and the margin parameter was 103. The margin parameter in the second–order polynomial kernel
function was also 103. In the DTs, the complexity parameter was tuned to 10−5. The number of trees generated in the RFs was
800, and 50 variables were randomly sampled as candidates at each split. Next, the emotion recognition system was trained and
tested by leave–one–out cross validation. The left column in Table 3 shows the results of computational emotion recognition in
which all the features were used in the feature vector. The averaged recognition rates were 33% using the MNNs, 34% using the
SVMs with the Gaussian kernel (SVMs(g)), 34% using the SVMs with the second polynomial kernel (SVMs(p)), 31% using the
DTs, 26% using the RFs, 33% using the LVQ, 28% using the FLDA and 26% using the NBC. Subjects self–evaluated that they
could feel each emotion in the psychophysical experiments, as shown in Fig. 5; however, the emotion recognition system had
some difficulty in recognising the three emotions. To pre–process the feature vector, principal component analysis (PCA) was
applied to the extracted features. Figure 7 shows the contribution ratio; the principal components are arranged in order to decrease
eigenvalue. The contribution ratio exceeds 90% for the 18th principal component. Thus, the feature vector was composed of the
first 18 principal components. In the MNNs, there was an 18–10–3 network topology. In the SVMs, the inverse kernel width
of the Gaussian kernel function was 10−2, and the margin parameter was 104, whereas the margin parameter was 102 in the
second–order polynomial kernel function. In the DTs, the complexity parameter was 10−5. The number of trees generated in
the RFs was 600, and 20 variables were randomly sampled as candidates at each split. The centre column in Table 3 shows the
results of computational emotion recognition using the 18 principal components. The averaged recognition rates were 38% using
the MNNs, 34% using the SVMs(g), 34% using the SVMs(p), 33% using the DTs, 32% using the RFs, 37% using the LVQ, 32%
using the FLDA and 29% using the NBC. Although the dimension of the feature vector in the emotion recognition system is
reduced by using the PCA and the averaged recognition rates are improved in the MNNs and RFs, the pre–processing by PCA
has little influence on the other emotion recognition systems.

To investigate the features, which are relevant to classification of each emotional state and reduce the dimension of the
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TABLE 4 CONFUSION MATRIX OF COMPUTATIONAL EMOTION RECOGNITION USING PHYSIOLOGICAL FEATURES (TWO EMOTIONS)

All features Principal components Selected features
In \ Out negative positive negative positive negative positive

MNNs negative 0.51 0.49 0.52 0.48 0.45 0.55
positive 0.54 0.46 0.57 0.43 0.46 0.54

In \ Out negative positive negative positive negative positive

SVMs(g) negative 0.50 0.50 0.51 0.49 0.61 0.39
positive 0.46 0.54 0.52 0.48 0.49 0.51

In \ Out negative positive negative positive negative positive

SVMs(p) negative 0.49 0.51 0.52 0.48 0.63 0.37
positive 0.47 0.53 0.50 0.50 0.61 0.39

In \ Out negative positive negative positive negative positive

DTs negative 0.49 0.51 0.46 0.54 0.50 0.50
positive 0.35 0.65 0.51 0.49 0.47 0.53

In \ Out negative positive negative positive negative positive

RFs negative 0.47 0.53 0.43 0.57 0.54 0.46
positive 0.58 0.42 0.56 0.44 0.53 0.47

In \ Out negative positive negative positive negative positive

LVQ negative 0.53 0.47 0.56 0.44 0.55 0.45
positive 0.67 0.33 0.60 0.55 0.69 0.31

In \ Out negative positive negative positive negative positive

FLDA negative 0.47 0.53 0.46 0.54 0.69 0.31
positive 0.57 0.43 0.60 0.40 0.55 0.45

