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Abstract-  Because of the characteristic of high slenderness 
ratios, monolithic and laminated glass elements are frequently 
subjected to buckling phenomena. As regards laminated glass 
beams and panels, in particular, the effects of possible 
temperature or time-load variations represent only some 
aspects that make complex their global structural response. In 
this context, the paper focuses on the load-carrying behavior of 
in-plane compressed laminated glass elements. In it, some 
analytical formulations are presented to describe realistically 
their typical behavior. As shown, the proposed formulations 
are in good agreement with experimental and numerical data 
available in literature. At the same time, they allow to perform 
a rational buckling verification of such brittle load-bearing 
elements. Finally, according to the suggestions the Eurocodes 
give for the verification of traditional structural elements, a 
series of buckling curves opportunely calibrated are proposed 
to guarantee the requisites of resistance, serviceability, and 
durability typically imposed in the design of conventional 
structural systems. 
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I. INTRODUCTION 

The use of monolithic or laminate glass (LG) elements in  
modern and innovative architectural applications showed a 
strong increase in the last years. Because of aesthetic, 
lighting, and architectural advantages, glass elements are 
frequently used as structural components able to sustain 
loads. However, the real capabilities of such innovative 
bearing components are currently not well known and 
several aspects related to their typical load-carry ing behavior 
are very complex to evaluate. The load-carry ing capacity of 
LG beams or panels, for example, strongly depends on the 
degradation of the mechanical p roperties of the interlayer, as 
well as on the presence and the amplitude of possible 
imperfections, or the presence of additional external loads. 

In this context, several authors observed that temperature 
variations could strongly influence the mechanical properties 
of the thermoplastic materials usually adopted to bond 
together the glass panes [1, 2, and 3]. Recently, numerous 
authors focused on the buckled response of structural g lass 
elements in several boundary or loading conditions. Luible  
[4], for example, investigated the load-carry ing behavior of 
LG beams or panels and performed experimental tests to 
analyze their typical response. Belis [5] studied the lateral-
torsional buckling of LG beams. In [6, 7], the authors 
proposed an exact analytical approach for the buckling 
verification of LG beams in  compression or in out-of-p lane 
bending. The behavior of LG panels under in-p lane 

compression or shear has been deeply examined in [8, 9, and 
10]. 

Rationally, a  realistic buckling verificat ion of LG 
compressed beams and panels should be performed by 
contemporarily satisfying a series of requisites concerning 
the resistance, the serviceability, and the durability of such 
brittle  elements. At the same t ime, the effective connection 
offered by the interlayer should be precisely estimated, since 
strongly time-load and temperature dependent. Nevertheless, 
consolidate verification criteria available in literature for the 
buckling verification o f trad itional structural elements (steel, 
for example [11]) cannot be directly applied to LG elements. 
Because of this reasons, in the paper some analytical 
formulat ions are proposed for the buckling verification of in-
plane compressed LG beams and panels. The aim is to 
derive simple and consistent design rules for pane-like g lass 
columns with laminated sections subjected to axial 
compressive loads. As shown, these analytical models are in  
good agreement with numerical and experimental data. 

In addition, according to the suggestions of Eurocodes 3, 
4, 5 [11, 12, and 13], a series of buckling curves opportunely 
calibrated are proposed to guarantee the requisites of 
resistance, serviceability and durability typically required in  
the design of conventional structural systems. As proposed 
in the following sections, these buckling curves are in good 
agreement with experimental data collected in literature, as 
well as with numerical results. 

II. ANALYTICAL MODEL FOR COMPRESSED LAMINATED 
GLASS BEAMS 

The analysis of compressed laminated glass beams is 
generally performed by using the elastic theory of sandwich 
elements [14]. Recently, based on these sandwich 
formulat ions, an equivalent thickness approach has been 
proposed to study the behavior of a monolith ic compressed 
element characterized by a rectangular cross section of 
thickness teff [4]. As a result, the flexural behavior of the 
composite beam is described through the classical theory of 
deflection. This analytical formulation undoubtedly 
constitutes a suitable design method for compressed LG 
elements, but does not allow understanding how, depending 
on variations of temperature and load duration, the 
mechanical properties of the interlayer can influence the 
global response of the layered element. 

In this last years, also Blaauwendraad [15] proposed a 
simplified formulat ion able to easily  control the transition 
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between the layered limit (abs, absence of connection 
between the glass sheets) and the monolithic limit (full, 
presence of a rigid connection between the glass sheets). By 
means of a dimensionless parameter representative of the 

effective level of connection between the glass panes, 
Blaauwendraad suggests also a unity check for tensile 
stresses. Also in this circumstance,the formulation  is simple, 
but provides only approximate results. 

