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Abstract- In this study, I applied an actor-critic learning method to a mobile robot which uses a state representation based on dis-

tances between probability distributions. This state representation is proposed in a previous work and is insensitive to environmental 

changes, i.e., sensor signals maintaining an identical state even under certain environmental changes. The method, which constitutes 

a reinforcement learning algorithm, can handle continuous states and action spaces. I performed a simulation and verified that the 

mobile robot can learn a wall-following task. Then, I confirmed that the learned robot can achieve the same task when its sensors are 

artificially changed. 
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I. INTRODUCTION 

Over the past few decades, several studies have been conducted on autonomous robots. Given the wide variety of external 

environments, robot adaptability has become increasingly important. In designing a robot system, it is important to determine 

how the outside environment is expressed as a state, based on sensor information. 

In a previous study, I proposed a state representation using distances between probability distributions [1]. The proposed 

state representation is insensitive to environmental changes, i.e., sensor signals maintain an identical state even under certain 

environmental changes. Sensor signals are expressed as probability distributions, while states are expressed as distances be-

tween these distributions. I conducted experiments using a mobile robot equipped with distance sensors. Experimental results 

showed that the proposed representation correctly recognizes similar states using a converted sensor signal. 

In the previous study, I applied reinforcement learning (RL) to the autonomous mobile robot. By repeated trial and error, I 

confirmed that the robot can learn a suitable state–action relationship that helps it perform a task; in this case, moving forward 

along walls. The robot was trained by Q-learning method, which is not generally applicable to discrete states and action spaces. 

Hence, prior to learning, it is necessary to define a discrete state and action of the robot.  

In the present study, I apply an actor-critic method, which uses the proposed state representation, to a mobile robot. The ac-

tor-critic method is a type of RL algorithm applicable to continuous states and action spaces. This means that the method need 

not define the discrete state and action prior to robot learning. 

A simulation study verified that the mobile robot can learn an action relationship in the suite state using the actor-critic 

method. In addition, the learned robot can perform the task using converted sensor signals. 

This paper is organized as follows. Section II describes the proposed state representation previously. Section III explains 

the application of the representation to a mobile robot as well as behavior learning by the actor-critic method. Section IV pre-

sents and discusses the experimental results. Section V concludes the study and outlines future work. 

II. STATE REPRESENTATION USING PROBABILITY DISTRIBUTIONS 

In this section, the state representation is introduced. Information and statistical theory adopt several measures and diver-

gences that express the distance between two probability distributions. f-divergence (f-div) is a family of measures introduced 

by Csiszár and Shields [2], which includes the well-known Kullback–Leibler divergence. The f-div of a probability distribution 

      from       is defined as 

     (           )  ∫      (
     

     
)     (1) 

where      is a convex function defined for     and       . Qiao and Minematsu [3] proposed that f-div is invariant to 

invertible transforms, and they not only showed that all invariant measures must be written in the form of f-div but also showed 

that this concept is applicable to speech recognition [4]. 
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In [1], I used the invariant of f-div to propose a state representation for a robot (Fig. 1). The sensor signals are assumed as 

probability distributions. The f-div of the distributions of two sensor signals    and    incoming from the same environment is 

denoted as     (     ). As shown in Fig. 1, under an environmental change,    and    are transformed to    and   , respective-

ly. If    and    are described as          and         , respectively, and if   is an invertible transform, then     (     ) 

is equal to     (     ). 

 

Fig. 1 State representation using distance between distributions 

III. MOBILE ROBOT APPLICATION AND BEHAVIOR LEARNING  

In this section, I apply the proposed state representation to a mobile robot. In addition, I describe behavior learning by the 

actor-critic method. 

A. Mobile Robot Application 

I now explain how the state representation is applied to a mobile robot equipped with multiple distance sensors. Fig. 2 

shows a schematic of the autonomous mobile robot, called e-puck, used in our experiments. Six of the eight infrared distance 

sensors distributed on the robot were used in the experiments (indicated in Fig. 2). In the next section, I describe an experiment 

in which the mobile robot performs a wall-following task. 

 

Fig. 2 Mobile robot (e-puck) 

The state representation is obtained as follows. As the robot moves in time   ,   sensor data are memorized for every sen-

sor. Next, the distances between the distributions of the data collected by each sensor are calculated. Fig. 3 illustrates the data 

clusters for each sensor. The distribution of sensor              is assumed to be Gaussian with mean 

                             . The distance between two distributions is calculated as the Bhattacharyya distance (BD), a 

fundamental equation of f-div. The BD between the distributions of the sensors   and   (   and   ) is given as 

   (     )  
 

 

(     )

  
    

  
 

 
  

  
    

 

     
  (2) 

BD is calculated from the sensor signal distributions acquired while the robot is moving between time      and  . The dis-

tances are contained in the state vector at time  , defined as 

                                                                                
    (3) 

where      is   (     ). In this method, when an object is outside the sensing range of a sensor and the distribution is 0, the 

distance between distributions is indeterminable. In such a situation, the distance between the distributions of that sensor and 

all other sensors is set to 0. 
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Fig. 3 Calculation of the state representation. As the robot moves in time   , 20(= ) sensor data are memorized for every sensor.  
The distances between the distributions of the data collected by each sensor are then calculated. 