In \ Out negative positive negative positive negative positive

NBC negative 0.61 0.39 0.59 0.41 0.61 0.39
positive 0.68 0.32 0.61 0.39 0.63 0.37
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Fig. 7 Relationship between the number of principal components and contribution ratio

feature vector in the emotion recognition system, features were selected using the sequential forward selection (SFS) method;
this method starts with an empty set and the feature that fits best is inserted at each step. The FLDA was used to calculate the
classification rate in the SFS evaluation. As shown in Fig. 8, six features that achieve the maximum classification rate were
selected, as follows: fS̄ , σR, dH̄, µR, p3R̄ and p4R̄ . In the MNNs, there was a 6–7–3 network topology. In the SVMs, the margin
parameter was 1 in both kernel functions, whereas the inverse kernel width of the Gaussian kernel function was 10−1. In the
DTs, the complexity parameter was 10−5. The number of trees generated in the RFs was 600, and 30 variables were randomly
sampled as candidates at each split. The right column in Table 3 shows the results of computational emotion recognition using
the six selected features. The averaged recognition rates were 36% using the MNNs, 40% using the SVMs(g), 29% using the
SVMs(p), 37% using the DTs, 33% using the RFs, 37% using the LVQ, 39% using the FLDA and 34% using the NBC. The
averaged recognition rates of all the emotion recognition systems were improved slightly by using feature selection; however,
the emotion recognition systems have some difficulty in recognising negative emotions.

The left column in Table 4 shows the results of computational emotion recognition considering only two emotions (positive
and negative); all features were used in the feature vector. In the MNNs, there was a 44–9–2 network topology. In the SVMs, the
inverse kernel width of the Gaussian kernel function was 10−3, and the margin parameter was 104, whereas the margin parameter
was 102 in the second–order polynomial kernel function. In the DTs, the complexity parameter was 10−2. The number of trees
generated in the RFs was 103, and 40 variables were randomly sampled as candidates at each split. The averaged recognition
rates were 49% using the MNNs, 52% using the SVMs(g), 51% using the SVMs(p), 57% using the DTs, 45% using the RFs, 43%
using the LVQ, 45% using the FLDA and 47% using the NBC. The centre column in Table 4 shows the results of computational
emotion recognition with the feature vector reduced by PCA. As shown in Fig. 7, the variation in the contribution rate for two
emotions is almost the same as that for three emotions. Thus, the first 18 principal components, which yield a contribution ratio

-156-

Oct. 2013, Vol. 2 Iss. 4, PP. 149-160



Frontiers in Psychological and Behavioral Science

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 5 10 15 20 25 30 35 40 45 

C
la

s
s
if

ic
a
ti

o
n

 r
a
te

Number of feature

three emotions

two emotions

Fig. 8 Relationship between the number of features and classification rate obtained by using SFS

TABLE 5 RESULTS OF BINOMIAL TEST FOR THE RECOGNITION RATES BETWEEN MACHINE LEARNING APPROACHES AND RANDOM

APPROACH

Emotions Feature vector MNNs SVMs(g) SVMs(p) DTs RFs

Three
All features -0.095 0.222 0.222 -0.739 -2.398
Principal components 1.472∗∗∗ 0.222 0.222 -0.096 -0.416
Selected features 0.851 2.086∗ -1.393 1.162 -0.096

Two
All features -0.245 0.490 0.245 1.719∗∗ -1.226
Principal components -0.490 0.000 0.245 -0.490 -1.472
Selected features 0.000 1.472∗∗∗ 0.245 0.490 0.245

(*: p < 0.05, **: p < 0.1, ***: p < 0.2)