Fig. 1 Analytical model for compressed LG beams 

The alternative [6], consists in an  analytical model based 
on the original elastic theory of Newmark et al. [16], 
concerning the flexural behavior of 2-layer composite beams 
with  deformable connection. As shown in [6], the advantage 
of this new formulation consists in the possibility of taking 
into account the real thickness of the layers constituting the 
LG beam. At the same time, the proposed formulat ion 
allows taking into account the effective level of connection 
offered by the interlayer, thus it can be used to estimate the 
buckled response of a compressed LG beam in a well-
defined condition of temperature and  load duration. 
Although the model applies only to 2-layer structural 
systems, that is to beams consisting of two interacting glass 
sheets, tied together by a shear connection able to transfer 
the horizontal shear from one element to the other, it  
provides accurate results. 

In this context, let us consider a 2-layer LG beam, pinned 
at the ends of its buckling length L0, subjected to an axial 
compressive load N (Fig. 1). The beam, having a rectangular 
cross section (width b), is assumed to be constituted by two 
external glass layers (thicknesses t1, t2, elastic Young’s 
modulus E, shear modulus G) and a middle interlayer 
(thickness tint, shear modulus Gint), and affected by a 
sinusoidal imperfect ion of maximum amplitude w0. An 
extended experimental campaign performed by Belis et al. 
[17] on 312 glass beams with variable length, height, 
thickness, glass type, recently highlighted that the sinusoidal 
shape describes the initial imperfect ion in monolithic or 
laminated glass beams with a good level of accuracy. 

The transversal displacement w(z) of the simply  
supported beam [w(0)= w (L0)= 0 and wII(0)= wII(L0)= 0] due 
to the axial compression N is [6]: 

)()(
)sin()(

)( 2
0

222
0

22
0

2
00

2
0

22
0

2

NLEJEJNLEJLEJ
LzNwLEJLEJ

zw
absfullfullabs

fullabs

−+−
+

=
πππα

ππα     (1)  

with: 

abs

full

EJ
EJ

EA
K

*
2 =α ,                          (2) 

  
int

int

t
bGK =                        (3) 

21

21

21

21* ))((
tt
tEbt

EAEA
EAEAEA

+
=

+
=                     (4) 

the equivalent axial stiffness, 


















 ++






 ++=

2
int2

2

2
int1

1 2222
ttttttEbEJEJ absfull

         (5) 

the monolithic flexural stiffness, 
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the layered flexural stiffness. 

Assuming for the init ial sine-shape imperfection of the 
composite beam a maximum amplitude w0, its total 
maximum deflection is: 
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and the corresponding tensile stress σmax can be estimated as: 
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In Eq. (8), F is the axial load acting in each g lass pane, 
due to the flexural deflect ion of the beam: 

d
EJNw

F absmaxmax χ+
= ;                  (9) 

d represents the distance between the centroidal axis  of each 
glass pane (Fig. 1); 

maxχ  is the midspan curvature of the 
beam corresponding to the deflection 

maxw : 
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Wy is the elastic resistant modulus of the total cross section 
(thickness t= t1 + tint + t2): 

6

2btWy = ;             (11) 

and Amin, with tmin = min(t1, t2), is the minimum transversal 
area of each glass pane: 

minmin btA =                                  (12) 

Eq. (7) represents useful informat ion, since it allows 
describing the load N-transversal displacement w of a 
generic LG beam in compression, by taking into account the 
effective shear stiffness Gint of the interlayer and the 
presence of possible sinusoidal 
imperfections )sin()( 00 Lzwzw π= . If the compression N 
gradually increases, the loss of stability of the beam 
typically shows in the form of an abrupt and non-
proportional increase of the corresponding displacement 
wmax.  

Consequently, Eq.(7) can be used to express the critical 
buckling load )(E

crN  of the LG beam, assumed as the 
asymptotical value N  to which the growing displacement 
wmax tends: 
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Depending on the shear modulus Gint of the material 
constituting the interlayer, the critical load )(E

crN  of a generic 
LG beam is always comprised between the well-known limit  
values )(

,
E

fullcrN  (monolithic limit, Gint → ∞, that is α → ∞)  

and )(
,

E
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This finding constitutes an important aspect in the 
analysis of LG elements, sine the material commonly used to 
bond together the glass sheets (PVB Butacite®, SG®, EVA, 
etc.) consists in thermoplastic materials strongly temperature 
and load time-dependent. PVB-films, in  particular, have 
good mechanical properties if subjected to room 
temperatures or short-term loads, but present a strong 
degradation of shear stiffness with high temperatures and 
long-term loads [18]. 

In Fig. 2, for example, the effects of stiffness degradation 
on the value of the critical buckling load )(E

crN  are proposed 
for a PVB-laminated glass beam (5/1.52/5mm) having 
dimensions b=200mm x L0= 3000mm. In particular, )(E

crN  is 
evaluated by means of Eq. 13 by assuming Gint a value 
comprised in the range 10-4 N/mm2  < Gint < 104 N/mm2. In  

the figure, also three specific values of )(E
crN  are 

highlighted. These crit ical loads are evaluated in  presence of 
short-term loads (3 seconds) and room/medium temperatures 
(T= 20°C, Gint= 8.06N/mm2; T= 30°C, Gint= 0.971N/mm2  
[18]), or long-term loads (1 year) and h igh temperatures (T= 
50°C, Gint= 0.052N/mm2 [18]). 

