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Abstract- Transposition of the great arteries (TGA) is one of the most severe congenital heart diseases. The arterial switch operation 

(ASO) is the procedure of preference for treatment of TGA. After ASO, some patients suffer from circulatory system problems such 

as neo-aortic root dilatation and neo-aortic valve regurgitation, and supravalvar pulmonary stenosis. The neo-aortic root dilatation 

is often explained by the structural vascular difference between normal great arteries and the neo-aorta after ASO. Since the aortic 

and pulmonary roots generally remain in situ after ASO, i.e., the original pulmonary artery is connected to the left ventricle (LV), 

whereas the original aorta is connected to the right ventricle, the neo-aorta has no sinus of Valsalva after ASO. The influence of these 

morphological changes on the blood flow field at the aortic root should be investigated in detail as well as the structural vascular 

difference to consider the circular system problems. In this study, we apply the virtual flux method (VFM), which is a tool to 

describe stationary or moving body shapes in a Cartesian grid, to the 2D aortic valves and reproduce the blood flow fields around 

the aortic valves and the sinus of Valsalva by regularized lattice Boltzmann method (RLBM), and consider the influence of 

longitudinal length of sinus of Valsalva on blood flow fields around the aortic valves. As a result, we found that the longitudinal 

length of the sinus affects development of vortices around the aortic valves strongly. We also assessed the wall shear stress (WSS) 

distribution on the aortic valves and sinus wall and showed the effect of vortices in the sinus of Valsalva on local WSS distribution. 

Keywords- Aortic Valves; Sinus of Valsalva; Vorticity; Wall Shear Stress; Virtual Flux Method; Regularized Lattice Boltzmann 
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I. INTRODUCTION 

Transposition of the great arteries (TGA) is one of the most severe congenital heart diseases. Since the aorta arises from the 

right ventricle in TGA, blood in the systemic circulation is always rich in carbon dioxide and poor in oxygen. On the other 

hand, the pulmonary circulation in TGA is always full of blood with oxygen. The systemic and pulmonary circulations are 

completely separated in TGA. The arterial switch operation (ASO) is the procedure of preference for treatment of TGA. 

Although many reports have shown good results after ASO [1, 2, 3], some patients suffer from circulatory system problems 

such as neo-aortic root dilatation and neo-aortic valve regurgitation [4, 5], and supravalvar pulmonary stenosis [6] after ASO. 

Diameters of aortic annulus and sinus of Valsalva 20 years after ASO are significantly wider in comparison to a normal 

population of young adults, whereas ascending aorta diameters are well preserved in our population and are not significantly 

different to the values in a normal population, demonstrating that dilatation of the aortic root is due to a localized problem [7]. 

This localized dilatation of the aortic root is often explained by the structural vascular difference between normal great arteries 

and the neo-aorta after ASO [8]. 

Fluid dynamic forces against the arterial wall should be considered as well as the structural difference. The morphology of 

the aorta and aortic valves movement strongly affect the blood flow fields in the aorta, especially at the root of the aorta. In 

addition, the sinus of Valsalva, which lies at the aortic root, plays an important role for aortic valves behaviour [9]. Since the 

aortic and pulmonary roots generally remain in situ after ASO, i.e., the original pulmonary artery is connected to the left 

ventricle (LV), whereas the original aorta is connected to the right ventricle, the neo-aorta has no sinus of Valsalva after ASO. 

Moreover, there are some cases that the curvature of the neo-aortic root is extremely larger than that in a normal population 

due to ASO. The influence of these morphological changes on the blood flow field at the aortic root should be investigated in 

detail to consider cardiovascular problems after ASO. 

In the past study, we performed numerical simulation of blood flows around aortic valves by lattice Boltzmann method [10, 

11]. The method of lattice Boltzmann equation (LBM) is a simple kinetic-based approach for fluid flow computation. The 

LBM has advantages in its simple coding and its locality, which makes it intrinsically parallelizable [12], and has been applied 

to many general problems [13, 14, 15], and those relevant to blood flow simulation [16, 17, 18], as well. However, stability of 

the simulation by LBM is strictly dependent on its relaxation time, which leads to restriction of the Reynolds number. Since 

blood flow simulation in the aorta is accompanied by high Reynolds number, it is necessary to improve stability of LBE. 

