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Abstract- Because of the characteristic of high slenderness
ratios, monalithic and laminated glass elements are frequently
subjected to buckling phenomena. As regards laminated glass
beams and panels, in particular, the effects of possible
temperature or time-load variations represent only some
aspects that make complex their global structural response. In
this context, the paper focuses on the load-carrying behavior of
in-plane compressed laminated glass elements. In it, some
analytical formulations are presented to describe realistically
their typical behavior. As shown, the proposed formulations
are in good agreement with experimental and numerical data
available in literature. At the same time, they allow to perform
a rational buckling verification of such brittle load-bearing
elements. Finally, according to the suggestions the Eurocodes
give for the verification of traditional structural elements, a
series of buckling curves opportunely calibrated are proposed
to guarantee the requisites of resistance, serviceability, and
durability typically imposed in the design of conventional
structural systems.
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I. INTRODUCTION

The use of monolithic or laminate glass (LG) elements in
modern and innovative architectural applications showed a
strong increase in the last years. Because of aesthetic,
lighting, and architectural advantages, glass elements are
frequently used as structural components able to sustain
loads. However, the real capabilities of such innovative
bearing components are currently not well known and
several aspects related to their typical load-carry ing behavior
are very complex to evaluate. The load-carrying capacity of
LG beams or panels, for example, strongly depends on the
degradation of the mechanical properties of the interlayer, as
well as on the presence and the amplitude of possible
imperfections, or the presence of additional external loads.

In this context, several authors observed that temperature
variations could strongly influence the mechanical properties
of the thermoplastic materials usually adopted to bond
together the glass panes [1, 2, and 3]. Recently, numerous
authors focused on the buckled response of structural glass
elements in several boundary or loading conditions. Luible
[4], for example, investigated the load-carrying behavior of
LG beams or panels and performed experimental tests to
analyze their typical response. Belis [5] studied the lateral-
torsional buckling of LG beams. In [6, 7], the authors
proposed an exact analytical approach for the buckling
verification of LG beams in compression or in out-of-plane
bending. The behavior of LG panels under in-plane

compression or shear has been deeply examined in [8, 9, and
10].

Rationally, a realistic buckling verification of LG
compressed beams and panels should be performed by
contemporarily satisfying a series of requisites concerning
the resistance, the serviceability, and the durability of such
brittle elements. At the same time, the effective connection
offered by the interlayer should be precisely estimated, since
strongly time-load and temperature dependent. Nevertheless,
consolidate verification criteria available in literature for the
buckling verification of traditional structural elements (steel,
forexample [11]) cannot be directly applied to LG elements.
Because of this reasons, in the paper some analytical
formulations are proposed for the buckling verification of in-
plane compressed LG beams and panels. The aim is to
derive simple and consistent design rules for pane-like glass
columns with laminated sections subjected to axial
compressive loads. As shown, these analytical models are in
good agreement with numerical and experimental data.

In addition, according to the suggestions of Eurocodes 3,
4,5[11, 12, and 13], a series of buckling curves opportunely
calibrated are proposed to guarantee the requisites of
resistance, serviceability and durability typically required in
the design of conventional structural systems. As proposed
in the following sections, these buckling curves are in good
agreement with experimental data collected in literature, as
well as with numerical results.

Il. ANALYTICAL MODEL FOR COMPRESSED LAMINATED
GLASS BEAMS

The analysis of compressed laminated glass beams is
generally performed by using the elastic theory of sandwich
elements [14]. Recently, based on these sandwich
formulations, an equivalent thickness approach has been
proposed to study the behavior of a monolithic compressed
element characterized by a rectangular cross section of
thickness ter [4]. As a result, the flexural behavior of the
composite beam is described through the classical theory of
deflection. This analytical formulation undoubtedly
constitutes a suitable design method for compressed LG
elements, but does not allow understanding how, depending
on variations of temperature and load duration, the
mechanical properties of the interlayer can influence the
global response of the layered element.

In this last years, also Blaauwendraad [15] proposed a
simplified formulation able to easily control the transition
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between the layered limit (abs, absence of connection
between the glass sheets) and the monolithic limit (full,
presence of a rigid connection between the glass sheets). By
means of a dimensionless parameter representative of the

effective level of connection between the glass panes,
Blaauwendraad suggests also a unity check for tensile
stresses. Also in this circumstance,the formulation is simple,
but provides only approximate results.
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Fig. 1 Analytical model for compressed LG beams

The alternative [6], consists in an analytical model based
on the original elastic theory of Newmark et al. [16],
concerning the flexural behavior of 2-layer composite beams
with deformable connection. As shown in [6], the advantage
of this new formulation consists in the possibility of taking
into account the real thickness of the layers constituting the
LG beam. At the same time, the proposed formulation
allows taking into account the effective level of connection
offered by the interlayer, thus it can be used to estimate the
buckled response of a compressed LG beam in a well-
defined condition of temperature and load duration.
Although the model applies only to 2-layer structural
systems, that is to beams consisting of two interacting glass
sheets, tied together by a shear connection able to transfer
the horizontal shear from one element to the other, it
provides accurate results.

