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Abstract- Bilinear time-frequency distributions (TFDs) are developed to represent time-varying signal jointly in time frequency 

representation (TFR). The TFDs offer a good time and frequency resolution, are appropriate to analyze power quality signals that 

consist of magnitude variation and multiple frequencies. However, the TFD suffers from cross-terms interferences because of their 

bilinear structures. In this paper, smooth-windowed Wigner-Ville distribution (SWWVD) is used to analyze power quality signals. The 

power quality signals are swell, sag, interruption, harmonic, interharmonic and transient. To get an accurate TFR, the parameters of 

the separable kernel are estimated from the signal. A set of performance measures are defined and used to compare the TFR for 

various kernel parameters. The comparison shows the signals with different parameters require different kernel settings in order to 

get the optimal TFR. 

Keywords- Time-frequency Analysis; Power Quality; Bilinear Transformation 

I. INTRODUCTION 

The power quality issue has become major concern for electric utilities and user .It„s due to the growth of the electronic 

equipment used in industrial, commercial and domestic sector for example increasing used of solid state switching devices, 

nonlinear and power electronic switched, lighting control, computer and data processing [1-4].The main problem in industries 

is facing the distortion in electric supply. The low power quality can affect the lifetimes of loads, damaged, malfunction, 

instability, interruption and also affect the performance and economy. Thus, an automated monitoring system which is capable 

to estimate the presence of disturbance, accurately classify and also, characterize the disturbances is needed in order to 

improve the quality of signal and rectify the failure [3-5]. 

Time-frequency distributions (TFDs) are widely used to analyze power quality signal which represents the signal in jointly 

time-frequency representation (TFR) [3]. Previously, a popular method of linear TFD is short time Fourier transform (STFT). 

It uses a fixed analysis window [4] but has a major disadvantage that there is a compromise between time and frequency 

resolution. Alternatively, Wigner-Ville distribution, a bilinear TFD is a possible solution. It offers good time and frequency 

resolution but suffers from the presence of cross-terms interferences [4].This inhibits interpretation of its TFR, especially when 

the signal has multiple frequency components. 

This paper focuses on application of the smooth-windowed Wigner-Ville distribution (SWWVD) to analyze power quality 

signals. The power quality signals are swell, sag, interruption, harmonic, interharmonic and transient. This TFD consists of a 

separable kernel whose parameters are estimated from the time-lag signal characteristics. From the appropriate choice of the 

kernel parameters, the auto-terms are preserved and the cross-terms removed. A set of performance measures are defined based 

on the main-lobe width (MLW), peak-to-side lobe ratio (PSLR), signal-to-cross-terms ratio (SCR) and absolute percentage 

error (APE) to quantify the accuracy of the resulting TFR. 

II. SIGNAL MODEL 

Power quality signals are divided into three classes: voltage variation for swell, sag and interruption signal, waveform 

distortion for harmonic and interharmonic signal, and transient signal. Signal models of the voltage variation, waveform 

distortion and transient signal are formed based on IEEE Std. 1159-1995 [5] and can be defined as 
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where k is the signal component sequence, Ak is the signal component amplitude, f1 and f2 are the signal frequency, t is the time 

and (t) is a box function of the signal.  

In this analysis, f1, t0, t1 and t3 are set at 50 Hz, 0 ms, 100 ms and 200 ms and other parameters are defined as below: 

1. Swell: A1 = A3= 1, A2 = 1.2, t2 = 140 ms 

2. Sag: A1 = A3 = 1, A2 = 0.8, t2  = 140 ms 

3. Interruption: A1 = A3 = 1, A2 = 0, t2 =140 ms 

4. Harmonic: A = 0.25, f2 = 250 Hz 

5. Interharmonic: A = 0.25, f2 = 275 Hz 

6. Transient: A = 0.5, f2 = 1000 Hz, td =15 ms, t2 =115 ms 

III. SMOOTH-WINDOWED WIGNER-VILLE DISTRIBUTION 

The smooth-windowed Wigner-Ville distribution (SWWVD) [6] can be expressed as 
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where H(t) is the time-smooth (TS) function , w() is the lag-window function. Kz(t,) is the bilinear product of the signal of 

interest, z(t), and is further defined as
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In this paper, Hamming window is used as the lag-window and raised-cosine pulse as the TS function [6]. It defined as 
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The Doppler representation of this TS function obtained from the Fourier transform with respect to time is 
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It is a low-pass filter in the Doppler domain where the cutoff Doppler frequency is 

 smc T2/3  (10) 

IV. TIME-LAG SIGNAL CHARACTERISTIC 

The bilinear product in (6) is represented in time-lag representation which is used to determine the separable kernel 

parameters of the SWWVD. Generally, the time-lag representation can be defined in terms of auto-terms and cross-terms as 