Izham et al. [19] proposed regularized lattice Boltzmann method (RLBM), which is based on the observation of symmetric 

condition in Chapman-Enskog expansion by Latt & Chopard [20], and it has successfully achieved higher stability in 

numerical simulation at high Reynolds number. In this study, we apply the virtual flux method (VFM) [21], which is a tool to 

describe stationary or moving body shapes in a Cartesian grid, to the 2D aortic valves and reproduce the blood flow fields 
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around the aortic valves and the sinus of Valsalva by RLBM, and consider the influence of longitudinal length of sinus of 

Valsalva on blood flow fields around the aortic valves. 

II. METHODS 

A. Computational Models 

Numerical simulation of blood flow in the aorta with valves and sinus of Valsalva is performed. Figure 1 shows the 

schematic view of the 2-dimensional axisymmetric simulation model used in this study. The longitudinal length L and diameter 

D are set to 200 mm and 20 mm. The valve leaflets are modeled as arcs of a circle with a radius of



D 2 , and placed at 80 mm 

(= 4D) from the inlet. The shape of the sinus of Valsalva is approximated as a semi-ellipse. The longitudinal length a and depth 

b of the sinus of Valsalva are set to a = 30 mm and b = 15 mm for Case 1, and a = 40 mm and b = 15 mm for Case 2, 

respectively as summarized in Table 1. The arterial wall and valves are described by virtual flux method on Cartesian 

coordinate as described below. 

 

Figure 1  Schematic view of the computational model 

TABLE I MORPHOROGY OF THE SINUS OF VALSALVA 

 longitudinal length a depth b 

case 1 30 15 

case 2 40 15 

B. Governing Equations 

1)  Lattice Boltzmann Method: 

The discrete velocity Boltzmann equation (DVBE) is as follows, 

 



f
t

e f  (1) 

where e is the discrete particle velocity, f is the distribution function associated with e, and  is the collision operator. 

The collision operator, which is very complicated, is usually approximated by the simple single-relaxation-time Bhatnagar-

Gross-Krook (BGK) model [22]: 

 



  
1


f  f

eq   (2) 

where f
 (eq) is the equilibrium distribution function, and  is the relaxation time. The evolution of the distribution function f 

for the lattice Boltzmann equation can be written as 

 



f x et, t t  f x, t  
1


f x, t  f

eq 
x, t   (3) 

In this study, we use a 2D square lattice model with 9 velocities, which is referred to as the D2Q9 model. It is shown that 

the Navier-Stokes equations can be derived from the LBM though a Chapman-Enskog expansion procedure in the 

incompressible limit [23] with a relaxation time  as 

 



 
3

cx

t

2
 (4) 
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The most common choice for the equilibrium distribution function f
 (eq) is the truncated form of the Maxwell distribution, 

which is a very good approximation for small Mach numbers [24]. 

 



f
eq 
  1

3 e u 
c 2


9 e u 

2

2c 4

3u2

2c 2














 (5) 

where  is the weight coefficients. 

2)  Regularized Lattice Boltzmann Method: 

The single-relaxation-time (SRT) LBM has been widely used for its simplicity, efficiency and ease of parallel 

programming implementation, however, it requires relatively large number of grids to simulate flows at even moderately high 

Reynolds number. In Chapman-Enskog expansion procedure, the non-equilibrium part of first-order is symmetrical with 

respect to spatial reflection. Latt & Chopard [20] observed that this symmetric condition is not necessarily satisfied and 

appears to take a non-negligible value in numerical simulations using SRT-LBM. Based on this observation, they considered a 

regularization step that enforces symmetrical property and proposed regularized lattice Boltzmann method (RLBM). 