In this context, let us consider a 2-layer LG beam, pinned
at the ends of its buckling length Ly, subjected to an axial
compressive load N (Fig. 1). The beam, having a rectangular
cross section (width b), is assumed to be constituted by two
external glass layers (thicknesses t;, t,, elastic Young’s
modulus E, shear modulus G) and a middle interlayer
(thickness tiy, shear modulus G;jn), and affected by a
sinusoidal imperfection of maximum amplitude wg. An
extended experimental campaign performed by Belis et al.
[17] on 312 glass beams with variable length, height,
thickness, glass type, recently highlighted that the sinusoidal
shape describes the initial imperfection in monolithic or
laminated glass beams with a good level of accuracy.

The transversal displacement Wgz) of the simply
supported beam [w(0)=w(Lo)= 0 and w"(0)= w"(Lo)= 0] due
to the axial compression N is [6]:

(°Ed L + EJ w2 ) Lo Nw, sin(zz/ L)
L5(EJ yy7° = NLg) + EJ 7% (EJ o w” — NLY)
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the equivalent axial stiffness,
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the monolithic flexural stiffness,

4

EJ (6)

Eb
abs :E(t13+t23)
the layered flexural stiffness.

Assuming for the initial sine-shape imperfection of the
composite beam a maximum amplitude wyp, its total
maximum deflection is:

2
Wi = Wo +W —2 |
2

and the corresponding tensile stress omax Can be estimated as:

®)
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N Nw, F .
Opaxy =—— +— & +——
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In Eq. (8), F is the axial load acting in each glass pane,
due to the flexural deflection of the beam:

NWmax + Xmax EJ abs
d

d represents the distance between the centroidal axis of each

glass pane (Fig. 1); 4 _ is the midspan curvature of the

E= ©)

beam corresponding to the deflection w__ :

JCES Volume 1, Issue 3 September 2012 PP. 90-101
-01 -



T (10)
=——WwW
Xmax LS max
Wy is the elastic resistant modulus of the total cross section
(thickness t=t; + tjp +t2):

2
w =Pt (11)
Y 6
and Anin, With tynin = min(ty, tp), is the minimum transversal
area of each glass pane:

Amin = btmin (12)

Eq. (7) represents useful information, since it allows
describing the load N-transversal displacement w of a
generic LG beam in compression, by taking into account the
effective shear stiffness Gj; of the interlayer and the
presence of possible sinusoidal
imperfections w(z) = w,sin(zz/L,) - If the compression N

gradually increases, the loss of stability of the beam
typically shows in the form of an abrupt and non-
proportional increase of the corresponding displacement

Wmax-

Consequently, Eq.(7) can be used to express the critical
buckling load Néf) of the LG beam, assumed as the

asymptotical value N to which the growing displacement
Wax tends:

NGE = 7B Bl a’li+x? ) (13)
“ L3 @’Ed L2+ EJ 7

abs

Depending on the shear modulus Gj,; of the material
constituting the interlayer, the critical load NC(rE) of a generic
LG beam is always comprised between the well-known limit

values Néf)full (monolithic limit, Gj,; — oo, that is o — o0)

and Néfgbs (layered limit, G,y — 0, that is o — 0):

® ﬂZE;] full (14)

cr, Tul LO

PR
, L2

This finding constitutes an important aspect in the
analysis of LG elements, sine the material commonly used to
bond together the glass sheets (PVB Butacite®, SG®, EVA,
etc.) consists in thermoplastic materials strongly temperature
and load time-dependent. PVB-films, in particular, have
good mechanical properties if subjected to room
temperatures or short-term loads, but present a strong
degradation of shear stiffness with high temperatures and
long-term loads [18].

In Fig. 2, for example, the effects of stiffness degradation
on the value of the critical buckling load Nc(rE) are proposed

for a PVB-laminated glass beam (5/1.52/5mm) having
dimensions b=200mm x Lo= 3000mm. In particular, N is

evaluated by means of Eg. 13 b;/ assuming Gjn; a value
comprised in the range 10 N/mm” < Gjp < 10 N/mn?. In

the figure, also three specific values of NC(rE) are

highlighted. These critical loads are evaluated in presence of
short-term loads (3 seconds) and room/med iu m te mperatures
(T= 20°C, Gin= 8.06N/mn?; T= 30°C, Gjp= 0.97IN/mm?
[18]), or long-term loads (1 year) and high temperatures (T=
50°C, Gin= 0.052N/mm? [18]).
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1.00x10% —

TNQ
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Fig. 2 Effects of temperature and time-load conditions on the critical
buckling load Nc(rE) of acompressed LG beam (5/1.52/5mm, b=200mm x

Lo=3000mm) [18]

I1l. NUMERICAL VALIDATION

To validate the analytical approach proposed for the
buckling analysis of compressed LG beams, two different
nonlinear finite-element (FE) models were constructed with
the commercial nonlinear code ABAQUS [19]. In the first
three-dimensional (3D) FE-model, the glass panes and the
middle PVB-film have been described by means of 3D
eight-node elements. In similar models, it is important to
define a sufficiently accurate mesh for the elements, since
the convergence of simulations as well as the accuracy of
numerical results may be seriously compromised. Because
of this reason, two elements over the depth of each glass
sheet and the interlayer have been used. At the same time, an
opportune mesh has been applied in the width of the
examined LG beams (Fig. 3).

