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Abstract- This paper describes a relationship between the expected average payoffs of a two-person general-sum game and the fuzzy 

average of two linguistic values. It is shown that the expected average payoff is identical to the fuzzy average. A new algorithm for 

calculating mixed Nash equilibriums is introduced by using this concept. The new algorithm simplifies the process of finding mixed 

Nash equilibriums of two-person general-sum games to solving linear equations. 
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I. INTRODUCTION 

Game theory is a branch of applied mathematics which helps scientists and engineers to analyze decision making in 

conflict situations. It has been used primarily in economics, in order to model competition between companies. Recently, game 

theory has been applied to computer networks to solve routing and resource allocation issues also in a competitive situation, 

especially, for wireless network [3,5,11,12,20]. The purpose of these researches is to find a useful algorithm which let network 

systems have high performance under limited energy consumption. These previous studies usually involved the computation of 

mixed Nash equilibriums; this is within the research field of computer science and applied mathematics. According to C. 

Daskalak is et al [4], the answer to the question Is there an efficient algorithm for computing a mixed Nash equilibrium? is 

negative. However, this paper introduces a new algorithm that simplifies the process of computing Nash equilibriums of two-

person general sum games. 

If a game is zero-sum, it can be solved efficiently by using linear programming. However, the linear programming 

approach cannot be easily extended to general-sum games because the analysis of two-person games is significantly more 

complex for general-sum games than for zero-sum games. When the sum of the payoffs is no longer zero (or constant), 

maximizing one’s own payoff is no longer equivalent to minimizing the opponent’s payoff. The minimax theorem does not 

apply to bimatrix games. One cannot expect to play “optimally” by simply looking at one’s payoff matrix and guarding 

themselves against the worst case. Clearly, one must take into account the opponent’s matrix and the reasonable strategy 

options of the opponent.  

For a general-sum game in normal form, computing Nash equilibriums is a fundamental problem in the algorithmic game 

theory.  In two-person game theory, the expected average payoff is defined as AqpT
for a player who has game matrix A . The 

expected average payoff is a function of p and q , and so we denote it as ),( qpf . Finding mixed Nash equilibriums is to find 

mixed strategies p and q  where the function ),( qpf  reaches its maximum value. If each element in p and q is described 

with a probability density function (PDF for short), and the PDFs are concave functions in R , finding the maximum values of 

function ),( qpf is equivalent to solve the following equations. 

0),(  pqpf , 0),(  qqpf . 

However, it is usually complicated to solve the two equations, when p and q are a set of PDFs respectively because of the 

complexity of the differential of its function. It has been proven that finding mixed Nash equilibriums with traditional 

algorithms is intractable [4,14].  

In this paper, instead of discussing the complexity of computing Nash equilibriums, we extend the algorithm of computing 

mixed Nash equilibriums for two-person zero-sum game, which was introduced in [7], to two-person general-sum games. The 

idea is to find the maximum value of function ),( qpf . However, instead of using PDFs, p and q are each represented by a set 

of triangular fuzzy numbers (TFNs for short). This paper includes the following sections: Section 2 gives brief reviews of the 

fuzzy average; Section 3 describes that an expected average payoff is identical to the fuzzy average; Section 4 describes the 

algorithm; Section 5 shows examples; Section 6 gives the conclusion.   

II. THE FUZZY AVERAGE 

The fuzzy average [8] is defined as the average of values of a linguistic variable [21]. A linguistic variable is usually 

defined as (x, T(x), U, G, M), where x denotes the symbolic name; T(x) is a set of linguistic values that x can take; U is the 

physical domain that defines certain value; G is a syntactic rule which generates the values in T(x); and M is a mapping from 

the set T(x) to a set of fuzzy sets which are defined on U.  
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Let us consider the average of two values of a linguistic variable. Suppose that  

),),(,( 1,11 MGUxTx x and ),,),(,( 222 MGUyTy y  

are two values of a linguistic variable  

).,,),(,( MGUxTx  },...,{)( 211 mxxxxT  , }.,...,{)( 212 nyyyyT   },...,,{)(:)( 2111 mCCCxTxM  , 

},...,{)(:)( 2122 nDDDyTyM  . 

Where ),...1( miCi  , ),...,1( njDj  are TFNs which are defined on xU , yU respectively. Without loss of generality, we 

suppose ]1,0[ yx UU . 

The fuzzy average is defined as follows, 

 ij
m

i

n

j

DjCi ryxyxf   
 1 1

, )()()(   (2.1) 

where x Ux and y Uy; )(xCi and )( yDj are the membership functions of iC and jD respectively; Rrij  is the element 

of the consequence matrix.  

For given x and y, )(xCi and )( yDj are required to satisfy (2.2) and (2.3).   