The relationships between stress tensor and distribution function in RLBM [19] is defined as 

 



 ij  eiej f


  (6) 

where ij is the stress tensor. The non-equilibrium part of the distribution and stress tensor were given as 

 



f
neq 

 f  f
eq 

 (7) 

 



ij

(neq)  ij ij

eq 
 (8) 

From the Chapman-Enskog expansion, the non-equilibrium part of -order can be explicitly derived as below, 

 



f
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 f
1  
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cs
2
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where Qij is defined as 

 



Qij  eiej cs
2 ij  (11) 

where cs is the sound speed, and f
1 is then written as 

 



f
1 



2cs
4
Qij ij

neq 
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By enforcing f
(neq) = f

1, the final form of the relaxation process can be written as 

 


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eq 
 1

1


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The viscous stress tensor ij can be evaluated using the non-equilibrium part of the distribution function [25] as 
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3)  Aortic Valve Movement: 

The aortic valves are assumed to be rigid, and their motion obeys following rigid-body rotation 

 



T  I
d

dt
 (15) 

where T is the torque, I is the inertia moment, and  is the angular velocity of the valve. The torque T is evaluated by force 

differences between LV-facing and aortic-facing surfaces of the valve, 

 



T  f
Ao  f LV  r  (16) 
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where r is the radius of rotation. The forces acting on the valve are obtained by pressure p and viscous stress ii as follows, 

 



f  p ii dr  (17) 

The inertia moment of the valve I is estimated by assuming the density of the valve is equal to that of the blood. The 

angular velocity  is obtained by first-order Euler method. 

 



 t  t  t  t
T t 
I

 (18) 

C. Boundary Conditions 

The virtual flux method (VFM) enables us to estimate flow field around arbitrary body shapes properly in a Cartesian 

grid [21]. In this study, we apply the VFM to express arbitrary body shapes appropriately in case that boundary points are not 

located on the cell vertex. Figure 2 shows an example of virtual flux boundary, where the virtual boundary point b is placed 

between cell vertexes 1 and 3. When the distribution function at vertex 1 is obtained, the distribution function at vertex 3, 

which includes the effect of the virtual boundary, is necessary, and vice versa. The macroscopic quantities on the virtual 

boundary point b are then determined to satisfy the boundary conditions. No-slip condition on the boundary, for example, is 

attained to assume zero pressure gradient and zero velocity on the boundary. 

 

Figure 2 Schematic view of the virtual boundary in a Cartesian grid  

The virtual boundary separates Fluid A from Fluid B completely. 

Next, the equilibrium distribution function f
 (eq) and distribution function f at the virtual boundary point b are obtained 

from the macroscopic quantities there. The distribution function f at the vertex 3 is then estimated to extrapolate that at the 

virtual boundary point b. 

Axial velocity u at the inlet and pressure p at the outlet are given as shown in Fig. 3, which are modeled as blood flow from 

left ventricle and aortic pressure, respectively. Other parameters are linearly extrapolated. No-slip conditions are assumed on 

the wall and aortic valves. The Reynolds number Re at the peak velocity in Fig. 3 corresponds to 2,000. The period of the cycle 

is set to 1.0 s, and totally eight cardiac cycles, including three pre-cycles as preparation, are conducted for the blood flow 

simulation. 

 

Figure 3 Axial velocity at the inlet and pressure at the outlet 

The Reynolds number Re at the peak velocity corresponds to 2,000. The period of the cardiac cycle is set to 1.0 s. 

III. RESULTS 

Figure 4 shows the vorticity distribution and velocity vectors on the left for Case 1 and right for Case 2 in the seventh 

cardiac cycle at the time interval of 0.1 s. When the pressure at the LV exceeds that at the aorta, the valves start to open and 

blood flows toward the aorta passing through the aortic orifice. Vortices evolved from the tip of the valve spread and strike on 

the distal edge of the sinus of Valsalva, then they are divided into multiple. These vortical motions then lead blood flow fields 
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in the aorta to be more complicated. The vortices for Case 2 are more developed and dominant near the distal edge of the sinus. 

The valves start closing motion and seal the aortic orifice when the blood flow from the LV stops. Since multiple vortices still 

remain within the sinus of Valsalva in diastole, the aortic valve movements in systole have minor differences from cycle to 

cycle due to these vortices. 