3D FE-model

Uniform pressure

PVB (3D elements)

lass (3D elements)

oNode with boundary
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MShell FE-model

Uniform shell edge load

oNode with boundary

',,F-L aminated glass
(multilayer shell elements)

Fig. 3 3D and Mshell numerical models for LG beams in compression
(ABAQUS)

The external glass sheets and the PVB-film were
connected together by using the same nodes. To avoid
possible eccentricities, boundaries were applied at the
central nodes of the PVB-film, at both the ends of each
simply supported LG beam. The compressive axial load was
introduced in the FE-model in the form of uniformly
distributed pressure acting on the lower and upper surfaces
of 3D elements.

The second and simplest FE-model (MShell) consists in
multilayer composite shell elements (S4R) able to describe
the real flexural stiffness and the effective thicknesses of the
layers constituting the analyzed LG beams (Fig. 3). In this
specific circumstance, the axial compression was described
in terms of uniform compressive shell edge loads acting on
the lower and upper edges of each LG beam.

Concerning the materials, in both the FE-models glass
has been modeled as an isotropic, linear-elastic material
characterized by Young’s modulus E= 70000N/mm’ and
Poisson’s ratio v=0.23. Also PVB has been described as a
linear elastic material, characterized by *“equivalent”
mechanical properties able to take into account for the
degradation of its shear stiffness Gjy due to temperature or
load-time variations [6, 18]. In all the performed simulations,
Poisson’s ratio for PVB was fixed equal to vj,;= 0.498 [18].

Firstly, parametric buckling analyses were performed
with the 3D and Mshell FE-models to investigate the effects
of mechanical (PVB stiffness) or geometrical properties
(slenderness of the beam, ratio between the thicknesses of
glass and interlayer) in the buckling response of LG beams
in compression. In this simulation phase, also the accuracy
of the simplest Mshell FE-model was checked.

The main results are proposed in Fig. 4, in the form of
critical loads N{® of a 5/1.52/5mm beam (b= 200, Lo=
3000mm) characterized by PVB-interlayers of various

stiffness (10™* N/mm? < Gin < 10° N/mn?). Analytical results
(Eqg. (13)) are compared with numerical predictions.

As shown, the 3D FE-model provides results in good
agree with analytical calculations. Nevertheless, if the mesh
of the 3D FE-model is not sufficiently detailed, the obtained
critical load N{® could be overestimated, especially in

presence of soft interlayers (Gin; < 10N/mn?). Contrarily,

buckling analyses performed with the Mshell FE-model do
not require long processing time, but the accuracy of results
is comparable to that of the 3D FE-model only in presence
of sufficiently rigid interlayers (Gi,; > 10N/mn?). As shown
in Fig. 4, the MShell FE-model clearly tends to
underestimate the effective critical load N(® of LG beams
if the interlayer is soft. This aspect should be taken into

account in the analysis of LG beams assembled with PVB-
films, which are strongly time and load-time dependent.

F 8 L e ———————
“N®,, = 1956N
1.75x10° — v
1.50x10° —
1.25x10° —
Z |
— 3 — N
o 1.00x10 W
2 |
2 | 5/1.52/5mm
7.50x10 b= 200mm, L,= 3000mm
7 N®,, (Eq.(13))
5.00x10° — e ABAQUS (3D)
| X ABAQUS (MShell)
250x10° —|N®, , =320N N
OOOX].OO T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTI
10* 10° 10* 10" 10° 10* 10° 10° 10°
G« [N/mm?]

Fig. 4 Comparison between analytical and numerical (ABAQUS, 3D and
Mshell FE-models) critical loads of LG beams in compression

Further comparisons were performed to validate the
proposed analytical procedure [6]. Results proposed in Fig. 5,
forexample, refer to a LG beamobtained by assembling two
5mm thick glass sheets and 1.52mm thick PVB film.

1.50 I
' Full
i ‘ Analytical
.l %  ABAQUS
1.25 —| ' Abs
\. — - — Analytical
] \ X___ABAQUS
1.00 — \ Temperature: 20°C
\‘ Load: 3s
i \ Analytical
X ® ABAQUS
o 0.75 — ' lN~
\‘ S
0.50 —
0.25 —
| ~
. e I X
0.00 ‘ T ‘ T ‘ T I T I T I .
0 50 100 150 200 250 300 350
r=Lo/ pran

Fig. 5 Comparison between analytical and numerical (ABAQUS) results for
LG beams in compression (w= Lo/500).

The width b of the beam was fixed equal to 20mm and
its buckling length Ly was modified in a pre-established
range (Lo= 200, 400, 600, 800, 1000mm). The maximum
amplitude wy= L/500 of the initial imperfection was
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introduced in the model as an initial sine-shape imposed
displacement. In this specific circumstance, Gj,; was
assumed equal to Gi,= 8.06N/mm?, as suggested by
Bennison (T= 20°C, load duration: 3 seconds [18]). At the
same time, to simulate the presence of an extremely rigid
interlayer (monolithic limit, full) as well as a soft interlayer
(layered limit, abs) the shear moduli Gint = 500N/mn?¥ and
Gintabs= 0.0001N/mm? were considered.