 ),(),(),( ,,  tKtKtK crosszautozz   (11) 
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Voltage variation signal has a variation in the root mean square (RMS) value from nominal voltage [5]. The auto-terms and 

cross-terms for the signal in (1) are expressed as  
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where k and l represent the signal component, Ak and Al are the signal components amplitude and the bilinear product of the 

box function, (t), is defined as 
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Equations (12) and (13) show that the auto-terms lie along the time axis and are centered at  = 0, while the cross-terms are 

elsewhere. Fig. 1 shows the time-lag signal representation and the auto-terms are highlighted in green while the cross-terms are 

densely dotted. Thus, to preserve the auto-terms and suppress the cross-terms, the lag-window in (7) should cover all the auto-

terms while removing the cross-terms as much as possible. The lag-window width can be set as 

 12 ttTg   (15) 

Since the cross-terms do not have Doppler-frequency terms as shown in (13), the TS function used in (8) is an impulse 

function. Therefore, only a lag-window is required and the resulting is known as the windowed Wigner-Ville distribution 

(WWVD).  
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Fig. 1 Bilinear product of the voltage variation 

Waveform distortion signal is a steady state signal which consists of multiple frequency components [7]. The auto-terms 

and cross-terms of the signal in (2) are defined as 
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As shown in (17), the cross-terms have a Doppler-frequency component at  = (f2 - f1). To remove the cross-terms, the TS 

function is used with the Doppler cutoff frequency set as c ≤ |f2 - f1|. Thus, the TS function parameter, Tsm, can be set as 
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In addition, the lag-window is also used to obtain desirable lag-frequency resolution in the TFR. By choosing the lag-

frequency resolution less or equal to f1/2, the resulting TFR is able to differentiate harmonic and interharmonic frequency 

components. Higher lag-frequency resolution can be obtained with higher Tg but it results in increased computation complexity 

and memory size to calculate the TFR.  

Transient signal is a sudden signal which changes in steady state condition at non-fundamental frequency [5]. From the 

signal model in (3), the auto-terms and cross-terms are expressed as 
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The locations of the auto-terms in (19) and the cross-terms in (20) are shown in Fig. 2. Similar to the voltage variation 

signal, the lag-window width is set at |Tg| ≤ (t2 - t1) to remove the cross-terms located away from the time axis and to preserve 

the auto-terms lying along the time axis. For this signal, the TS function is needed to remove the remaining cross-terms that 

have Doppler-frequency component. The cutoff Doppler-frequency of the TS function is set at c ≤ |f2 - f1| by setting Tsm as in 

(18).  
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Fig. 2 Bilinear product of the transient signal 

V. PERFORMANCE MEASUREMENT 

In this paper, the power quality signals are analyzed using SWWVD with various kernel parameters. The performance of 

TFR is compared in terms of main-lobe width (MLW), peak-to-side lobe ratio (PSLR), signal-to-cross-terms ratio (SCR) and 

absolute percentage error (APE). These measurements are adopted to evaluate the performance of the TFD in terms of its 

concentration, accuracy, resolution, and interference minimization [6]. 

MLW and PSLR are from the power spectrum which is derived from the frequency marginal of the TFR [6] as shown in 

Fig. 3. MLW is the width at 3dB below the peak of the power spectrum, while PSLR is the power ratio between the peak and 

the highest side-lobe calculated in dB. Low MLW indicates good frequency resolution that gives the ability to resolve closely-

spaced sinusoids. PSLR should be as high as possible to resolve signal of various magnitudes. 
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Fig. 3 Performance measures used in the analysis 

SCR is a ratio of signal to cross-terms power in dB. High SCR indicates high cross-terms suppression in the TFR. It can be 

calculated by 

 power) termsspower/cros signallog(10SCR   (21) 

Besides the MLW, PSLR and SCR, APE is also applied to quantify the accuracy of the signal measurement. Details on this 

performance measure are discussed in [8] and can be expressed as 

 %100APE x
x

xx

i
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where xi is actual value and xm is measured value. Low APE shows high accuracy of the TFR. In general, an optimal kernel of 

TFD should have low MLW and APE while high PSLR and SCR. 

VI. RESULTS 

The best kernel parameters for the voltage variation signal are at Tg = 10 ms and Tsm = 0 ms. A bigger Tg will results in more 

cross-terms while higher Tsm is not necessary because the signal has no Doppler-frequency component. For the waveform 

distortion signal, the optimal Tg  is 40ms,sufficient  to differentiate between harmonic and interharmonic signals. The Tsm for 

harmonic and interharmonic depends on frequency difference in the signal components. From the signal model described in 

Section II, the optimal Tsm for harmonic and interharmonic signals are 7.5 and 6.67 ms. The best parameters for transient signal 

are Tg = 10 ms and Tsm = 1.578 ms because the transient duration is 15 ms and Doppler-frequency estimated from the time-lag 

representation is 525 Hz. The performance of SWWVD for various kernel parameters is shown in Table I. 

Fig. 4 shows the example of TFRs for the swell, transient and harmonic signals. 

