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Abstract- We revisit Pendry’s theory of the “perfect lens” made of a negative index material (NIM) slab and explicitly treat the 

situation of a lossy NIM.  We show that the usual boundary conditions prohibit the situation of ideal lossless NIM where 1   

and 1   . We further demonstrate that at the boundary of air and lossy NIM, all input evanescent waves will be refracted into 

decaying propagating waves inside the NIM, with different spatial frequency components having different propagation directions. 

Due to the different and non-zero real part of the propagation constant inside the lossy NIM, these high spatial frequency 

components will not all contribute constructively to the image formed inside the lossy NIM. Accordingly, the information contained 

in these high spatial frequency components will be lost, making sub-diffraction-limited imaging impossible inside the lossy NIM and 

in turn for the lossy NIM slab lens’ external image plane. 
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I. INTRODUCTION 

Pendry’s seminal paper [1] on the perfect lens made of a slab of negative index medium with 1   and 1    

sparked an exciting new research field in negative index materials (NIM) and, more generally, metamaterials (MM). These 

unnatural materials have great promise in many breakthrough applications such as super-resolution imaging and invisibility 

cloaking.  In particular, low-loss NIM with  1   and 1    have been heavily researched in the hope of developing a 

far field optical imaging system that beats the diffraction limit. Initially, Pendry’s surprising result that a passive slab of NIM 

can amplify all evanescent waves was hotly debated [2–10]. ‘t Hooft commented that Pendry might have used incorrect 

arguments to arrive at the otherwise correct conclusions [3]. ‘t Hooft did, however, point out a puzzling fact of Pendry’s 

conclusion that, due to the amplification of the evanescent waves, the amplitude of the electric field can grow extremely large 

and, it “can easily reach values beyond the breakdown of any material”. In his reply [6], Pendry argued that the approach he 

took in his original paper is “in accord with multiple scattering theory as documented in standard textbooks”. As for the 

puzzling point of a possibly infinitely large energy density, Pendry argued that since evanescent waves do not transport energy, 

energy conservation is not violated by amplification of evanescent waves. Although there is no recent record showing this 

conversation continues, Pendry’s reply to the diverging energy density issue is worthy of closer scrutiny. This is because, 

although evanescent waves do not contribute to energy flow, they do store electromagnetic field energy. In the ideal case with 

no losses then the electro-magnetic field energy density due to the presence of these evanescent waves does grow 

exponentially. The fact that evanescent waves do store energy was also pointed out by Williams [2]. Williams has several other 

issues with the Pendry’s theory but all have been well-addressed by Pendry’s reply [6]. Garcia and Nieto-Vesperinas [4, 5, 10] 

argued that although there is amplification of evanescent waves in the ideal lossless, dispersion-less NIM, it still does not make 

a perfect lens since the effect as a result of the finite thickness of the slab prevents image forming. Furthermore, Garcia and 

Nieto-Vesperinas [4, 10] pointed out that any loss would dramatically diminish the evanescent eave amplification effect and 

instead change it to decay, which is now widely accepted of course.  Pendry himself addressed the lossy NIM issue and 

concluded that the loss may indeed pose a severe limitation to the image resolution and hence also to the thickness of the NIM 

slab lens, limiting it to only wavelength scale with any practical material loss [11]. Much of the substance of these early 

debates was pushed into the background, especially after experimental results, notably by Liu, et al. [12, 13], indicated support 

for the amplification of evanescent waves in a silver slab as originally suggested in Pendry’s paper. In 2008, we raised another 

concern with Pendry’s theory [14]. The issue was centred on the (usual) electromagnetic boundary conditions, namely, the 

tangential components of both the electric and magnetic field have to be continuous across the interface. We can show that, 

while these normal boundary conditions are applied in all NIM discussions, they are self-contradictory when evanescent waves 

are refracted at the interface between air and an NIM with 1   and 1   . Admittedly, discussing a pure theoretical 

case of an ideal NIM may have limited practical value, but nevertheless, a satisfactory resolution to this self-contradictory 

boundary condition issue could be expected to provide critical insights for practical cases where  and   deviate from the 

ideal value of -1. 