Static incremental analyses were performed with 3D FE-
model to investigate the load-carrying behavior of imperfect
LG beams subjected to an increasing compression N.
Geometrical nonlinearity was taken into account to simu late
the buckling response of the examined LG elements. As the
axial compression growth, the maximum tensile stress
occurring in the glass surface was monitored. Analyses were
stopped at the reaching of a prefixed value o, of

characteristic tensile strength for glass. In the specific
example, a characteristic strength ng:17|\|/mm2 was

taken into account, as suggested in [20] for the verification
of float glass elements subjected to long-term loads. For
each LG beam, the value of the compressive load N”
associated to a maximum tensile stress gmaX(N*) = op, Was

collected. Analytical and numerical results are presented in
Fig. 5 in terms of reduction factor R:

*

R — N 1 (16)

Or A

with A=Dbt the total cross-sectional area, and full
slenderness ratio A :

A= il (17)
Pun
with o~ the radius of gyration of the total cross section
(hypotheses of rigid connection between the glass panes):

P = \/% , (18

and J = bt3/12 the moment of inertia.

Also in this circumstance, analytical and numerical
results are in good agreement.

IV. ADDITIONAL LOADS

Clearly, the proposed analytical model is able to provide
accurate results, agreeing well with the nonlinear numerical
results. Moreover, although applicable only to 2-layer
simple structural systems, the same formulation can be
easily applied to the analysis of LG beams subjected to

compressive loads N and to simultaneous transversal loads q.

As discussed in [6], in fact, the maximum deflection of the
LG beamcan be estimated as:
(@”EJ s 1§ +EJ *) (L3 + 8Nw,)
+ W,
L5 (EJ 7 = NL§) + EJ gy 7% (EJ o7 — NLG)] ’
(19)
in which g is the maximum amplitude of the transversal
sinusoidal load affecting the beam; wg represents the

Wmax = 2
8[a“EJ

abs

maximumamp litude of the sine-shape imperfection; o, EJsyy,
EJans are given by Egs. 2, 5, and 6.

In this specific circumstance, the maximum tensile
stresses associate to the deflection Wy IS:
2
_ﬁ+NWmax+q|-o F, (20)

O =

e A Wy 8Vvy Amin
with:

F= (NWmax +qL(2))+ZmaxE‘]abs y (21)
d

whereas the critical buckling load N(® of the LG beam can
be still evaluated by means of Eq. 13.

V. DESIGN CRITERIA FOR COMPRESSED LAMINATED GLASS
BEAMS

In the previous sections, it was shown that the maximum
transversal displacement wya, of a compressed LG beam
caused by an axial load N can be evaluated by means of Eq.
(7). At the same time, the corresponding maximum tensile
stress can be estimated by means of Eq. (8). If additional
external loads perpendicular to the plane of the beam are
present (sinusoidal loads of maximum amplitude q or,
equivalently, uniformly distributed loads of amplitude q),
the corresponding deflection and mid-span tensile stress are
given by Egs. (19) and (20).

In this context, in accordance with the Limit State
approach, the buckling verification of compressed LG beams
should be developed by contemporarily satisfying three
different conditions, respectively referred to requirements of
structural resistance, serviceability, and durability. Moreover,
to perform a reasonable verification, the presence of an
initial sinusoidal imperfection of maximum amplitude wg
should always be taken into account, to represent the
possible effects of geometrical deformations (residual
stresses, geometrical imperfections due to fabrication) or
eccentricities (of load or boundary, or a combination of them)
in the beam. Rationally, as suggested by Belis et al. [17], the
amplitude of the initial sine-shape imperfection wgy should be
at least assumed equal to 1/400 of the structural span.

In this context, the maximum tensile stress ogq in each
cross section (Eq. (8) or Eq. (20)), if additional transversal
loads are present) should be compared with the design
tensile resistance of glass crq:

Opy SO0y (22)

At the same time, the maximum deflection &ax of the

LG beam (Eqg. (7) or Eq. (19)) might not exceed a specific

value, defined as a ratio of its buckling length Lo, as for
example:

s <k (23)

max — k

with k=120.

Finally, the column buckling verification should require
the comparison of the design compressive load Ngq and the
buckling resistance Ny gq Of the compressed LG beam:
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with N & given by Eq. (13) and 1 = 1.40, for example, a
buckling safety factor.

A. Alternative Verification Criteria for

Laminated Glass Beams

Compressed

For the buckling verification of traditional structural
elements, constructed with conventional materials as steel or
concrete, consolidate verification criteria are available in
literature. The Ayrton-Perry formulation [21], for example,
was originally formulated for the analysis of geometrically
imperfect columns loaded by uniform compressive loads. In
accordance with this analytical approach, the initial
imperfections, as well as other effects (residual stresses,
possible eccentricities) can be efficiently described through
a generalized imperfection factor.

Specifically, the maximum second order lateral
displacement of a compressed LG beam affected by a
sinusoidal imperfection of maximum amplitude wy can be
expressed as:

W, (25)

1 N (&)

with N& the elastic critical load (Eg. (13)) and N the
applied compression.

If ork is the characteristic tensile strength of glass, the
failure of the beamoccurs when:

N N (26)

Rk
AW,

with A the cross-sectional area and W, the elastic resistant
modulus (Eg. (11)).

The substitution of Eq.(25) into Eq. (26) provides the
well-known expression [21]:

E E
(GRk - O-max) (Uc(r Y- Gmax) = Omax Uc(r ) m (27)

where:
o, s the maximum tensile stress due to the applied
compression N,

G Ng (28)
cr A

is the critical stress of the beam, with N (® given by Eq.(13),

and
A
7= (29)

y

is a generalized non-dimensional imperfection factor.