10-4 10-3 10-2 10-1 100 101 102 103 104

Gint  [N/mm2]

0.00x100

2.50x102

5.00x102

7.50x102

1.00x103

1.25x103

1.50x103

1.75x103

2.00x103

N(E
) cr

  [
N]

5/1.52/5mm
b= 200mm, L0= 3000mm

N(E)
cr (Eq.(13))

Gint= 8.06N/mm2

Gint= 0.971N/mm2

Gint= 0.052N/mm2

N

N

N(E)
cr,full= 1956N

N(E)
cr,abs= 320N

 
Fig. 2 Effects of temperature and time-load conditions on the critical 

buckling load )(E
crN  of a compressed LG beam (5/1.52/5mm, b=200mm x 

L0= 3000mm) [18] 

III. NUMERICAL VALIDATION 

To validate the analytical approach proposed for the 
buckling analysis of compressed LG beams, two different 
nonlinear finite-element (FE) models were constructed with 
the commercial nonlinear code ABAQUS [19]. In the first 
three-dimensional (3D) FE-model, the glass panes and the 
middle PVB-film have been described by means of 3D 
eight-node elements. In similar models, it is important to 
define a sufficiently accurate mesh for the elements, since 
the convergence of simulations as well as the accuracy of 
numerical results may be seriously compromised. Because 
of this reason, two  elements over the depth of each g lass 
sheet and the interlayer have been used. At the same time, an 
opportune mesh has been applied in the width of the 
examined LG beams (Fig. 3).  
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Fig. 3 3D and Mshell numerical models for LG beams in compression 

(ABAQUS) 

The external glass sheets and the PVB-film were 
connected together by using the same nodes. To avoid 
possible eccentricities, boundaries were applied at the 
central nodes of the PVB-film, at both the ends of each 
simply supported LG beam. The compressive axial load was 
introduced in the FE-model in the form of uniformly  
distributed pressure acting on the lower and upper surfaces 
of 3D elements. 

The second and simplest FE-model (MShell) consists in 
multilayer composite shell elements (S4R) able to describe 
the real flexural stiffness and the effective th icknesses of the 
layers constituting the analyzed LG beams (Fig. 3). In this 
specific circumstance, the axial compression was described 
in terms of uniform compressive shell edge loads acting on 
the lower and upper edges of each LG beam. 

Concerning the materials, in both the FE-models g lass 
has been modeled as an isotropic, linear-elastic material 
characterized by Young’s modulus E= 70000N/mm2 and 
Poisson’s ratio v= 0.23. Also PVB has been described as a 
linear elastic material, characterized by “equivalent” 
mechanical properties able to take into account for the 
degradation of its shear stiffness Gint due to temperature or 
load-time variat ions [6, 18]. In  all the performed  simulat ions, 
Poisson’s ratio for PVB was fixed equal to vint= 0.498 [18]. 

Firstly, parametric buckling analyses were performed  
with the 3D and Mshell FE-models to investigate the effects 
of mechanical (PVB stiffness) or geometrical properties 
(slenderness of the beam, ratio between the thicknesses of 
glass and interlayer) in the buckling response of LG beams 
in compression. In this simulation phase, also the accuracy 
of the simplest Mshell FE-model was checked. 

The main results are proposed in Fig. 4, in the form of 
critical loads )(E

crN  of a 5/1.52/5mm beam (b= 200, L0= 
3000mm) characterized by PVB-interlayers of various 
stiffness (10-4 N/mm2 < Gint < 104 N/mm2 ). Analytical results 
(Eq. (13)) are compared with numerical pred ictions. 

As shown, the 3D FE-model provides results in good 
agree with analytical calculations. Nevertheless, if the mesh 
of the 3D FE-model is not sufficiently detailed, the obtained 
critical load )(E

crN  could be overestimated, especially in 
presence of soft interlayers (Gint < 10N/mm2). Contrarily, 

buckling analyses performed with the Mshell FE-model do 
not require long processing time, but the accuracy of results 
is comparable to  that of the 3D FE-model only in p resence 
of sufficiently rig id interlayers (Gint > 10N/mm2). As shown 
in Fig. 4, the MShell FE-model clearly  tends to 
underestimate the effective critical load )(E

crN  of LG beams 
if the interlayer is soft. This aspect should be taken into 
account in the analysis of LG beams assembled with PVB-
films, which are strongly time and load-time dependent. 
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Fig. 4 Comparison between analytical and numerical (ABAQUS, 3D and 

Mshell FE-models) critical loads of LG beams in compression 

Further comparisons were performed to validate the 
proposed analytical procedure [6]. Results proposed in Fig. 5,  
for example, refer to a LG beam obtained by assembling two  
5mm thick glass sheets and 1.52mm thick PVB film.  
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Fig. 5 Comparison between analytical and numerical (ABAQUS) results for 

LG beams in compression (w0= L0/500). 
The width b of the beam was fixed equal to 20mm and  

its buckling length L0 was modified in a pre-established 
range (L0= 200, 400, 600, 800, 1000mm). The maximum 
amplitude w0= L0/500 of the init ial imperfection was 
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introduced in the model as an init ial sine-shape imposed 
displacement. In this specific circumstance, Gint was 
assumed equal to Gint= 8.06N/mm2, as suggested by 
Bennison (T= 20°C, load duration: 3 seconds [18]). At the 
same time, to simulate the presence of an ext remely rigid  
interlayer (monolithic limit, full) as well as a soft interlayer 
(layered limit, abs) the shear moduli Gint,full= 500N/mm2 and 
Gint,abs= 0.0001N/mm2 were considered. 

