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Abstract- The paper considers the problem of constructing neural 
network-based blood glucose control system, consisting of 
connected neural networks of different architectures, NARX 
neural networks and TDNN. The principle underlying the model 
training and the results of experimental studies on real patient 
data are described. 
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I. INTRODUCTION 

At the core of pathogenetic mechanism, type I diabetes lays 
cells lack of insulin synthesis and secretion of the pancreas 
endocrine caused by their destruction as a result of the impact 
of various factors. Consequently, impaired carbohydrate 
metabolism of body cells, in the absence of adequate treatment 
can lead to severe complications. The main treatment method 

of diabetes mellitus typeⅠ, which is also insulin-dependent 

diabetes mellitus (IDDM), is insulin injections to normalize 
body metabolism. The purpose of injecting insulin is to control 
blood glucose and keep it in the physiological range.  

The optimal insulin dose depends on many factors and is 
specific to each patient. Finding such doses is a challenge, not 
all patients can cope with. To help solute this problem, 
continuous glucose monitoring systems (CGMS) and 
continuous subcutaneous insulin infusion systems (insulin 
pumps) were created. Using these aids, automatic blood 
glucose control systems are being extensively developed. 

These control systems are designed as a device, predicting 
the required dose of insulin at every given moment. The main 
problem in constructing such devices is to develop adequate 
algorithms, which would take into account the individual 
characteristics of glucose and insulin metabolism of patient’s 
cells as well as many other factors that have a significant 
impact on the concentration of these substances in the blood. 

A necessary step in building control systems is to build the 
object model, which is the mechanism of glucose processing by 
the cells in the body under the action of insulin. Despite the 
extraordinary complexity of the mechanism to date, there are a 
number of simplified analytical models describing the insulin 
and glucose dynamics in the blood (Bergman model, Staris, 
Nikita, Engelborga, etc.). Typically, these models contain a 
number of empirically estimated parameters for each individual 
patient. A detailed review of existing glucose metabolism 
models is given in [1].  

The high complexity of the mechanism of insulin and 
glucose metabolism, the individuality of its characteristics, as 
well as the lack of accurate mathematical models and rules for 

calculating the required dose of insulin to ensure the 
maintenance of glucose in the physiological range, are the 
factors which make use of the methodology of soft computing, 
artificial neural networks in particular, very efficient in 
constructing the blood glucose control system [1]. 

It is known that neural networks with high computational 
capabilities can be trained on experimental data and provide 
substantial benefit performance-wise, which allows building 
robust models capable of taking into account peculiarities of 
each individual patient [3]. Furthermore, dynamic neural 
networks show good results in dynamic object modelling and 
in control systems [3] - [7].  

In this paper, neural network-based models of the glucose 
and insulin dynamics, based on the use of neural networks with 
time delays – nonlinear auto regressive exogenous (NARX), 
neural networks, and time-delay neural networks (TDNN) – is 
considered [2], [3]. The model class choice is made in favour 
of NARX networks due to their high generalization abilities [3], 
[12], [13]. Using simpler TDNN as a control system simplifies 
the training procedure [14]. 

However, other model classes can be used as an object 
model, e.g. the models considered in [15] and [16] providing 
precision compatible to that presented in this research. But 
after comparison of that with more traditional forecasting 
methods [17], the neural networks are in favour. 

II. PROBLEM STATEMENT 

The initial data for constructing a model of the insulin and 
glucose dynamics are the blood glucose readings, carbohydrate 
intake and the insulin dose up to the moment. Note that this 
data set is probably not sufficient for an accurate model of the 
glucose dynamics – blood glucose levels are also affected by 
many other external and internal factors. However, the 
developed model can be easily modified taking into account a 
number of additional external factors. 