Eq. (25) is the analytical expression able to represent the
relationship between the applied compressive load N, the

Euler critical load NC(rE) and the equivalent initial deflection

of maximum amplitude wq for the compressed LG beam. Eq.
(25) can also be written in the standard form:

1 1 1
Zz+l(_1_z‘z’7]+z=0’ (30)
A A A
where:
1= Aoy is anormalized slendermness and (31)
- N ©
__ N isabuckling reduction factor. (32)
Aoy,

The main advantage of the analytical approach proposed
by Ayrton and Perry consists in the definition of an
equivalent initial sine-shape imperfection representative of
geometrical imperfections, as well as residual stresses or
possible eccentricities. Because of this reason, it actually
constitutes the theoretical background of the column design
curves proposed by several codes for the verification of
compressed steel members.

With reference to Eq. (30), for example, the Eurocode 3
[11] estimates the buckling resistance of compressed steel
members by taking into account a series of appropriate
buckling curves, opportunely calibrates to take into account
the effects in their buckled response of possible initial
imperfections of different amplitude, as well as the different
cross-section class. Nevertheless, this method cannot be
directly applied to LG beams.

In this context, the buckling verification ofa compressed
LG beam can be still performed by satisfying the condition
given by Eq. (24), in which the design buckling resistance
Np ra Of the layered beam is:

Nprs =X Aogg: (33)
with » an opportune reduction factor.

In Eq. (33), the reduction factor , can be estimated by

means of the expression obtained by Eq. (30) and suggested
by the Eurocode 3 [11]:

L1 with (34)
D+ D2 -7

where:

®=05[1+a, (A—og)+A s (35)

imp
Lis the slenderness of Eq. (31),
i =0.71,

a, =0.60-
In this case, the imperfection coefficients CLimp and ¢,

have been opportunely calibrated on the basis of numerical
and experimental data available in literature for compressed
monolithic or laminated glass beams [4, 22, 23]. In the
specific, the coefficient 0, individuates the values of

slenderess ), associated to a reduction factor equal to
7 =1. The value of the coefficient i individuates the

maximum allowable
member.

imperfection for the compressed
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In Fig. 6, several numerical and experimental data are
presented to validate the proposed verification approach. In
particular, experimental data refer to buckling tests recently
performed by Luible [4] and Aiello et al. [22] on monolithic
or laminated glass beams in compression. Additional
experimental data are collected in [23]. Glass beams present
a typical brittle-elastic behavior, and due to the absence of
post-critical resistance in them, an abrupt failure generally
occurs. Because of this reason, the safety factors should be
carefully calibrated.

1.4 v
i ‘l — — — Euler
1 —— EC Curve (a;,,= 0.71, a,5= 0.60)
2 — \
12 ] —— Y= 140
B “ @ Test[4]
| \ ge  Test [22]
1.0
) W Test[23]
7 E  ABAQUS (wy= L,/400)
0.8 —
= _
0.6 —
0.4 —
0.2 —
00 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T

Fig. 6 Buckling curves for the verification of LG beams in compression (e=
0), comparisons with numerical (ABAQUS) and experimental results [4, 22,
23]

In the same figure, also numerical results are reported,
obtained by performing in ABAQUS (3D FE-model) a series
of static incremental analysis on compressed glass beams
characterized by different geometrical properties. As
suggested by Belis et al. [17], in this specific circumstance
an initial sine-shape imperfection of maximum amplitude
Wo= Lo/400 was taken into account. As shown in Fig.6, the
buckling curve proposed for the verification of compressed
beams is in good agreement with numerical and
experimental data. Additional analytical comparisons
allowed to notice that a similar limitation (Eq. (34), with

Oy = 0.71 and o, =0.60) approximately coincides, for

L >1.10, with the assumption of k =120 in Eq.(23) or
7w =140 in Eq.(24).

In Fig. 7, additional numerical results are proposed for
compressed LG beams affected by an initial sine-shape
imperfection of maximum amplitude wy= Lo/400 and an
accidental eccentricity e=t/6, with t the total thickness of the
beam. In this circumstance, is interesting to notice that
although the applied eccentricity has negligible amplitude, it
strongly reduces the buckling resistance of the examined
beams. As aresult, the optimal buckling curve (which can be
called “EC curve”), to be taken into account for their
verification is characterized by imperfection factors equal to

VI =1.80 and o, =0.40 (Fig. 7). Undoubtedly, a similar
verification approach can be applied only to purely

compressed glass beams, but it could constitute a useful
design method.

1.4

— —— Euler
—— EC Curve, e= 0 (a;,,= 0.71, a,,= 0.60)

imp

—— EC Curve, e= t/6 (a;,,= 1.80, o= 0.40)

T
1
1
1
1
1
\ % ABAQUS (W= L,/400, e= t/6)
1
1
1
1
1
\
\

Fig. 7 Buckling curves for the verification of LG beams in compression
(e=1/6), comparisons with numerical results (ABAQUYS)

VI. ANALYTICAL MODEL FOR IN-PLANE COMPRESSED
LAMINATED GLASS PANELS

Laminated glass panels, as well as beams, are largely
used in the realization of facades, roofs, stiffeners, etc. The
LG panels are mainly associated to the realization of
futuristic and innovative architectures in modern buildings.
However, due to their typical slenderness, they can be
affected by buckling problems. Consequently an appropriate
verification criterion should be adopted to prevent possible
failure mechanisms.