TABLE 1 PERFORMANCE COMPARISON OF SWWVD WITH VARIOUS KERNEL PARAMETER 

Kernel 

Parameters 

Performance  

measures 

Voltage variation  Waveform distortion  
Transient 

Swell Sag Interruption Harmonic Interharmonic 

Tg=10ms 

Tsm=0ms 

MLW (Hz) 

PSLR (dB) 

SCR (dB) 

APE (%) 

25 

614.82 

15.641 

0.2083 

25 

614.82 

17.799 

0.625 

25 

614.82 

55.446 

0.625 

25 

623.12 

4.4785 

0.3755 

25 

50.795 

4.57578 

100 

25 

19.102 

13.764 

55 

Tg =10ms 

Tsm =1.578ms 

MLW (Hz) 

PSLR (dB) 

SCR (dB) 

APE (%) 

25 

218.09 

13.491 

3.125 

25 

216.68 

15.038 

12.708 

25 

198.78 

35.107 

100 

25 

18.835 

5.6064 

55.544 

25 

49.889 

5.7679 

100 

25 

86.259 

14.171 

1.6667 

Tg =40ms 

Tsm =6.67ms 

MLW (Hz) 

PSLR (dB) 

SCR (dB) 

APE (%) 

6.25 

120.03 

6.7221 

20.416 

6.25 

100.92 

8.4121 

35.417 

6.25 

81.315 

28.701 

100 

6.25 

51.168 

28.570 

20.142 

6.25 

655.78 

24.256 

0.125 

6.25 

129.74 

7.7198 

90.556 

Tg =40ms 

Tsm =7.5ms  

MLW (Hz) 

PSLR (dB) 

SCR (dB) 

APE (%) 

6.25 

122.91 

6.6568 

21.458 

6.25 

102.56 

8.3551 

36.667 

6.25 

111.22 

28.600 

100 

6.25 

664.29 

41.739 

0.18930 

6.25 

651.32 

32.356 

0.125 

6.25 

131.79 

7.4996 

97.778 

0 500 1000 1500 2000

-100

-80

-60

-40

-20

0

20

frequency (Hz)

P
o
w

e
r 

in
 d

B

-3dB 

MLW 

PSLRR 



Journal of Basic and Applied Physics                                                                                             Nov. 2013, Vol. 2 Iss. 4, PP. 235-242 

- 240 - 

 

(a) Swell signal (Tg=10ms, Tsm=0ms) 

 

(b) Transient signal (Tg=10ms, Tsm=0ms) 

 

(c) Harmonic signal (Tg=10ms, Tsm=0ms) 

Fig. 4 The TFRs of power quality signals 
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(a) MLW, APE, PSLR and SCR at optimal Tsm with various Tg 

 

(b) MLW, APE, PSLR and SCR at optimal Tg with various Tsm 

Fig. 5 Performance of TFR using SWWVD with various kernel parameter for transient signal. 

In the contour plots, the red color represents the highest power while the blue color represents the lowest power. 

Fig. 4a shows that the swell signal occurs between 100 and 140 ms while its frequency is 50 Hz. For the transient signal, its 

duration is between 100 and 115 ms and its frequency is 1000 Hz as shown in Fig. 4b.Meanwhile for the harmonic signal in Fig. 

4c it consists three frequency component which is 50Hz, 350 Hz and 1000 Hz.Thus, the true characteristics of the signal is 

represent in TFR. 

Fig. 5 shows the performance measure for transient signal at.  optimal Tsm with various Tg and optimal Tg with various Tsm.. 

The optimal kernel parameter for transient signal is obtained from Table 1 which is Tg =10 ms and Tsm = 1.578ms. Fig. 5a shows 

that at optimal Tsm and when Tg is set higher, the MLW is smaller indicating a higher frequency resolution of the TFR However, 

it suffers from the reduction of the cross-terms suppression which results in smaller. This because higher Tg covers more 

adjacent cross-terms in lag-axis in the bilinear product. As a result, the APE is higher which presents lower accuracy of the 

signal characteristic measurement.  

Fig. 5b shows the optimal Tg and when Tsm is set higher than its optimal value, the SCR increases while the MLW remains 

constant. It indicates that higher Tsm improves the cross-terms suppression and does not give any effect to the frequency 

resolution. However, the APE is also higher, which shows that the time resolution of the TFR is lower. This is because the 

application of TS function with higher Tsm increases the smearing of the auto-terms in time domain. Thus, there is a 

compromise between cross-terms suppression and time resolution to obtain optimal TFR.  

VII. CONCLUSIONS 

The TFR for power quality signals can be obtained using the SWWVD. For optimal TFR, the kernel parameters can be 

determined mathematically from the signal characteristics in time-lag representation with the objective to remove cross-terms 

and preserve auto-terms in the bilinear product. A set of performance measures were defined to compare the TFRs.  

For voltage variation signal, only the Tg is adjusted to obtain accurate TFR while the waveform distortion and transient 

signals require the adjustment of both Tg and Tsm. From the TFR, the estimated signal parameters can be used to classify the 

power quality events signals. 
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