B. Behavior Learning by the Actor-Critic Method 

In this subsection, behavior learning using RL is described [5]. In the RL framework, a robot learns a suitable state-action 

mapping without prior knowledge of the dynamics between itself and its environment. 

I apply the actor-critic learning method, which is a RL algorithm applicable to continuous states and action spaces. This 

method requires a critic to estimate the reward gained from a state. It also requires an actor as a controller. An actor outputs a 

motor command in response to the state. In this method, actor and critic learn simultaneously. An overview of the actor-critic 

method is presented in Fig. 4. 

 

Fig. 4 Overview of the actor-critic method 

The value function at time  , calculated by the critic, is defined as     . If the robot moves under motor command   , state 

   becomes state      . The reward obtained from the environment at that time is defined as      . The value function is modi-

fied as follows: 

                                      (4) 

where           is the learning rate. The reward of an environmental feature is weighted by the discount rate         
  , which is a weight of reward obtained in feature. The term                         in Eq. 4 is called the temporal dif-

ference (TD) error, expressed as   . 

The critic estimates the value function from a state. In this study, the critic is implemented using an artificial neural net-

work (Cnet) with three layers: input, hidden, output. 

A second neural network (Anet) represents the actor. Motor commands are calculated as 

                  (5) 

where    is the random noise in the motor command. The noise decreases as learning proceeds. 

IV. EXPERIMENT RESULT AND DISCUSSIONS  

In this section, the experimental results are presented and discussed. The robot executed behavioral learning and obtained 

state-action mapping. After the learning process, the sensor signal was artificially altered. The robot was able to perform the 

previously learned task using the obtained mapping. 

The robot was placed in the experimental environment shown in Fig. 5. 
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Fig. 5 Experimental environment Fig. 6 Averaged reward 

Behavior learning was investigated through a wall-following task. When all the conditions specified below are satisfied at 

time  , the reward is defined as 

                    (6) 

where      and      are signals detected by sensors 6 and 3, respectively.    and    are motor commands of the left and right 

wheels, respectively. Large motor commands induce forward rotation of the wheels. When the motor command is small, the 

wheels rotate backward. If the robot moves forward and remains close to the right-side wall, it reaps a high reward. In this ex-

periment,    was set to 1 s and M was set to 20.   and   were set to 0.7 and 0.9, respectively.  

The three-layer artificial neural networks Cnet and Anet were specified as follows. For Cnet, the number of neurons of input, 

hidden, and output layers were 15, 20, and 1, respectively, and those for Anet were 15, 20, and 2, respectively. 

The learning time was 100000 steps (one step =   ). During learning, the robot was placed near the wall at 200-step inter-

vals. The rewards in Fig. 6 are the total rewards gained over 200 steps, normalized by the total rewards obtained by the robot 

receiving normal sensor signals. Fig. 7 is a series of snapshots showing robot behavior after learning. The robot moves forward 

and remains close to the right-side wall. This result indicates successful behavioral learning by the actor-critic method. 

 

 

Fig. 7 Snapshots of the mobile robot following the walls of its environment 

Fig. 8 shows the obtained rewards. These rewards are the total for 200 steps and are normalized by the total rewards ob-

tained by the robot with normal sensor signals. Three different transformations (shown below) were applied: 

     
                         (7) 

     
  √                            (8) 

     
      

                             (9) 
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The performance of the robot using our proposed state representation was minimally degraded under the transformation.  

 

Fig. 8 Performance in terms of converted sensor signals (normalized reward). 

Note that these nonlinear transformations do not represent concrete environmental changes. The results demonstrate the 

applicability of the proposed state representation to all invertible transformations, including nonlinear transformations. 

V. CONCLUSIONS 

In this study, I applied an actor-critic learning method to a mobile robot. The method uses a proposed state representation 

based on distances between probability distributions. This state representation is insensitive to environmental changes. Mobile 

robot simulations verified that the mobile robot can learn a wall-following task. The learned robot can achieve the same task 

when its sensors are artificially altered. 

Future experiments will employ a real mobile robot. The effectiveness of the framework will be tested on various types of 

robots and sensors. 
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