Recently, numerous authors focused on the buckled
response of glass panels subjected to in-plane compression
[4, 8] or in-plane shear [9], providing useful experimental
data, sophisticated numerical simulations, and interesting
analytical considerations. In [10], an equivalent thickness
approach has been proposed to study the buckling response
of LG panels in several boundary conditions, subjected to in-
plane compression or in-plane shear. Nevertheless, the
knowledge on compressed LG panels behavior is still
limited and with constrained applications.

Let us consider, for example, a LG panel simply
supported on the four edges (length a, width b), obtained by
assembling two monolithic glass sheets and a middle
interlayer (Fig. 8), subjected to in-plane compression
(pressure force per unit length Ny, in y-direction).

| |

(@
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Glass 1

Class 2|

Fig. 8 Simply supported LG panel subjected to in-plane compression:
geometry and cross section

The critical buckling load N

y,cr,lam

of the LG panel is

commonly estimated by means of the linear elastic theory of
sandwich elements. In accordance with Zenkert’s
formulation, in particular, the critical load N(® _ is given

y.cr,lam
by [24]:

D, +D,|(mbY Ab’
i 1|4+ ="
Ka)*}m p.  (36)

. mb a) D
N;,c)r‘lam :(?+%) b 2 bz
ij +1}+ A
a 7r2Ds
with:
D=D,+D, +D, (37)
b. Bt | (38)
' 1201-v?)
D - (Et,z} +Et,z}) | (39)
’ @-v?
As — Glm(zl + 22)2 ’ (40)
tim
7, =0.5(t, +t,,)- (41)

Numerical and analytical comparisons performed by
Luible [4] demonstrated that Eq. (36) predicts with a good

level of accuracy the bifurcation load N;E) of simply

,crlam

supported LG panels, for well-defined values of Gjp;.

In particular, Luible showed that the mean ratio between
analytical and numerical critical loads of 200 LG panels
characterized by various geometrical (aspect ratio o= a/b,
thicknesses of glass sheets and interlayer) and mechanical
properties (shear modulus Gj, of the interlayer) resulted
equal to 1.05. Moreover, the so obtained value of critical
load is always comprised between the two well-known
monolithic (Gjy — oo, full) and layered (Gijry — 0, abs) limit
values:

NE _(mb, a *2°D, (42)
y.cr, full a mb bz

NE :(mb N a jz 7*(D,+D,). (43)
y,cr,abs a mb bz

Nevertheless, the estimation of the critical buckling load
N does not constitute a useful criterion to study in a

y,cr,lam

realistic manner the stability problem of a compressed LG

panel and to define its ultimate strength. The panel, due to
the membrane effects that typically characterize its behavior
in the post-buckled regime, is in fact able to sustain greater
loads than N& In addition, no sandwich-based

y.crlam °
formulations are available to describe the axial compressive
load N-transversal displacement w of layered panels.
Therefore, sophisticated numerical simulations should be
performed to realistically investigate their typical behavior.

Because of this reason, in [10] an equivalent thickness
approach has been presented to precisely investigate the
buckled response of in-plane compressed LG panels. In
accordance with this simplified but accurate formulation, the
behavior of the LG panel can be described by means of the
classical theory of monolithic plates, by assuming:

togw =38+ +1210, (44)

with:
1 (45)
r«———
EJt
14968 — "
G, 24
A =min(a,b) (46)
J, =t +t,t2, (47)
__ Wb, (48)
* t +t,)
ot (49)
Tt )
t, =05(t, +t,) +t,,» (50)

and B a coefficient defined in function of the boundary and
loading conditions of the panel.

In [10], it was shown that the coefficient § should be
assumed equal to:

p=12 109 (51)
o
; i ; (E)
In this manner, the critical buckling load Ny,cr,lam can
be estimated as:
NG) _(m7b ajz ”zDeq —K ”2Deq , (52)
y.crlam 2 - No 2
a mb b b
where:
Et;, (53)

D,=——+
“ o 12(1-v?)
is the equivalent flexural stiffness of the composite panel.
Due to the correction factor B (Eq. (51)) the critical

buckling load given by Eq. (52) coincides with the solution
of Eq. (36).

At the same time, the load N-total transversal
displacement w relationship of the in-plane compressed LG
panel can be described as [10]:
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N=Nb=
t 2 2 2 2 2
Ep| s | J_ 7T | W g W W ) ol W W
a 30-v?) 8 |ty tgw )\ Lequr b W+ W,
(54)
that is:
e V2p, +1 wy (55)
P, (Ps ++/4p; +p;)°
with:
p, =
9/2bE* (v* ~1)[ ~24a’N (v* ~1) —8bE7°t}, , —3bE7°W; (v -1) |
(56)
p, =9Er2(v? -1), (57)
p, =1944(bEx2)°t2 W, (v? ~1)% (58)

and wg the maximum amp litude of the initial imperfection of
the LG panel.