 

t = 0.0 [s] 

 

t = 0.1 [s] 

 

t = 0.2 [s] 

 

t = 0.3 [s] 

 

t = 0.4 [s] 
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t = 0.5 [s] 

 

t = 0.6 [s] 

Figure 4  Vorticity distribution and velocity vectors on the left for case 1 and right for case 2  

in the seventh cardiac cycle at the time interval of 0.1 s 

Figure 5 shows the averaged aortic valve movements in five cardiac cycles, i.e., from forth to eighth cardiac cycles in this 

study. The abscissa of the Fig. 5 is expressed by the time t of 0.0 to 1.0 for simplicity. The bold and thin lines denote Cases 1 

and 2, respectively. The valve angle  is defined as shown in Fig. 1, and  of /4 corresponds to the closed position. The aortic 

valves open immediately after blood ejects from the left ventricle in systole, and are closed around at t = 0.6 s. There are no 

significant differences between Cases 1 and 2 in terms of opening and closing valve timing, and the maximal aortic valve area, 

i.e., the minimal valve angle . 

 

Figure 5 Averaged aortic valve movements in cardiac cycles 

Figures 6 and 7 show the time averaged wall shear stress (WSS) diagrams on the LV-facing surface (Fig. 6) and aortic-

facing surface (Fig. 7) of the aortic valve, which are important to discuss progression of cardiovascular disease such as 

atherosclerosis or aortic valve stenosis (see discussion below for details). These data are averaged in five cardiac cycles. In Fig. 6, 

the WSS reaches around 25 Pa at the center of the valve position owing to vena contracta, which is physiologically high. On the 

other hand, the WSS distribution on the aortic-facing surface is relatively flat, except for the tip of the valve (Fig. 7). The WSS 

distribution has no significant differences between Cases 1 and 2, except for the tip of the valve on the aortic-facing surface. 

 

Figure 6 Time averaged WSS distribution on the LV-facing surface 
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Figure 7 Time averaged WSS distribution on the aortic-facing surface 

Figure 8 shows the time averaged WSS distribution on the sinus wall in five cardiac cycles. The sinus position  = 0 and  

rad correspond to proximal and distal edges of the sinus of Valsalva, respectively as shown in Fig. 1. The WSS value in the 

range of  = 0 to 2/3 is around 1.0 Pa. Then it increases to 5.0 Pa and more toward the distal edge of the sinus. The WSS 

difference between Cases 1 and 2 is more remarkable toward the distally, especially after the sinus position of 2/3. The 

WSS value for Case 2 is twice as large as that for Case 1 toward the distal edge. 

 

Figure 8 Time averaged WSS distribution on the sinus wall  

The sinus position  = 0 and  rad correspond to proximal and distal edges of the sinus of Valsalva, respectively. 

IV. DISCUSSION 

The heart pumps blood throughout the body efficiently owing to the heart valves operation. When blood ejects from the LV, 

vortices are observed within the sinus of Valsalva as shown in Fig. 4 (t = 0.3 ~ 0.4 s). This vortical motion has the advantage of 

preventing the valve leaflet from bulging outward to contact the walls of the sinuses. The vortices for Case 2 are more 

dominant near the distal edge of the sinus, indicating that there needs an appropriate longitudinal length of the sinus for vortex 

development. The open sinus chamber thus can be supplied with fluid to fill the increasing volume behind the valve leaflets as 

they move toward closure (t = 0.5 ~ 0.6 s). After the valves close the aortic orifice, multiple vortices do not completely 

dissipate in the aorta as well as in the sinus of Valsalva in diastole, so that they persist until the next systole. 