Static incremental analyses were performed with  3D FE-
model to investigate the load-carrying behavior of imperfect 
LG beams subjected to an increasing compression N. 
Geometrical nonlinearity was taken into account to simulate 
the buckling response of the examined LG elements. As the 
axial compression growth, the maximum tensile stress 
occurring in  the glass surface was monitored. Analyses were 
stopped at the reaching of a prefixed value Rkσ  of 
characteristic tensile strength for glass. In the specific 
example, a characteristic strength 2/17 mmNRk =σ  was 
taken into account, as suggested in [20] for the verificat ion 
of float glass elements subjected to long-term loads. For 
each LG beam, the value of the compressive load N* 
associated to a maximum tensile stress RkN σσ =)( *

max  was 
collected. Analytical and numerical results are presented in 
Fig. 5 in terms of reduction factor R: 

A
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Rkσ
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with btA =  the total cross-sectional area, and full 
slenderness ratio λ : 
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with fullρ  the radius of gyration of the total cross section 
(hypotheses of rigid connection between the glass panes): 

A
J
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and 123btJ =  the moment of inertia. 

Also in this circumstance, analytical and numerical 
results are in good agreement. 

IV. ADDITIONAL LOADS 

Clearly, the proposed analytical model is able to provide 
accurate results, agreeing well with the nonlinear numerical 
results. Moreover, although applicable only to 2-layer 
simple structural systems, the same formulation can be 
easily applied to the analysis of LG beams subjected to 
compressive loads N and to simultaneous transversal loads q. 
As discussed in [6], in  fact, the maximum deflection of the 
LG beam can be estimated as: 
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in which q is the maximum amplitude of the transversal 
sinusoidal load affecting the beam; w0 represents the 

maximum amplitude of the sine-shape imperfection; α, EJfull, 
EJabs are given by Eqs. 2, 5, and 6. 

In this specific circumstance, the maximum tensile 
stresses associate to the deflection wmax is: 
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whereas the critical buckling load )(E
crN  of the LG beam can 

be still evaluated by means of Eq. 13. 

V. DESIGN CRITERIA FOR COMPRESSED LAMINATED GLASS 
BEAMS 

In the previous sections, it was shown that the maximum 
transversal displacement wmax of a compressed LG beam 
caused by an axial load N can be evaluated by means of Eq. 
(7). At the same time, the corresponding maximum tensile 
stress can be estimated by means of Eq. (8). If additional 
external loads perpendicular to the plane of the beam are 
present (sinusoidal loads of maximum amplitude q or, 
equivalently, uniformly  distributed loads of amplitude q), 
the corresponding deflection and mid-span tensile stress are 
given by Eqs. (19) and (20). 

In this context, in accordance with the Limit State 
approach, the buckling verification of compressed LG beams 
should be developed by contemporarily satisfying three 
different conditions, respectively referred to requirements of 
structural resistance, serviceability, and durability. Moreover,  
to perform a reasonable verificat ion, the presence of an 
initial sinusoidal imperfect ion of maximum amplitude w0 
should always be taken into account, to represent the 
possible effects of geometrical deformat ions (residual 
stresses, geometrical imperfections due to fabrication) or 
eccentricities (of load or boundary, or a combination of them) 
in the beam. Rationally, as suggested by Belis et al. [17], the 
amplitude of the init ial sine-shape imperfect ion w0 should be 
at least assumed equal to 1/400 of the structural span. 

In this context, the maximum tensile stress σEd in each 
cross section (Eq. (8) or Eq. (20)), if additional transversal 
loads are present) should be compared with the design 
tensile resistance of glass σRd: 

RdEd σσ ≤                                         (22) 

At the same time, the maximum deflection δmax of the 
LG beam (Eq. (7) or Eq. (19)) might not exceed a specific 
value, defined as a ratio of its buckling length L0, as for 
example: 

                                     
k
L0

max ≤δ                                  (23) 

with k= 120. 

Finally, the column buckling verification should require 
the comparison of the design compressive load NEd and the 
buckling resistance Nb,Rd of the compressed LG beam: 
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with )(E
crN  given by Eq. (13) and γM1 = 1.40, for example, a  

buckling safety factor. 