VII. NUMERICAL AND EXPERIMENTAL VALIDATION

To check the accuracy of the proposed analytical
approach for compressed LG panels, also in this
circumstance a series of FE-models were developed with the
code ABAQUS [19].

Firstly, an accurate three-dimensional numerical FE
model was developed. The 3D+shell FE model consists in
glass sheets (thicknesses t;= t,= 8mm) described by means
of shell elements (S4R) and in a PVB-interlayer (thickness
tine= 1.52mm) modeled in the form of 3D-8 node elements
(C3D8H, hybrid formulation, incompatible modes). The
examined LG panel, simply supported along the four edges,
was assumed to have dimensions a=1m xb=1m. To ensure
the accuracy of numerical results, an accurate mesh was
used in the model (20 x 20mm module). Moreover, over the
depth of the PVB-film, two 3D elements have been used
(Fig. 9).

Uniform pressure

{/

_PVB (3D elements)

F——Glass
(shell elements with offset)

S R T

-~ ©Node with boundary

int

Fig. 9 3D+shell numerical model for simply supported in-plane compressed
LG panels detail (ABAQUYS)

3D elements and shell elements were connected together
by using the same nodes. In addition, to describe the
effective geometry of the LG panel, a section offset tope=
4mm fromthe centroidal axis of each glass pane was applied
to shell elements. In-plane compression was introduced in

the model in the form of uniformly distributed pressure
acting on the upper and lower surfaces of 3D elements. To
avoid possible eccentricities in the model, boundaries were
applied to the central nodes of the PVB-interlayer.

The second Mshell FE-model, as discussed for LG
beams, consists in composite shell elements (S4R) able to
take into account the effective thicknesses of each layer
constituting the LG panel. The third Teq FE-model, finally,
was constructed with monolithic glass shell elements (S4R)
having an equivalent thickness given by Eq. (44). In all these
FE-models, glass was described as an isotropic, linear elastic
material (E= 70000N/mm?, v= 0.23). Similarly, PVB was
considered to behave linear-elastically (vin= 0.498). Since
the aim of numerical simulations consisted in validating the
equivalent thickness analytical approach, a series of
buckling analysis were performed in ABAQUS. The critical

buckling load N (&)

y,cr,lam
panel by assuming in each analysis a different value of shear
modulus Ging (L0*N/mm? < Ging < 10°N/mn??).

The results proposed in Fig. 10 concern the critical
load N (&)

y,crlam !
compared as a function of Gj. In the specific, five different
solutions are compared, that is the analytical results of the
sandwich-based classical theory (Eq. (36)), the analytical
results given by the proposed equivalent thickness approach
(Eg. (52)) and the numerical results obtained by the buckling
analyses performed in ABAQUS with the 3D+shell, Mshell
and Teq FE-models. As shown, due to the calibrated
correction factor B (Eq. (51)), the analytical results coincide
with each other.

was predicted for the examined LG

numerically and analytically evaluated,

At the same time, they are in good agreement with
numerical data obtained by ABAQUS with the 3D+shell
FE-model. Clearly, the Mshell FE-model does not require
long processing time to perform buckling analyses but does
not agree with the analytical predictions, thus it should be
used with attention. In contrary, the Teq FE-model rapidly
converges and provides accurate results, thus it could be
used in practice to avoid 3D sophisticated simulations.

1500
8/1.52/8mm
a=1mx b=1m
1250 — — — Full (Eq.(52))
—— Zenkert (Eq.(36)); t.,, (Eq.(52)
© ABAQUS (3D+shell)
1000 | % ABAQUS (Mshell)
o  ABAQUS (Teq)
—— Abs (Eq.(52))

750 —

N(E)y‘cr‘lam [kN]

500 —

250

0 T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTT
10™ 10° 10° 10™ 10° 10" 10° 10° 10*
Gix [N/mm?2]

Fig. 10 Critical buckling load N §Ec)r am for in-plane compressed LG simply
supported along the edges: analytical and numerical comparisons
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The second proposed comparison concerns the typical
load  N-transversal  displacement ~w  relationship
characterizing the buckled response of in-plane compressed
LG panels. For this purpose, some experimental data
available in literature for out-of-plane displacements of
simply supported LG panels under compression were taken
into account [4]. Specifically, the experimental data
proposed in Fig.11 and summarized in Table 1 refer to three
squared 8/1.52/8mm LG panels (a= 1m x b= 1m) tested by
Luible. Analytical results, in particular, have been defined
for each LG panel by means of Eq. (55), having estimated
the corresponding equivalent thickness tgw (Eq.(44)). As
shown, experimental and analytical data are in good
agreement.

|| 8/1.52/8mm
a=1mxb=1m

600 —

700

— 400 —
=2
=, 4
Z 300 -
200 —| Test-1
— == Test-2
—=— Test-3
100 — —%— Analytical-1
—%— Analytical-2
b —o— Analytical-3
0 \ \ ‘ \ ‘
0 5 10 15 20
w [mm]

Fig. 11 Load N+ransversal displacement wrelationship for in-plane
compressed LG panels. Experimental [4] and analytical results (Eq. (44))