 ),...1(0)( mixCi  , 


m

i

Ci x
1

)(  = 1, (2.2) 

 ),...1(0)( njyDj  , 


n

j

Dj y
1

)( = 1. (2.3) 

It has been proven that (2.2) and (2.3) are satisfied when the mapping of )(1 xM and )(2 yM are fuzzy uniform mapping [7]. 

III. THE FUZZY AVERAGE AND EXPECTED AVERAGE PAYOFFS 

Consider a two-person general-sum game with a finite number of pure strategies with nm payoff matrices )( ijaA   and 

)( ijbB   for player  and  , respectively. Let 1m probability vector p be a mixed strategy of player  , 1n  probability 

vector q be a mixed strategy of player  . Nash equilibrium for such a game is a point ),( 00 qp that satisfies the following 

relations [6]: 

00 Aqp T
=  



m

i

ii
T

p

ppAqp
1

}0;1|{max  

00 Bqp T
=  



n

i

ii
T

q

qqBqp
1

}0;1|{max  

where 

  
 

m

i

n

j

jiji
T qapAqp

1 1

 (3.1) 

  
 

m

i

n

j

jiji
T qbpBqp

1 1

 (3.2) 

are expected average payoffs of Player  and Player  , respectively. 

Theorem 3.1. For a two-person general-sum game, the fuzzy average (2.1) is identical to the expected average payoffs (3.1) 

or (3.2), if and only if the following is true. 

(1)  payoff matrix A or B is replaced with the consequence matrix )( ijr ,  

(2) p and q are replaced with )(xCi and )(yDj , respectively, 

(3) )(xCi and )(yDj satisfy (2.2) and (2.3), respectively. 

Proof: According to the commutative and associative properties, (3.1) becomes  
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  
 

m

i

n

j

jiji qap
1 1

=   
 

m

i

n

j

ijji aqp
1 1

)(  (3.3) 

For )(xCi and )(yDj satisfy (2.2) and (2.3), respectively, if we replace ip with )(xCi , jq with )(yDj and matrix A 

with consequence matrix )( ijr respectively, then (3.3) is identical to the fuzzy average (2.1). Therefore, (3.1) is equivalent to 

(2.1) under the conditions in this theorem. Similarly, (3.2) is identical to (2.1).   

To distinguish the fuzzy averages of Player  and Player  in this paper, we use )( , yxfA and )( , yxfB .  

Theorem 3.2. If the following conditions are satisfied, then the fuzzy average )( , yxfA ( )( , yxfB ) has at least one 

maximum value in yx UU  . 

(1)  function )( , yxfA ( )( , yxfB ) is partial differentiable in yx UU  ,  

(2)  there exist yx UyUx  11 , which satisfy (3.4) ((3.5)). 
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 (3.4) 
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 (3.5) 

Proof: If ),( 11 yx  is the solution of (3.4), )( 1,1 yxfA  has an extremum value at ),( 11 yx . On the other hand, since )(xCi is a 

continuously concave function in xU , for any xx UxUx  21 , and ]1,0[t , we have,  

)()1()())1(( 2121 xtxtxttx CiCiCi    

))1(( ,21 yxttxfA  = ij
n

i

m

j

DjCi ryxttx  
 1 1

21 )())1((   ij
m

i

n

j

DjCiCi ryxtxt  
 1 1

21 )())()1()((  =

),()1(),( 21 yxftyxtf AA  . 

Therefore, )( , yxfA is x  concave. Similarly, one can prove that )( , yxfA is y  concave as well. That is, )( , yxfA is a 

concave function in yx UU  . Thus, )( , yxfA has a maximum value at ),( 11 yx . 

The Condition (2) in Theorem 3.2 guarantees that (3.4) and (3.5) have a solution. Even )( , yxfA and )( , yxfB are partial 

differentiable in yx UU  , (3.4) or (3.5) may not have a solution. The discussion of the existence of solutions of (3.4) and (3.5) 

exceeds the scope of this paper; thus it is not discussed here. 

Theorem 3.3. If ),( 00 yx ),( 00 yx UyUx  is a solution of (3.4), ),( 11 yx ),( 11 yx UyUx  is a solution of (3.5), and (2.2) 

and (2.3) are satisfied at ),( 00 yx and ),( 11 yx , respectively. Then, ))(),(( 00 yx DC  and ))(),(( 11 yx DC  are the mixed Nash 

equilibriums of Player  and Player   , 

where : 

))()...(),(()( 002010 xxxx CmCCC   , 

))()...(),(()( 002010 yyyy DnDDD   ; 

))()...(),(()( 112111 xxxx CmCCC   , 

))(),...(),(()( 112111 yyyy DnDDD   . 