A. Alternative Verification Criteria for Compressed 
Laminated Glass Beams 

For the buckling verification of tradit ional structural 
elements, constructed with conventional materials as steel or 
concrete, consolidate verificat ion criteria are availab le in  
literature. The Ayrton-Perry formulation [21], fo r example, 
was originally formulated for the analysis of geometrically  
imperfect columns loaded by uniform compressive loads. In 
accordance with this analytical approach, the initial 
imperfections, as well as other effects (residual stresses, 
possible eccentricities) can be efficiently described through 
a generalized imperfection factor. 

Specifically, the maximum second order lateral 
displacement of a compressed LG beam affected by a 
sinusoidal imperfection of maximum amplitude w0 can be 
expressed as: 
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with )(E
crN  the elastic critical load (Eq. (13)) and N  the 

applied compression. 

If σRk is the characteristic  tensile strength of glass, the 
failure of the beam occurs when: 
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yW
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with A the cross-sectional area and Wy the elastic resistant 
modulus (Eq. (11)). 

The substitution of Eq.(25) into Eq. (26) p rovides the 
well-known expression [21]: 
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where: 

maxσ is the maximum tensile stress due to the applied  
compression N , 
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is the critical stress of the beam, with )(E
crN given by Eq.(13), 

and 
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is a generalized non-dimensional imperfection factor. 

Eq. (25) is the analytical expression able to represent the 
relationship between the applied compressive load N, the 
Eu ler critical load )(E

crN  and the equivalent in itial deflection  
of maximum amplitude w0 for the compressed LG beam. Eq. 
(25) can also be written in the standard form: 

01111 222
2 =+








−−−+

λ
η

λλ
χχ ,            (30) 

where: 
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N
Aσλ = is a normalized slenderness and           (31) 

RkA
N
σ

χ = is a buckling reduction factor.           (32) 

The main advantage of the analytical approach proposed 
by Ayrton and Perry consists in the definition of an 
equivalent init ial sine-shape imperfection representative of 
geometrical imperfect ions, as well as residual stresses or 
possible eccentricit ies. Because of this reason, it actually  
constitutes the theoretical background of the column design 
curves proposed by several codes for the verificat ion of 
compressed steel members. 

With reference to Eq. (30), for example, the Eurocode 3 
[11] estimates the buckling resistance of compressed steel 
members by taking into account a series of appropriate 
buckling curves, opportunely calibrates to take into account 
the effects in their buckled response of possible initial 
imperfections of different amplitude, as well as the different 
cross-section class. Nevertheless, this method cannot be 
directly applied to LG beams. 

In this context, the buckling verification o f a compressed 
LG beam can be still performed  by satisfying the condition 
given by Eq. (24), in which the design buckling resistance 
Nb,Rd of the layered beam is: 

RdRdb AN σχ   =,
,           (33) 

with χ  an opportune reduction factor. 

In Eq. (33), the reduction factor χ  can be estimated by 
means of the expression obtained by Eq. (30) and suggested 
by the Eurocode 3 [11]: 
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λ is the slenderness of Eq. (31), 

impα 0.71,=  

60.0α0 = . 

In this case, the imperfect ion coefficients impα  and 
0α  

have been opportunely calibrated on the basis of numerical 
and experimental data available in literature for compressed 
monolithic or laminated glass beams [4, 22, 23]. In the 
specific, the coefficient 

0α  indiv iduates the values of 

slenderness λ  associated to a reduction factor equal to 
1=χ . The value of the coefficient impα  individuates the 

maximum allowable imperfect ion for the compressed 
member. 
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In Fig. 6, several numerical and experimental data are 
presented to validate the proposed verification approach. In  
particular, experimental data refer to buckling tests recently 
performed by  Luible [4] and Aiello  et al. [22] on monolithic 
or laminated glass beams in  compression. Additional 
experimental data are collected in [23]. Glass beams present 
a typical brittle-elastic behavior, and due to the absence of 
post-critical resistance in them, an abrupt failure generally  
occurs. Because of this reason, the safety factors should be 
carefully calibrated.  
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Fig. 6 Buckling curves for the verification of LG beams in compression (e= 
0), comparisons with numerical (ABAQUS) and experimental results [4, 22, 

23] 

In the same figure, also numerical results are reported, 
obtained by performing in ABAQUS (3D FE-model) a  series 
of static incremental analysis on compressed glass beams 
characterized by different geometrical propert ies. As 
suggested by Belis et al. [17], in this specific circumstance 
an init ial sine-shape imperfect ion of maximum amplitude 
w0= L0/400 was taken  into account. As shown in Fig.6, the 
buckling curve proposed for the verification of compressed 
beams is in good agreement with numerical and 
experimental data. Addit ional analytical comparisons 
allowed to notice that a similar limitation (Eq. (34), with 

71.0αimp =  and 60.0α0 = ) approximately coincides, for 

10.1λ > , with the assumption of 120=k  in Eq.(23) or 
40.11 =Mγ  in Eq.(24). 