of more than 90%, were selected. In the MNNs, there was an 18–8–2 network topology. In the SVMs, the inverse kernel width
of the Gaussian kernel function was 10−2, and the margin parameter was 104, whereas the margin parameter was 102 in the
second–order polynomial kernel function. In the DTs, the complexity parameter was 10−5. The number of trees generated in
the RFs was 500, and 50 variables were randomly sampled as candidates at each split. The averaged recognition rates were 48%
using the MNNs, 50% using the SVMs(g), 51% using the SVMs(p), 48% using the DTs, 44% using the RFs, 56% using the
LVQ, 43% using the FLDA and 49% using the NBC. The right column in Table 4 shows the results of computational emotion
recognition with the features selected by SFS. Here 11 features that yield the maximum classification rate, as shown in Fig. 8,
were selected, as follows: dT̄ , p2R̄ , dH, p4R̄ , p3R̄ , µR, δ̄T , δS , σT , δT and σR̄. In the MNNs, there was an 11–5–2 network
topology. In the SVMs, the margin parameter was 10 in both kernel functions, whereas the inverse kernel width of the Gaussian
kernel function was 10−1. In the DTs, the complexity parameter was 10−2. The number of trees generated in the RFs was 500,
and 10 variables were randomly sampled as candidates at each split. The averaged recognition rates were 50% using the MNNs,
56% using the SVMs(g), 51% using the SVMs(p), 52% using the DTs, 51% using the RFs, 43% using the LVQ, 57% using
the FLDA and 49% using the NBC. In all the emotion recognition systems, the emotion recognition rates are higher than those
obtained in the experiments for three emotions because the number of emotional classes is smaller. The effect of pre–processing
by PCA or feature selection by SFS is almost the same as that in the case of recognising three emotions. These results indicate
that using multimodal physiological signals with machine learning approaches has the potential to achieve person–independent
computational emotion recognition, however the emotion recognition rates are inadequate because those are slightly better than a
random approach (the random approach is expected to have the emotion recognition rate of 33.3% in three emotions and 50% in
two emotions). Table 5 shows the test statistics that are calculated in the binomial test [28] between the recognition rates obtained
by the machine learning approaches and the random approach. The SVM with Gaussian kernel function, which achieved the best
rate of emotion recognition by using the selected feature vector, yielded differences with a significance level of 5% in three
emotions and of 20% in two emotions.

In this study, kanji words were used as stimuli to induce emotions in subjects. Every kanji word generally has multiple parts
of speech in Japanese. The meaning of the kanji word sometimes changes according to the part of speech. In the cognitive
process of understanding the meaning of the kanji word and experiencing emotion, which part of speech the subject assumes
when interpreting the kanji word would influence what the subject associates with the word, even though this depends greatly
on her/his culture, education, memory and experiences. Although there is obviously no direct relationship between the affective
valence and the parts of speech in kanji words, computational emotional recognition was tested by adding information on the
parts of speech to the feature vector. The kanji words shown in Fig. 2 can be identified in terms of the parts of speech; e.g.
the word for ’happiness’ is used as three parts of speech (noun, verb and adverb), as shown in Table 7 where ’1’ indicates that
the kanji is used as the part of speech, and ’0’ indicates otherwise. In computational emotion recognition, three emotions were
considered and the parameters of each emotion recognition system were the same as those in the case of Table 3. The left column
of Table 6 shows the results of computational emotional recognition where the feature vector contained only the information
on the parts of speech. All of the emotion recognition systems yielded similar recognition results; however, there were still
some difficulties in recognising three emotions from the parts of speech. The middle column in Table 6 shows the results of

-157-

Oct. 2013, Vol. 2 Iss. 4, PP. 149-160



Frontiers in Psychological and Behavioral Science

TABLE 6 CONFUSION MATRIX OF COMPUTATIONAL EMOTION RECOGNITION USING PHYSIOLOGICAL FEATURES AND PARTS OF SPEECH

(THREE EMOTIONS)

Parts of speech All features, parts of speech Selected features, parts of speech
In \ Out negative neutral positive negative neutral positive negative neutral positive

MNNs
negative 0.40 0.20 0.40 0.63 0.15 0.22 0.61 0.14 0.25
neutral 0.07 0.80 0.29 0.16 0.61 0.22 0.16 0.65 0.19
positive 0.40 0.20 0.40 0.27 0.21 0.52 0.25 0.14 0.61

In \ Out negative neutral positive negative neutral positive negative neutral positive

SVMs(g)
negative 0.40 0.20 0.40 0.58 0.13 0.29 0.62 0.18 0.20
neutral 0.20 0.80 0.00 0.21 0.56 0.23 0.16 0.75 0.09
positive 0.40 0.20 0.40 0.35 0.18 0.47 0.36 0.20 0.44