Proof: Since ),( 00 yx satisfies (3.4), according to Theorem 3.2, ),( 00 yxfA is a maximum value of ),( yxfA . Similarly, 

),( 11 yx satisfies (3.5); ),( 11 yxfB is a maximum value of ),( yxfB . Based on the definition of Nash equilibriums, 

))(),(( 00 yx BA  and ))(),(( 11 yx BA  are the Nash equilibriums of Player  and Player  , respectively. 

Some games only have pure Nash equilibriums. For example, Prisoner’s Dilemma game only has a pure Nash equilibrium, 

in which both players defect [4]. As we mentioned before, (3.4) or (3.5) may not have a solution in yx UU  . Thus, we 
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introduce the following theorem.  

Theorem 3.4. For a two-person general-sum game in strategic form, if the Equations (3.4) and (3.5) in Theorem 3.2 do not 

have solutions, then the game has at least one pure Nash equilibrium. 

Proof: The method of reductio ad absurdum is used to prove this theorem. Suppose the game does not have a pure Nash 

equilibrium; since (3.4) and (3.5) do not have solutions, )( , yxfA and )( , yxfB  do not have maximum values, which means that 

the game does not have mixed Nash equilibriums. A finite strategic form game neither has a pure Nash equilibrium nor a 

mixed Nash equilibrium, which is against Nash’s theorem: every finite n-person game in strategic form has at least one mixed 

strategic equilibrium (Note: a pure Nash equilibrium is considered as a special mixed Nash equilibrium). 

IV. THE ALGORITHM 

The algorithm in this paper is the extension of the fuzzy average applying to two-person zero-sum games [7]. As mentioned 

in previous section, each action which is taken by a player can be mapped into a possible range in the real number set. TFNs 

are defined on the possible range. That is, each action which is taken by a player is mapped into a TFN. The mean values of 

TFNs for Player   divide the domain xU  into m-1 partitions; the mean values of TFNs for Player   divide the domain yU into 

n-1 partitions.  

In order to calculate (3.4) and (3.5), the fuzzy average, such as the average payoff function, is required to be differentiable 

in yx UU  . However it is clear that the fuzzy average is not differentiable at the mean value of each TFN, but it can be 

differentiable within each partition which is divided by the mean values of TFNs. 

The algorithm is as follows: 

4.1. Define appropriate mappings )(1 xM and )(2 yM . 

4.2 Calculate the expected average payoff for each player. 

4.3. Solve (3.4) and (3.5) in each partition and verify the correctness of each solution. 

4.4. Find a maximum value in each partition. 

4.5. Find the maximum value by comparing all the local maximum values. 

One may have the following questions: (1) Does Nash equilibrium depend on the mapping? Namely, does the maximum 

value of )( , yxfA depend on the mapping? (2) Does )( , yxfA not have a maximum value at a point (c, d) where c, d is a mean 

value of a TFN in xU , yU respectively? 

Firstly, the mapping M is from the set of strategies to a set of TFNs which are defined on U. The mapping only divides the 

domain of independent variables; it does not affect the value of expected average payoff, or the function of the independent 

variables. Secondly, if )( , yxfA just has a maximum value at a divided point (c, d), it is possible to miss a maximum value. 

However, that can be easily verified by calculating )( , yxfA at the divided point.  

V. EXAMPLES 

Example 1. Consider a game with the following bimatrix. 

Player   

Player   














)2,
2

3()
2

1,3()2,1(

)1,2()3,0()1,4(
 

Figure 5.1 Bimatrix of Example 1 

By using traditional algorithm [6], the Nash equilibrium ),( ** qp is )74,73(* p and 

)
7

12

7

6
,

7

1

7

5
,(* xx

xq  for ]
2

1
,0[x , the corresponding expected payoffs are, 

74712*
1 xv  , 711*

2 v . 

When the new algorithm is used, the domain for player   is [0, 1]. The domains for player  are [0, 0.5] and [0.5, 1]. By 

solving (3.4), one can find the two Nash equilibriums of player  as follows, 
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13214
131

7
4

7
3

7
427

41

DDD

CC




 

By solving (3.5), one can find the two Nash equilibriums of Player  as follows, 











)0,,())(),(),((

),())(),((
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7
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7
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41
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
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5
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2

7
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7
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7
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
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The expected payoffs of Player  and Player  are as follows. 

2),( 4
1

3
2 Af ,

7
12

14
13

7
4 ),( Af ,

7
11

7
1

7
4 ),( Bf ,

7
11

7
6

7
4 ),( Bf , respectively. 

When solving (3.4) and (3.5) by using the new algorithm, one may encounter that (3.4) or (3.5) does not have a solution. In 

this case, Player  or Player  only has pure Nash equilibriums. Please refer to the following example. 