In Fig. 7, additional numerical results are proposed for 
compressed LG beams affected by an initial sine-shape 
imperfection of maximum amplitude w0= L0/400 and an 
accidental eccentricity e= t/6, with t the total thickness of the 
beam. In  this circumstance, is interesting to notice that 
although the applied eccentricity  has negligib le amplitude, it  
strongly reduces the buckling resistance of the examined 
beams. As a result, the optimal buckling curve (which can be 
called “EC curve”), to be taken into account for their 
verification is characterized by imperfection factors equal to 

80.1αimp =  and 40.0α0 =  (Fig. 7). Undoubtedly, a similar 
verification approach can be applied only to purely 
compressed glass beams, but it  could constitute a useful 
design method. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0_

λ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

χ

Euler
EC Curve, e= 0 (αimp= 0.71, α0= 0.60)
EC Curve, e= t/6 (αimp= 1.80, α0= 0.40)
ABAQUS (w0= L0/400, e= t/6)

 
Fig. 7 Buckling curves for the verification of LG beams in compression       

(e= t/6), comparisons with numerical results (ABAQUS) 

VI. ANALYTICAL MODEL FOR IN-PLANE COMPRESSED 
LAMINATED GLASS PANELS 

Laminated glass panels, as well as beams, are largely  
used in the realizat ion of façades, roofs, stiffeners, etc. The 
LG panels are main ly associated to the realizat ion of 
futuristic and innovative architectures in modern buildings. 
However, due to their typical slenderness, they can be 
affected by buckling problems. Consequently an appropriate 
verification criterion should be adopted to prevent possible 
failure mechanis ms. 

Recently, numerous authors focused on the buckled 
response of glass panels subjected to in-plane compression 
[4, 8] or in-p lane shear [9], providing useful experimental 
data, sophisticated numerical simulat ions, and interesting 
analytical considerations. In [10], an equivalent thickness 
approach has been proposed to study the buckling response 
of LG panels in several boundary conditions, subjected to in-
plane compression or in-plane shear. Nevertheless, the 
knowledge on compressed LG panels behavior is still 
limited and with constrained applications. 

Let us consider, for example, a LG panel simply  
supported on the four edges (length a, width b), obtained by 
assembling two monolithic g lass sheets and a middle 
interlayer (Fig. 8), subjected to in-plane compression 
(pressure force per unit length Ny, in y-direct ion). 
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Fig. 8 Simply supported LG panel subjected to in-plane compression: 

geometry and cross section 

The crit ical buckling load )(
,,

E
lamcryN  of the LG panel is 

commonly  estimated by means of the linear elastic theory of 
sandwich elements. In  accordance with Zenkert’s 
formulat ion, in particular, the crit ical load )(

,,
E

lamcryN  is given 
by [24]: 
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Numerical and analytical comparisons performed by  
Luible [4] demonstrated that Eq. (36) predicts with a good 
level of accuracy the bifurcation load ( )

, ,
E

y cr lamN  of simply  
supported LG panels, for well-defined values of Gint. 

In particular, Luible showed that the mean ratio between 
analytical and numerical critical loads of 200 LG panels 
characterized by various geometrical (aspect ratio α= a/b, 
thicknesses of glass sheets and interlayer) and mechanical 
properties (shear modulus Gint of the interlayer) resulted 
equal to 1.05. Moreover, the so obtained value of critical 
load is always comprised between the two well-known 
monolithic (Gint → ∞, full) and layered (Gint → 0, abs) limit  
values: 
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Nevertheless, the estimation of the critical buckling load 
)(

,,
E

lamcryN  does not constitute a useful criterion to study in a 
realistic manner the stability problem of a compressed LG 

panel and to define its ultimate strength. The panel, due to 
the membrane effects that typically characterize its behavior 
in the post-buckled reg ime, is in fact able to sustain greater 
loads than )(

,,
E

lamcryN . In addition, no sandwich-based 
formulat ions are available to describe the axial compressive 
load N-transversal displacement w  of layered  panels. 
Therefore, sophisticated numerical simulations should be 
performed to realistically investigate their typical behavior. 

Because of this reason, in [10] an equivalent thickness 
approach has been presented to precisely investigate the 
buckled response of in -plane compressed LG panels. In  
accordance with this simplified but accurate formulat ion, the 
behavior of the LG panel can be described by means of the 
classical theory of monolithic plates, by assuming: 
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and β a coefficient defined in function of the boundary and 
loading conditions of the panel. 

In [10], it  was shown that the coefficient β should be 
assumed equal to: 

09.109.1
2 +=

α
β .               (51) 

In this manner, the critical buckling load )(
,,

E
lamcryN  can 

be estimated as: 
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where: 

)1(12 2

3

ν−
= eq

eq

Et
D                  (53) 

is the equivalent flexural stiffness of the composite panel. 

Due to the correction factor β (Eq. (51)) the critical 
buckling load given by Eq. (52) co incides with the solution 
of Eq. (36). 

At the same time, the load N -total transversal 
displacement w relat ionship of the in-p lane compressed LG 
panel can be described as [10]: 
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and w0 the maximum amplitude of the in itial imperfection of 
the LG panel. 