TABLE IEXPERIMENTAL DATA AND CORRESPONDING EQUIVALENT
THICKNESSES FOR IN-PLANE COMPRESSED LAMINATED GLASSPANELS

a=1m xb=1m T [4] Gint [4] teqw (EQ.(44))
8/1.52/8mm [°C] [N/mm?] [mm]
Test-1 205 081 11.14
Test-2 21.0 0.76 11.09
Test-3 20.0 084 11.18

VIII. DESIGN CRITERIA FOR IN-PLANE COMPRESSED
LAMINATED GLASSPANELS

As proposed for LG beams in compression, the buckling
verification of simply supported in-plane compressed LG
panels should be performed by contemporarily satisfying
requisites of deformability and durability. In accordance
with the Limit State approach, the maximum transversal
displacement wp,x Of the panel, given by Eqg. (55), should be
opportunely limited, as a function of the length a, by posing
for example the condition:

W (59)

<
max

| o

Rationally, a reasonable check of the maximum
deformation should be carried out taking into account an
initial sinusoidal imperfection, proportional to the first
modal shape of the panel, of maximum amplitude wy. In this
context, Englhardt [7] experimentally investigated
monolithic float and toughened glass panels having a
maximum amplitude of geometrical imperfection equal to
Wo= a/2000. Tests performed by Luible and Crisinel [25]
highlighted that initial imperfections in non-tempered
annealed flat glass panels have small amplitude (wp <
a/2500), whereas heat-strengthened and fully toughened
glass panels can have sinusoidal imperfections up to wg=
a/300. Reasonably, in the buckling verification of LG panels
a minimum amp litude of imperfection wo=4a/1000 should be
considered. Moreover, Englhardt suggests for the coefficient
k a value equal to k=300 [7].

At the same time, the design compressive load Nygq
should be compared with the design buckling resistance
Nyprd OF the panel:

N®E

Nyga < Nyom == 25 (60)
J/Ml
where N is given by Eg. (52). In this contex,

Englhardt suggests for the buckling safety factor yy; a value
of 1.40 [7].

Also in this circumstance, an alternative verification
criterion for in-plane compressed LG panels can be derived
from buckling curves suggested by the Eurocode 3 for the
verification of traditional structural elements [11]. In the
specific case of compressed panels, the buckling verification
could be still performed by satisfying the condition given by
Eqg. (60), in which the design buckling resistance Nyprq Of
the LG panel can be estimated as:

Ny,b,Rd =Y Aogy (61)

with » an opportune reduction factor and A the total cross-
section area.

In Eq. (61), the reduction factor y can be estimated by

means of Eq. (34), where @ is given by Eg. (35), with

Uip = 0.49 and 0, =0.60.1n addition, the non-dimensional

slenderness A (Eq. (31)) should be expressed as a function
of the critical buckling load N)(/Ec)r,lam of the examined LG

panel, given by Eq. (53).

Also in this circumstance, the imperfection factors
iy = 0.49 and q, =0.60 have been opportunely calibrated
on the basis of experimental and numerical data available in
literature. As proposed in Fig. 12, for example, the limitation

provided by the suggested EC curve (O‘imp =0.49 and
aozo,eo) is approximately equal to the conditions

expressed by Eq. (59), with k=300 [7], and by Eq.(60), with
7wy =140 [7]
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Fig. 12 Buckling curve forthe verification of LG panels under in
compression: comparisons with analytical results

In Fig. 13, some experimental and numerical data are
also presented to validate the proposed verification
procedure. The experimental data, in particular, refer to
buckling tests performed by Luible [4] on in-plane
compressed LG panels simply supported along the edges,
having different geometrical properties. As shown in Figs.
11 and 13, a significant post-critical resistance can be
observed in the typical behavior of LG panels under
compression. A similar behavior is also confirmed by
numerical and experimental results obtained by Englhardt [7]
and Luible [4]. However, it is possible to notice that,
ignoring the post-critical resistance of the examined LG
panels, the proposed solution provides adequate safety
require ments.

1.4
® FE-Englhardt [7]
= FE, w,= a/1000-Luible [4]
1.2 — % FE, w,= a/500-Luible [4]
X Test-Luible [4]
1.0 —
0.8 —
=
0.6 —
X
0.4 — ® %,
X ®
ooy - See °
02 —| e g o o
_|= == Euler
—— EC Curve (oyp,= 0.49, a,,= 0.60)
0.0 1 T T T 1 \
0 1 2 _ 3 4 5

A

Fig. 13 Buckling curve for the verification of LG panels under in-plane
compression: comparisons with numerical [4, 7] and experimental results [4]

IX. CONCLUSIONS

Laminated glass beams and panels subjected axal
compression are frequently subjected to stability problems.
In literature, several analytical formulations derived from the

classical theory of sandwich elements under compression are
available, but often they can be used only to predict the
value of their critical buckling load. In the paper, exact
analytical formulations are proposed for the buckling
verification of compressed LG beams and panels. For LG
beams, a model developed on the basis of Newmark’s theory
of composite beams with partial interaction is proposed. At
the same time, a simplified but accurate equivalent thickness
formulation is proposed for the verification of in-plane
compressed LG panels. Comparisons with numerical and
experimental data are presented to validate the accuracy of
analytical formulations. In both the circumstances, the
presented models allow to take into account the effective
level of connection offered by the adopted interlayer. At the
same time, a criterion based on the buckling curves of
Eurocodes is suggested for a rational buckling verification of
compressed LG elements.
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