Example 2. This is the Forwarder’s Dilemma game. 

Player   

DF  

Player   

D

F























)0,0(),1(

)1,()1,1(

C

CCC

 

Figure 5.2 Bimatrix of Forwarder’s Dilemma game 

Where F represents forwarding and D represents to drop the packet of the other player; C is a constant which represents the 

energy and computation spent for the forwarding action. 

The domains for Player  and Player  are [0, 1]. By using the new algorithm, one can realize that either (3.4) or (3.5) do 

not have a solution. As result, this game does not have a mixed Nash equilibrium. One can find a pure Nash equilibrium for 

this game by using the method of iterated dominance [6]. This example demonstrates the accuracy of Theorem 3.4. 

Example 3. This example is cited from [11] with minor modification, which is originally represented in [20]. 

Player   

SLT  

Player      

























),(),(),(

),(),(),(

),(),(),(

wPPwiPPwfPPi

wPPiiPPisPPs

iPPfPsPsfPPf

S

L

T

 

Figure 5.3 Bimatrix of Wireless Sensor Network 

T, L, and S represent Transmitting, Listening and Sleeping, respectively; Pi and iP are the payoffs for Players  and   

when they are listening; Ps and sP when they are transmitting a data packet successfully, Pf and fP when they have failed to 

transmit a data packet, and Pw and wP when they are in sleep mode, respectively. In this example, we assume that all the 

elements of the bimatrix are constants, which are defined as follows.  

)4()2()1()4( PsPwPiPf  and )4()2()1()4( sPwPiPfP  . 

Then the matrices for Player  and Player  are as follows.  


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


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
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














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4

4
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The domain of Player   same as Player   is [0, 0.5] and [0.5, 1]. By solving (3.4) with the new algorithm in each domain, 

one can find the following Nash equilibriums. 
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The average payoff of Player   on the above points are 82.1),( 11
4

11
4 Af , ])5.0,0[(;0.1),( 16

11  xxfA , 

and 75.1),( 8
3

8
7 Af respectively. There are three Nash equilibriums of Player  . They can be interpreted as the following in 

this case. 

Regarding (1), when all players have their transmission probability as 11
3 , and their listen probability as 11

8 , Player  can 

reach a maximum payoff.  

Regarding (2), when Player  ’s (other nodes) listen probability is 8
5 , and sleep probability is 8

3 , Player   either transmits 

or listens, and thus Player   can get a maximum payoff. 

Regarding (3), when Player  ’s (other nodes) transmission probability is 0.25, and listen probability is 0.75, Player  ’s 

listen probability is 0.25, and sleep probability is 0.75; thus Player   reaches a maximum payoff.    

Similarly, by using the new algorithm to solve (3.5) in each domain, one can get the following Nash equilibriums. 
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8
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The average payoff of Player   on the above points are 82.1),( 11
4

11
4 Bf , 75.1),( 8

7
8

3 Bf , and 0.1),( 2
1

16
11 Bf . The 

three Nash equilibriums can be interpreted as follows. 

(4) is same as (1). Regarding (5), when Player  ’s transmission probability is 0.25, and listen probability is 0.75, Player 
 ’s listen probability is 0.25, and sleep probability is 0.75, then Player   reaches a maximum payoff. Regarding (6), when 

layer  ’s listen probability is 8
5 , and sleep probability is 8

3 , Player  ’s listening probability is 1, and then Player   can reach 

a maximum payoff.  

In this example, (3) and (5) tell us that when an opponent player’s transmission probability 0.25, and listen probability is 

0.75, the player himself shall have listen probability 0.25, and sleep probability 0.75.  

The expected average payoff is used as the utility function in this example. The conditional collision probability of 

Player  , the throughput and the transmit power are not explicitly represent in the payoff in this example, because the purpose 

of this example is to describe how the new algorithm works.    

VI. CONCLUSION 

This paper has shown that the expected average payoff for each player is equivalent to the fuzzy average under the 

conditions in Theorem 3.1. A new algorithm for calculating mixed Nash equilibriums for two-person general-sum games has 

been introduced. From the examples in Section 5, one can perceive that instead of using PDFs to represent distribution profiles, 

when the distribution profiles are expressed with sets of TFNs, the new algorithm can be used as it is more efficient and 

simpler. Therefore, the new algorithm has exchanged the problem of finding Nash equilibriums to simply solving linear 

equations in partition domains.  

The application of the fuzzy average to two-person general-sum games can be extended to n-person non-cooperative games. 
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This will be discussed in future studies. By using computers, the new algorithm can solve large scale problems in game theory. 

This will be discussed in future studies as well. Furthermore, one study to be conducted in the future is to prove that the new 

algorithm is P-complete. 
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