VII. NUMERICAL AND EXPERIMENTAL VALIDATION 

To check the accuracy of the proposed analytical 
approach for compressed LG panels, also in this 
circumstance a series of FE-models were developed with the 
code ABAQUS [19]. 

Firstly, an accurate three-dimensional numerical FE 
model was developed. The 3D+shell FE model consists in 
glass sheets (thicknesses t1= t2= 8mm) described by means 
of shell elements (S4R) and in a PVB-interlayer (th ickness 
tint= 1.52mm) modeled in the form of 3D-8 node elements 
(C3D8H, hybrid formulation, incompatible modes). The 
examined LG panel, simply supported along the four edges, 
was assumed to have d imensions a= 1m x b= 1m. To ensure 
the accuracy of numerical results, an accurate mesh was 
used in the model (20 x 20mm module). Moreover, over the 
depth of the PVB-film, two 3D elements have been used 
(Fig. 9).  

 
Fig. 9 3D+shell numerical model for simply supported in-plane compressed 

LG panels detail (ABAQUS) 

3D elements and shell elements were connected together 
by using the same nodes. In addition, to describe the 
effective geometry of the LG panel, a section offset toffset= 
4mm from the centroidal axis of each glass pane was applied 
to shell elements. In-plane compression was introduced in 

the model in the form of uniformly d istributed pressure 
acting on the upper and lower surfaces of 3D elements. To 
avoid possible eccentricities in the model, boundaries were 
applied to the central nodes of the PVB-interlayer. 

The second Mshell FE-model, as discussed for LG 
beams, consists in composite shell elements (S4R) able to 
take into account the effective thicknesses of each layer 
constituting the LG panel. The third Teq FE-model, finally, 
was constructed with monolithic glass shell elements (S4R) 
having an equivalent thickness given by Eq. (44). In all these 
FE-models, g lass was described as an isotropic, linear elastic 
material (E= 70000N/mm2, ν= 0.23). Similarly, PVB was 
considered to behave linear-elastically (νint= 0.498). Since 
the aim of numerical simulat ions consisted in validating the 
equivalent thickness analytical approach, a series of 
buckling analysis were performed in ABAQUS. The crit ical 
buckling load )(

,,
E

lamcryN  was predicted for the examined LG 
panel by assuming in each analysis a d ifferent value of shear 
modulus Gint (10-4N/mm2 < Gint < 104N/mm2 ). 

The results proposed in Fig. 10 concern the critical 
load )(

,,
E

lamcryN , numerically and analytically evaluated, 
compared as a function of Gint. In the specific, five different 
solutions are compared, that is the analytical results of the 
sandwich-based classical theory (Eq . (36)), the analyt ical 
results given by the proposed equivalent thickness approach 
(Eq. (52)) and the numerical results obtained by the buckling 
analyses performed in ABAQUS with the 3D+shell, Mshell 
and Teq FE-models. As shown, due to the calibrated 
correction factor β (Eq. (51)), the analytical results coincide 
with each other. 

At the same time, they are in good agreement with  
numerical data obtained by ABAQUS with the 3D+shell 
FE-model. Clearly, the Mshell FE-model does not require 
long processing time to perform buckling analyses but does 
not agree with the analytical pred ictions, thus it should be 
used with attention. In contrary, the Teq FE-model rapidly  
converges and provides accurate results, thus it could be 
used in practice to avoid 3D sophisticated simulations. 
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Fig. 10 Critical buckling load )(

,,
E

lamcryN  for in-plane compressed LG simply 
supported along the edges: analytical and numerical comparisons 
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The second proposed comparison concerns the typical 
load N-transversal displacement w relat ionship 
characterizing the buckled response of in-plane compressed 
LG panels. For this purpose, some experimental data 
available in  literature for out-of-p lane displacements of 
simply supported LG panels under compression were taken 
into account [4]. Specifically, the experimental data 
proposed in Fig.11 and summarized in  Table 1 refer to three 
squared 8/1.52/8mm LG panels (a= 1m x b= 1m) tested by 
Luible. Analytical results, in  particular, have been defined 
for each LG panel by means of Eq. (55), having estimated 
the corresponding equivalent thickness teq,w (Eq.(44)). As 
shown, experimental and analytical data are in good 
agreement. 
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Fig. 11 Load N-transversal displacement w relationship for in-plane 

compressed LG panels. Experimental [4] and analytical results (Eq. (44)) 
TABLE I EXPERIMENTAL DATA AND CORRESPONDING EQUIVALENT 

THICKNESSES FOR IN-PLANE COMPRESSED LAMINATED GLASS PANELS 

a= 1m x b= 1m T [4] Gint [4] teq,w (Eq.(44)) 

8/1.52/8mm [°C] [N/mm2] [mm] 