In this paper, we first elaborate on this inconsistency in Pendry’s theory where normal boundary conditions can lead to a set 

of self-contradictory conditions in the limit as  and   tend to -1.  Next we reconsider the transfer of evanescent waves at an 

interface of air and NIM under the assumption that the NIM is necessarily dispersive and lossy [15].  We argue that the 
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different wave solutions in air and NIM must maintain the continuity of the reflection and transmission coefficients when the 

tangential component of the k  vector (i.e. xk ) approaches the propagation constant 
1/2

0 ( ) /k c   from either 

0 0xk k   or 0 0xk k  . We show that under these conditions, all evanescent waves in air will be refracted into decaying 

propagating waves inside the lossy NIM, with different spatial frequency components having different propagation directions. 

Accordingly, a finite size slab will not be able to support infinite multi-path interference in the slab and there will be no 

significant transport of the original evanescent waves through the NIM slab. As a result, high spatial frequency information 

contained in evanescent waves is lost and no sub-diffraction-limited imaging would be expected.  In light of this conclusion, 

we maintain that previous experimental verifications of Pendry’s theory for sub-diffraction-limited optical imaging can only be 

explained by alternative theories other than Pendry’s perfect lens theory, such as the theory put forward by Zhou et al [16].  

II. REFRACTION AT AIR AND NIM INTERFACE 

Fig. 1 shows the refraction of propagating waves between normal media (Fig. 1a) and between normal media and NIM (Fig. 

1b). Snell’s law of refraction requires that the tangential component of the propagation vector k  is continuous at the interface. 

Assuming that the interface between air ( 0z  ) and NIM ( 0z  ) is parallel to the x  axis and the ( )x z  plane is the 

principal plane that contains the propagation vector ( , )x zk kk  and a surface normal to the interface.  When | |xk  k , zk is 

a real number and that plane waves 
·i i te k r

 are propagating waves. When | |xk  k , zk  is an imaginary number and plane 

waves 
·i i te k r

 are evanescent waves. In general, when zk  is a complex number, plane waves 
·i i te k r

 are non-uniform waves 

with non-orthogonal equal phase and equal amplitude planes.  

Without loss of generality, we will limit our discussion to the case of S polarization.  The treatment of P polarization is 

similar and straightforward and the conclusion is the same.  We start with the input evanescent waves in air, whose electric 

field is given by, 

 0 [0,1,0]exp( )S z xE ik z ik x i t    , (1) 

where the wave vector 

 
2 2 2 2 2 2

0 0, .z x xk i k k k c k       (2) 

The electric field of the reflected light, following Pendry’s notation [1], is given by, 

 0 [0,1,0]exp( ),S z xE r ik z ik x i t      (3) 

where r is the reflection coefficient. The transmitted electric field is given by, 

 1 [0,1,0]exp( ),S z xE t ik z ik x i t      (4) 

where 

 
2 2 2

0( )( )x zk k i i k          (5) 

and we assume the NIM is necessarily dispersive and lossy ( 0   and 0  ). Note that for time dependence of the 

form exp( )i t  chosen here, the imaginary part of zk   needs to be positive for waves decaying away from the interface.   

Namely, if we denote 
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Fig. 1 Refraction of propagating waves between normal media (a), and between normal media and NIM (b) 
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 0( ) ,z z zk n i k    (6) 

where zn and z are both real numbers, one has 0z  for passive materials.  

On the other hand, one has from Eq. 5,  

 2 z zn          (7) 

for NIM, 0zn  . Accordingly, for NIM, 0       . Given for NIM 0   and 0  , one has for passive NIM, 

0   and 0  . Similarly for normal passive positive index materials, 0   and 0  .   

The usual boundary conditions at the air and NIM interface are 0 1y yE E  and 0 1 / ( )x xB B i    , where E  and 

B  are the electric and magnetic fields, related by the Maxwell’s equation i E B . Accordingly, one has at the 

interface, respectively, 

 1 r t   (8) 

and, 

 (1 ) / ( )z zk r tk i       (9) 

Obviously, if zk  is not zero, then t  cannot be zero. Since if 0t  , one has from Eq. 8, 1 0r  , or 1r   . But this 

results in 2 0zk   from Eq. 9, which conflicts with the condition that zk  is not zero.  