Suppose that all observations are grouped in the P series, 
each of which represents a set of discrete observations for a 
certain period of time, conducts on a regular basis at regular 

intervals. Denote,
( )

σ ( )
p

t , 
( )

χ ( )
p

t  and 
( )

( )
p

x t   are the observed 

blood glucose, insulin dose and the values of external and 
internal factors affecting the metabolism of glucose and insulin, 
respectively. In discrete time t in the pth series of observations, 

1,
p

t T  where Tp – is the number of observations in the p 

series 1,p P . Note that the value of
( )

( )
p

x t , which is 

responsible for internal and external factors, in general, can be 
a vector. In this paper, this value represents the amount of 

mailto:1first.author@first-third.edu
mailto:2second.author@second.com


International Journal of Life Science and Medical Science                                                            Jun. 2013, Vol. 2 Iss. 2, PP. 15-18 

- 16 - 

DOI: 10.5963/LSMR0202001 

carbohydrates consumed. Furthermore, for simplicity, the 
superscript (p) will be omitted wherever the number of series 
of observations is not important. 

In this paper we consider two schemes of control: open-
loop (Fig. 1) and closed loop (Fig. 2). The object is the 
mechanism of glucose metabolism in the cells of the body, the 

input to which at time t is the insulin dose (t), defined by a 
medical expert or by the patient (reference dose); the output is 

the blood glucose reading (t). Denote as y(t) glucose levels 
observed at the output of the object model at time t, and the 
simulated dose of insulin  u(t). 

 

Fig. 1  Open-loop control system 

 

Fig. 2  Closed-loop control system 

The available source data sets  ( )

χ ( ), 1,
p

p
t t T  and 

 ( )

σ ( ), 1,
p

p
t t T from pth series, can be regarded as the result of 

the functioning of the outer loop on the control schemes 
presented. In an open-loop circuit at the input of the control 
object model at a moment of time, a reference dose of insulin 

(p)(t) is fed,  while in the closed circuit the calculated insulin 
dose u(p)(t) is applied to the input of the controlled object 

model. Mismatch ( ) ( ) ( )

( ) χ ( ) ( )
p p p

u
e t t u t   and ( ) ( ) ( )

( ) σ ( ) ( )
p p p

y
e t t y t  , 

between the reference and modelled values of glucose and 
insulin are used to fine-tune the object model and control 
system. 

The closed-loop circuit contains two independent control 
loops: outer defining input data for modelling, and interior 
formed by adaptive models. In this scheme, the output of the 
outer loop is not directly involved in the models of the inner 
loop. 

In both diagrams of the process of training, the model 
learns to simulate the behaviour of the object, and control 
device, which is actions of the expert. Outside the experiment, 
the correction by expert will be absent and the closed-loop 
system will operate only inside the control loop, while in the 
open-loop mode of operation of the control system must be 

closed. Due to the fact that the adaptation of this system was 
carried out in the open mode, and is supposed to use in a closed 
mode, accumulation of modeling errors is possible in such a 
system. This problem does not exist in closed-loop control 
system. 

Taking into account the high generalizing ability of NARX 
neural network models in the simulation of dynamic systems 
[2], it is this class of neural network models who has been 
chosen as an object model. Neural network-based NARX 
model consists of a multilayer perceptron (MLP), which is fed 
with the input of an external control signals through the tapped 
delay lines (TDL) and its own output through the feedback and 
the TDL.  The results of NARX neural networks to predict the 
level of glucose in the blood of patients with diabetes mellitus 
type 1 are given in [10], [11]. 

The task of the control system is to calculate the required 
insulin dose u (t) at the moment t. We assume that the required 
insulin dose u (t) is a function of current and previous blood 
glucose values: 

 ( ) ( ), ( 1),..., ( )u t F y t t t y t m     (1) 

This assumption is used in constructing the models, 
described in [11]. In more complex cases, it is assumed that the 
required insulin dose u(t) explicitly depends on the insulin dose 
in previous points in time. 