Test-1 20.5 0.81 11.14 

Test-2 21.0 0.76 11.09 

Test-3 20.0 0.84 11.18 

VIII. DESIGN CRITERIA FOR IN-PLANE COMPRESSED 
LAMINATED GLASS PANELS 

As proposed for LG beams in compression, the buckling  
verification of simply supported in-plane compressed LG 
panels should be performed by contemporarily satisfying 
requisites of deformability and durability. In accordance 
with the Limit State approach, the maximum transversal 
displacement wmax of the panel, g iven by Eq. (55), should be 
opportunely limited, as a function of the length a, by posing 
for example the condition: 

max
aw
k

≤ .                     (59) 

Rationally, a reasonable check of the maximum 
deformation should be carried out taking into account an 
initial sinusoidal imperfection, proportional to the first 
modal shape of the panel, of maximum amplitude w0. In  this 
context, Eng lhardt [7] experimentally  investigated 
monolithic float and toughened glass panels having a 
maximum amplitude of geometrical imperfection equal to 
w0= a/2000. Tests performed by Luible and Crisinel [25] 
highlighted that initial imperfect ions in non-tempered 
annealed flat glass panels have small amplitude (w0 < 
a/2500), whereas heat-strengthened and fully  toughened 
glass panels can have sinusoidal imperfections up to w0= 
a/300. Reasonably, in the buckling verificat ion of LG panels 
a minimum amplitude of imperfection w0= a/1000 should be 
considered. Moreover, Eng lhardt suggests for the coefficient 
k  a value equal to k= 300 [7]. 

At the same time, the design compressive load Ny,Ed 
should be compared with the design buckling resistance 
Ny,b,Rd of the panel: 

1
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,,,
M

E
lamcry

RdbyEdy

N
NN

γ
=≤ ,                (60) 

where )(
,,

E
lamcryN  is given by Eq. (52). In this context, 

Englhardt suggests for the buckling safety factor γM1
 a value 

of 1.40 [7]. 

Also in this circumstance, an alternative verificat ion 
criterion for in-p lane compressed LG panels can be derived 
from buckling curves suggested by the Eurocode 3 for the 
verification of traditional structural elements [11]. In the 
specific case of compressed panels, the buckling verificat ion 
could be still performed  by satisfying the condition given by 
Eq. (60), in which the design buckling resistance Ny,b,Rd

 of 
the LG panel can be estimated as: 

   
RdRdby AN σχ   =,,

,                    (61) 

with χ  an opportune reduction factor and A the total cross-
section area. 

In Eq. (61), the reduction factor χ  can be estimated by 
means of Eq. (34), where Φ  is g iven by Eq. (35), with 

49.0αimp =  and 60.0α0 = . In  addition, the non-dimensional 

slenderness λ  (Eq. (31)) should be expressed as a function 
of the critical buckling load )(

,,
E

lamcryN  of the examined LG 
panel, given by Eq. (53). 

Also in this circumstance, the imperfect ion factors 
49.0αimp =

 
and 60.0α0 =

 
have been opportunely calibrated 

on the basis of experimental and numerical data available in  
literature. As proposed in Fig.

 
12, for

 
example, the limitation 

provided by the suggested EC curve ( 49.0αimp =
 
and 

60.0α0 = ) is approximately  equal to the conditions 
expressed by Eq.

 
(59), with k= 300 [7], and by Eq.(60), with 

40.11 =Mγ
 
[7].
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Fig. 12 Buckling curve for the verification of LG panels under in 
compression: comparisons with analytical results 

In Fig. 13, some experimental and numerical data are  
also presented to validate the proposed verificat ion 
procedure. The experimental data, in particu lar, refer to 
buckling tests performed by Luib le [4] on in-p lane 
compressed LG panels simply supported along the edges, 
having different geometrical p roperties. As shown in Figs. 
11 and 13, a  significant post-critical resistance can be 
observed in the typical behavior of LG panels under 
compression. A similar behavior is also confirmed by 
numerical and experimental results obtained by Englhardt [7] 
and Luible [4]. However, it is possible to notice that, 
ignoring the post-critical resistance of the examined LG 
panels, the proposed solution provides adequate safety 
requirements. 
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Fig. 13 Buckling curve for the verification of LG panels under in-plane 
compression: comparisons with numerical [4, 7] and experimental results [4] 

IX. CONCLUSIONS 

Laminated glass beams and panels subjected axial 
compression are frequently subjected to stability problems. 
In literature, several analytical formulations derived from the 

classical theory of sandwich elements under compression are 
available, but often they can be used only to predict the 
value of their critical buckling load. In the paper, exact 
analytical formulations are proposed for the buckling 
verification of compressed LG beams and panels. For LG 
beams, a model developed on the basis of Newmark’s theory 
of composite beams with part ial interaction is proposed. At 
the same time, a simplified but accurate equivalent thickness 
formulat ion is proposed for the verificat ion of in-p lane 
compressed LG panels. Comparisons with numerical and 
experimental data are presented to validate the accuracy of 
analytical formulations. In both the circumstances, the 
presented models allow to take into account the effective 
level of connection offered by the adopted interlayer. At the 
same time, a criterion based on the buckling curves of 
Eurocodes is suggested for a rational buckling verification of 
compressed LG elements. 
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