For lossless a NIM in the limit 1  and 1  , one has that z zk k  . As a result, boundary conditions Eq. 8 and 

Eq. 9 become self-contradictory when the input field is not zero, reducing to 1 r t   and 1 r t   . This self-

contradiction of the usual physical boundary conditions can be avoided if  or   has a non-vanishing imaginary part, for 

example, as is the case for a lossy NIM.   

For a lossy NIM, from Eq.7 one can see that for 0   and 0  , one has 0z zn    unless the real parts of  and 

  are both zero.  When the real parts of  and   are not simultaneously zero, the real and imaginary part of zk   are both 

non-zero. As a result, the evanescent fields in air will be transferred inside the NIM into decaying non-uniform waves. Eq. 5 

also suggests that evanescent fields with different spatial frequency xk  will have different zn  and, accordingly, be transferred 

into decaying propagating waves having different directions of propagation inside the NIM. The output angle t  of the 

refracted wave is given by, 

 tan x
t

z

n

n
   (10) 

where 0/ 1x xn k k  for evanescent waves. For NIM we have that 0zn   and 0t  , which is characteristic of negative 

refraction.  

Fig. 2 shows the refracted angle inside the NIM for the special case of a passive NIM where 1 i   , 0  , and 

1   . Different curves in Fig. 2 represent different values of   of 0.01 (dashed curve), 0.1 (solid curve), and 0.2 (dash-dot 

curve) respectively. When 1xn  , the input waves are propagating plane waves in air. When 1xn  , the input waves are 

evanescent waves in air. It is obvious that all input waves in air, including all evanescent waves, will be transferred into 

propagating waves with the negative refraction angle 0t  . However, due to the non-zero zn  inside lossy NIM for all input 

evanescent waves, they will reach the image plane inside the NIM all with different phases, confusing their contribution to the 

image inside the NIM. 

For the case of a lossy NIM slab lens, the previous treatment given by Smith et. al. [11] has shown that the loss will 

significantly impair the performance of the perfect lens, practically limiting the thickness of the NIM slab to a small fraction of 

a wavelength. While this conclusion is theoretically true, it does not take into account the finite size of the NIM slab lens. We 

have shown here, given the large negative refraction angles for the high spatial frequency evanescent waves, the implied 

assumption of multi-path interference inside the NIM slab as used in Ref. [11] may not be valid. This is similar to the situation 

where a Fabry-Parot cavity can not contain all of the waves that are slanted at oblique angles to the interfaces. Accordingly, 
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given the fixed thickness and finite size of an NIM slab, the non-zero real part of the propagation constant inside the NIM will 

result in different optical phase accumulation for waves having different spatial frequencies across the NIM slab.  Since 

evanescent waves in air do not acquire optical phase along the z  direction, these components will also necessarily reach the 

image plane behind the NIM slab with different phases.  As a result, the lossy NIM slab lenses are not expected to refocus 

these evanescent waves to a perfect image as the information contained in these evanescent waves is most likely to be lost.  For 

those spatial frequencies that are not lost, there is the possibility of quantifying the evanescent wave transfer into these 

decaying but propagating waves. This might make a computational reconstruction of an image which retains some sub-

wavelength scale features still possible.   

III. CONCLUSIONS 

In conclusion, we have argued that under the assumption that an NIM is necessarily dispersive and lossy, all evanescent 

fields in air that impinge on an NIM boundary will be transferred into decaying propagating waves inside the NIM. 

Furthermore, evanescent waves with different spatial frequencies will also have different propagation directions inside the 

NIM.  Accordingly, under these circumstances, the lossy NIM slab does not refocus the evanescent waves to the image plane 

inside the NIM or behind the NIM slab lens. As a result, much information about the higher resolution features in the object 

contained in the evanescent waves will be lost in the image plane and there will be limited super-resolution imaging effects.  

Previously reported experimental observations of sub-diffraction-limit imaging employing silver or other metallic material 

slabs need to be interpreted by a different theory, for example,  involving the coupling between surface plasmonic states of the 

front and back metallic surfaces [16], [17], or, since the lens is thin, thinner than the skin depth, through a transfer of the 

wavefront across the slab as suggested in [16].  
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Fig. 2 Output angle of the refraction of propagating waves from air into a passive and lossy NIM. Different curves are for different loss tangent   of the 

relative permittivity 1 i    and 1   . dashed curve: 0.01  ; solid curve: 0.1  ; dash-dot curve: 0.2   
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