Given (1) we will use TDNN as a control system. Let us 
pose the problem of training the object model and the control 
system. Training will be conducted in such a way that 
minimize the mismatch between model outputs and the 
reference values both of the object model and of the control 
system on existing data samples. We will use the following 
training Criterion (2): 

    
0

2 2
( ) ( ) ( ) ( ) ( ) ( )

1

1
α ( ) ( ) σ ( ) β ( ) ( ) χ ( )

2

pTP
p p p p p p

p t t

I t y t t t u t t
 

     

(2) 

where 
(p)

(t) and 
(p)

(t) are weights of p
th

 series at the moment 
t. The task of training neural network control system is to 
minimize this criterion by adjusting the model parameters: 

,
min

w v
I  where w and v are adjustable parameters vectors of 

object model and control system respectively. 

Initial insulin dose and glucose levels in the current series 
are chosen as the initial model states (output delay lines 

at the moment t0). 

III. CONTROL SYSTEM TRAINING PROCEDURE 

Training neural network control system is minimizing the 
Criterion (2) by adjusting the parameters of multilayer 
perceptron, which are members of the NARX neural network 
and TDNN. To tune fine the elements of the vectors w and v, 
we will apply gradient methods using information about the 
partial derivatives of these parameters. To derive the partial 
derivatives equations, we use the principle underlying the error 
back propagation [2].  

Operation of the considered closed-loop control systems in 
time on the pth series of observations can be represented as 
operation of "multilayer" network that has 2*(Tp-t0+1) 
"layers", where each odd layer which is a NARX neural 
network, and each even layer, TDNN, i.e. implement its 
unfolding in time [2]. A portion of the unfolded closed-loop 
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control system is shown in Fig. 3. Double arrow in the figure 
denotes the vector signal. 
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 Fig. 3 Fragment of closed-loop control system unfolded in time 

Denote
0 0

( ) ( ) ( ) 2 ( ) ( ) 2
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p p
T T

p p p p p

y u

t t t t

I t e t t e t
 

   , in this case, 

training criterion is ( )

1

P
p

i

I I


 , and partial derivatives 

are
( )

1

pP

p

I I

 

 


 
 , where   refers any element from vectors w 

and v. 

In order to calculate
( )pI


, consider the “remaining loss” 

function: ( ) ( )( )
pT

p p

t

I t I

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

, 

where ( ) ( ) ( ) 2 ( ) ( ) 21 1
α (τ) (τ) β (τ) (τ)

2 2

p p p p p

u yI e e   refers current 

losses in the moment  of network operation. In this case, 

training criterion equals ( )

0

1

( )
P

p

p

I I t


 . 

Denote synaptic weights in t
th

 instance of unfolded NARX 
and TDNN as w(t) and v(t) respectively. 

Taking into account the fact that the criterion value I 
depends neither on w(t) nor on v(t) 

0 0

( ) ( ) ( ) ( )

( ) ( )

p pT Tp p p

t t t t

I I I t

t t 
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 
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 

  
, where (t) refers any of the 

vectors w(t) and v(t). 

To compute the equation for 
( ) ( )

( )

pI t

t




, use the ratio, which is 

true for remaining loss function 
( ) ( ) ( )( ) ( 1)p p p

tI t I I t  
. All 

mentioned above yields to the following ratio for NN outputs 
in t

th
 instance: 

( )( ) ( )( ) ( 1)

( ) ( ) ( )

pp p

tII t I t

y t y t y t

  
 
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. 

Calculations of 

( ) ( )

( )

pI t

w t



  and 

( ) ( )

( )

pI t

v t



  are not presented in 
this paper because of the equation size. 