The valve movements are almost the same between Cases 1 and 2 as shown in Fig. 5, though vortices within the sinus of 

Valsalva are totally different. Bellhouse & Talbot [26] considered the important function of the sinus in aortic valves operation, 

and suggested that the trapped vortex within the sinus interacts with the decelerating flow field and thus pushes the leaflets into 

the aorta. According to their observation, the ratio of the total reversed flow to the forward flow in the absence of the sinuses is 

about 25%. To study the role of the sinus of Valsalva in valve closure at the physiological value of the Strouhal number, van 

Steenhoven & van Dongen [27] assessed the influence of the shape of the sinus on valve closure. They showed the presence of 

a cavity of a certain minimum size is essential in both longitudinal and radial directions for the mechanism of valve closure in 

the deceleration phase of systole. A larger ratio of sinus radius to leaflet length than the physiological one appears to result in a 

faster closure. There also exist some papers related to sinus of Valsalva, which suggest the importance of role in minimizing 

stresses in the valve leaflets [28, 29]. Relationships between size of sinus of Valsalva and aortic valves operation should be 

more investigated from the viewpoint of fluid dynamics. 

Clinically, aortic valve stenosis (AS) is regarded as one of the most common diseases related to dysfunction of the heart 

valves. The opening area of the valve decreases due to AS, which cause considerable reduction of amount of blood flow. 

Classically, patients develop the 3 “S” rule of AS: Shortness of breath, Syncope, and Sudden death [30]. The mechanism of AS 

development remains unclear, yet mechanical forces are believed to be responsible for the morphologic change in the valve 

apparatus [31]. Thickening of the valve leaflets on the aortic-facing surface seems to be composed of plaquelike lesions. 

Accumulated within these lesions are proinflammatory and inflammatory components similar to those seen in atherosclerotic 

lesions. It is well known that the WSS plays a dominant role in determining the physiological mechanisms of the endothelial 
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cell in all generations of arteries, and developing vascular pathology such as atherosclerosis [32, 33, 34]. According to Malek 

et al. [35], the value of the low shear stress that causes atherosclerosis initiation is 0.4 Pa. Statistically significant inverse 

relationships between intima-media thickness and local WSS have also been reported [36, 37]. It is, therefore, important to 

investigate the WSS distribution in time and space in order to predict the precise region where AS occurs. Especially, since 

histopathology of the AS is similar to atherosclerosis, localized low shear stress region, i.e., the value of under 0.4 Pa, could be 

a candidate for AS initiation. 

The WSS distribution of the aortic valves in cardiac cycle was higher on the LV-facing surface. The highest WSS region is 

the center of the valve position as shown in Fig. 6. This is mainly due to vena contracta at the narrowest aortic orifice. The 

aortic valves in this study were modeled as rigid arcs, whose movements were assumed to be rigid-body rotation. Owing to 

these assumptions, the valves behaviour is accompanied with no deflection or bending. Physiologically high WSS values, i.e., 

10 Pa and more, on the LV-facing surface are attributed to these simplified heart valves model in this study. Improvement of 

the heart valves modeling should be considered in the future work. 

The vortices evolved from the tip of the valve strike on the distal edge of the sinus and spread within the sinus of Valsalva. 

These vortices affect the WSS distribution of the valves on the tip of the aortic-facing surface and sinus wall near the distal 

edge. Especially, since the WSS values for Case 2 are higher than that for Case 1, the WSS distribution is strongly influenced 

by the vortex development around the aortic valves. On the other hand, the WSS distribution at the root of the valve on the 

aortic-facing surface is less influenced by the vortical motion, and the value always remains under 1.0 Pa. The WSS value is 

not low enough for initiation of AS as mentioned above, however, this region could be considered as one of the AS initiation 

areas based on the low shear stress hypothesis. More researches are necessary for better understanding on AS progression. Our 

computational scheme is suitable and promising to reproduce heart valves behavior with neither re-mesh nor re-construction of 

the model. Incorporating effect of deflection or bending of the heart valves behavior to our computational model will enable us 

to consider more accurate WSS distribution on the aortic valves and AS growth as well. 

V. CONCLUSIONS 

In this paper, we assessed the WSS distribution on the aortic valves and sinus wall and showed the effect of vortices in the 

sinus of Valsalva on local WSS distribution. The longitudinal length of the sinus affects development of vortices around the 

aortic valves strongly. In future work, more accurate researches are necessary to consider growth of cardiovascular disease 

such as atherosclerosis or aortic valve stenosis. 
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