In \ Out negative neutral positive negative neutral positive negative neutral positive

SVMs(p)
negative 0.40 0.20 0.40 0.53 0.19 0.28 0.50 0.19 0.31
neutral 0.00 0.80 0.20 0.24 0.51 0.25 0.13 0.73 0.14
positive 0.40 0.20 0.40 0.35 0.24 0.41 0.31 0.20 0.49

In \ Out negative neutral positive negative neutral positive negative neutral positive

DTs
negative 0.40 0.20 0.40 0.54 0.21 0.25 0.58 0.20 0.22
neutral 0.20 0.80 0.00 0.17 0.66 0.17 0.26 0.61 0.13
positive 0.40 0.20 0.40 0.27 0.16 0.57 0.21 0.16 0.63

In \ Out negative neutral positive negative neutral positive negative neutral positive

RFs
negative 0.43 0.20 0.37 0.50 0.19 0.31 0.61 0.16 0.23
neutral 0.09 0.80 0.11 0.15 0.69 0.16 0.18 0.67 0.15
positive 0.39 0.20 0.41 0.32 0.15 0.53 0.27 0.16 0.57

In \ Out negative neutral positive negative neutral positive negative neutral positive

LVQ
negative 0.54 0.25 0.21 0.51 0.25 0.24 0.56 0.26 0.18
neutral 0.13 0.71 0.16 0.12 0.71 0.17 0.06 0.74 0.20
positive 0.19 0.30 0.51 0.24 0.23 0.53 0.18 0.27 0.55

In \ Out negative neutral positive negative neutral positive negative neutral positive

FLDA
negative 0.80 0.20 0.00 0.67 0.16 0.17 0.77 0.16 0.07
neutral 0.20 0.80 0.00 0.20 0.61 0.19 0.21 0.71 0.08
positive 0.40 0.20 0.40 0.39 0.14 0.47 0.39 0.14 0.47

In \ Out negative neutral positive negative neutral positive negative neutral positive

NBC
negative 1.00 0.00 0.00 0.71 0.10 0.19 0.85 0.02 0.13
neutral 0.60 0.40 0.00 0.49 0.31 0.20 0.43 0.37 0.20
positive 1.00 0.00 0.00 0.67 0.14 0.19 0.75 0.07 0.18

TABLE 7 PARTS OF SPEECH OF KANJI WORDS SHOWN IN FIG. 2

kanji noun verb adjective adverb particle

1 1 0 1 0

1 1 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 1 0

0 1 0 0 1

1 1 1 0 0

1 1 1 0 0

1 1 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 0 0 0

1 1 1 0 0

1 0 1 0 0

computational emotional recognition where the feature vector consists of all the features extracted from the physiological signals
and the information on the parts of speech. The right column in Table 6 shows the results where the feature vector consists of
the features selected by SFS and the information on the parts of speech. A comparison of Table 6 with Table 3, reveals that
using information about the stimuli would be more helpful for improving the emotion recognition rates than either examining
more types of physiological signals or extracting other features from them. However, it might not necessarily be suitable for the
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objective in this study, which is to achieve computational emotion recognition from physiological signals.

IV.CONCLUSIONS

This paper investigated person–independent computational emotion recognition using multimodal physiological signals. Four
physiological signs, the plethysmogram, skin conductance change, respiration rate and skin temperature, were measured to
evaluate three emotional states: positive, negative and neutral. Psychophysical experiments using 15 Japanese kanji words to
excite emotions in subjects were conducted to gather physiological signals. Statistical and physiology–dependent features were
extracted from the signals gathered from 15 subjects. For computational emotion recognition, machine learning approaches,
multilayer neural networks, support vector machines, decision trees and random forests, were used to design emotion recognition
systems and their characteristics were investigated. In experimental emotion recognition, support vector machines with a Gaus-
sian kernel function using the feature components selected by the sequential forward selection achieved a maximum averaged
recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results
obtained in this study demonstrated that using multimodal physiological signals with a machine learning approach is feasible for
person–independent computational emotion recognition.
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