In order to train open-loop system, the following scheme is 

applied. Since at any given moment t, the reference value of 

insulin dose (t) is fed to the input of NARX neural network, 

which models the object. Input vector  ( ) ( ),χ( )u t x t t  may 

be considered as external, i.e. independent of control system 

operation at any given moment of time.  So the following two-

stage training procedure is proposed. In the first stage, NARX 

object model disconnected from control system is trained in 

accordance with the criterion 

 
0

2
( ) ( ) ( )

1

1
α ( ) ( ) σ ( )

2

pTP
p p p

y

p t t

I t y t t
 

 
           (3) 

In the second stage, control system is trained according to 
the criterion 

 
0

2
( ) ( ) ( )

1

1
β ( ) ( ) χ ( )

2

pTP
p p p

u

p t t

I t u t t
 

 
            (4)  

Training is conducted in accordance with the gradient 

method. Formulas for the calculation of partial derivatives of 

the Criterion (3) for NARX neural networks are known and 

presented, for instance in [2]. Training TDNN in accordance 

with the Criterion (4) is also carried out on well-known 

formulas given in [2]. 

IV. EXPERIMENT RESULTS 

Input data for simulation were obtained using Medtronic 
CGMS and insulin pump which are the blood glucose readings. 
Insulin dose and the amount of absorbed carbohydrates took 

every ten minutes in a patient with diabetes mellitus type Ⅰ. 

The number of observations series P = 1, the number of 
time samples T = 1040. Before the construction of neural 
network, models available data were divided into a training 
(first 80% of the data, 831 samples) and test (20% of the data, 
209 samples) samples. Graphs of the original data are shown in 
Fig. 4.  

 
Fig. 4 Input data above: the blood glucose; in the center: insulin; below: the 

amount of carbohydrates consumed. The abscissa is the number of time 

samples 

A. Simulation of Open-loop Control System 

In the first stage of building, an open-loop control system 
NARX neural network is trained model in accordance with the 
Criterion (3). In the second phase, TDNN modeling the control 
device is trained in accordance with the Criterion (4). As a 
result, experimental studies found that better performance 
accuracy of the model on a test set, as defined in accordance 
with the Criterion (2) (relative errors 99.7% and 73% 
respectively), are achieved with the following parameters: 

  NARX neural networks: start number K = 3; neuron 
number in layers N1 = 20, N2 = 10, N3 = 1; activation 
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characteristics of the hidden layers sigmoid, output layer linear; 
control and input TDL length: m = 10, n = 15, respectively. 

 TDNN neural network: start number K = 3; neuron 
number in layers N1 = 5, N2 = 5, N3 = 1; activation 
characteristics of the hidden layers the sigmoid, output layer 
linear; input TDL length r = 5.   

B. Simulation of Closed-loop Control System 

Training closed-loop control systems suggests simultaneous 
adjustment of the object model and the control system 
parameters. Experiments were performed with architectural 
parameters of multilayer perceptrons including the NARX 
neural network and TDNN, as well as to the TDL lengths m, n, 
r. The best modeling precision values (Criterion (2)) on a test 

set are I
train

 = 0.00052, I
test

 = 0.03709, relative errors 99.9% 

and 84.4% respectively. Provided values are achieved on the 
following architectural parameters: 

 NARX neural networks: K = 3, N1 = 5, N2 = 5, N3 = 1; 
m = 9, n = 8; activation characteristics of the network hidden 
layers sigmoid, output layer  linear, 

 TDNN: K = 3, N1 = 5, N2 = 5, N3 = 1; r = 6, activation 
characteristics of all the hidden network layers sigmoid, output 
layer linear.  

Training of all the neural networks was carried out first by 
gradient descent method with momentum for τ = 70 epochs, 
and then by Levenberg-Marquardt method for another τ = 500 
epochs. The need of using gradient descent method with 
momentum is associated with characteristics of adaptive-
trained neural network topography, as well as the fact that the 
Levenberg-Marquardt method is ineffective in the search area, 
remote from local minima, where the network parameters are 
likely to fall as a result of their random initialization.   

V. CONCLUSION   

The conducted research confirmed the operability of the 
proposed blood glucose control system for IDDM patients, 
consisting of a set of connected neural networks of different 
architectures: NARX NN and TDNN. Despite achieved results, 
the proposed neural network model requires additional research, 
as well as determining the conditions of its applicability.  
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