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Abstract- Modeling groundwater hydrology is critical in low-gradient, high water table watersheds where ground-water is the 
dominant contribution to streamflow. The Hydrological Simulation Program-FORTRAN (HSPF) model has two different 
subroutines available to simulate ground water, the traditional groundwater (TGW) subroutine and the high water table (HWT) 
subroutine. The HWT subroutine has more parameters and requires more data but was created to enhance model performance in 
low-gradient, high water table watershed applications. The objective of this study was to compare the performance and uncertainty 
of the TGW and HWT subroutines when applying HSPF to a low-gradient watershed in the Coastal Plain of northeast North 
Carolina. Monte Carlo simulations were performed to generate data needed for model performance comparison. Both models 
performed well when simulating the 10% highest daily average flow rates. However, neither model performed well when simulating 
the 50% lowest daily average flow rates. The HWT model significantly outperformed the TGW model when simulating daily average 
flow over the full three-year simulation period, an indication that the HWT model out-performed the TGW over the full range of 
simulated flows. Model uncertainty was assessed using the Average Relative Interval Length (ARIL) metric. The HWT model 
exhibited slightly more combined model structure and parameter uncertainty than the TGW model. Based on the results, the HWT 
subroutine is preferable when applying HSPF to a low-gradient watershed and the accuracy of simulated stream discharge is the 
paramount concern.  
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I. INTRODUCTION 

Coupled hydrological and water quality models have evolved over time increasing in capability and complexity [1, 2, 3]. 
The Hydrological Simulation Program-FORTRAN (HSPF) is an example of a complex watershed-scale, process-based, 
lumped-parameter model that combines physical data and a substantial set of parameters to simulate hydrology and pollutant 
fate and transport [4, 5, 6]. HSPF simulates the movement of water, sediment, and a wide range of water quality constituents 
(e.g., nutrients, sediment, bacteria) on pervious and impervious surfaces, in the soil, and in streams and well-mixed reservoirs 
[7, 8], and is frequently used when conducting Total Maximum Daily Load (TMDL) studies in the U.S. [9, 10]. A TMDL is a 
quantitative representation of the contributions of a particular pollutant to a water body that specifies the pollutant reductions 
needed to restore water quality [11]. HSPF has been used to develop TMDLs for pollutants ranging from fecal indicator 
bacteria to PCBs [10, 11, 12]. While effectively characterizing all hydrologic processes is critical when developing a 
watershed–scale model, accurately characterizing groundwater contributions to in-stream flows can be challenging.  

While groundwater contributions to in-stream flow can be significant in any topography, it is often the dominant 
component of streamflow in areas with relatively flat topography and accompanying high water tables. Effectively 
characterizing the groundwater component of the hydrologic budget is critical to developing an accurate model, especially 
when the model is applied to water quality improvement efforts like TMDLs [13, 14]. Reference [15] found that adding a 
specific groundwater routine to their modelling schema improved hydrology simulations in a watershed that exhibited a high 
groundwater table. The HSPF model provides two alternative groundwater subroutines that the user may choose from, the 
traditional groundwater subroutine (TGW) and the high water table (HWT) subroutine. The HWT subroutine was developed 
for use in areas dominated by wetlands and/or low-gradient watersheds [7, 15].  

The TGW subroutine is used most frequently in HSPF applications. When using this subroutine, the groundwater 
contribution to in-stream flow is calculated as fraction of the active groundwater storage volume [16]. The active groundwater 
storage (AGWS) parameter represents a shallow groundwater aquifer that readily contributes to both evapotranspiration and 
baseflow [17]. Calibrated parameters determine how much of the groundwater in the AGWS is lost to evapotranspiration 
(AGWETP), contributes to baseflow (AGWRC), or percolates into deep aquifers (DEEPFR) [7]. In the TGW subroutine, water 
that percolates below the AGWS zone, into the deep aquifer (DEEPFR), is lost to a separate, inactive storage (IGWI) and does 
not contribute to baseflow or evapotranspiration [7].  
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The HWT subroutine involves a more sophisticated conceptualization of the subsurface profile and a more complex 
handling of groundwater, Fig 1. The HWT subroutine calculates a groundwater elevation variable (GWEL) at each time step to 
determine how groundwater interacts within various groundwater storage volumes and the overall hydrologic budget 
calculation. The HWT subroutine uses two, what are termed, influence elevations (UELV and LELV) to separate the sub-
surface groundwater storage into zones or regions, as they are called in the HSPF documentation – an upper zone (Region 3), a 
middle zone (Region 2), and a lower zone (Region 1) [7]. Region 1 is assumed to be saturated and water in Region 1 does not 
interact with the unsaturated zone (above GWEL). Groundwater in Region 1 is quantified by the AGWS parameter. When 
GWEL falls within Region 1 the HWT subroutine operates no differently than the TGW subroutine. Region 2 lies above (more 
shallow) than Region 1 and is defined by the Lower Zone Influence Elevation (LELV) parameter. If the GWEL rises into 
Region 2, groundwater interacts with the lower zone storage (LZS). Water that enters LZS is assumed to be held in place by 
cohesive forces, meaning it cannot percolate back into the groundwater, it can, however, contribute to evapotranspiration 
(AGWETP) or baseflow (AGWRC). When the GWEL rises into Region 3 (most shallow), above the Upper Zone Influence 
Elevation (UEL), groundwater can contribute to evapotranspiration (AGWETP) or as interflow (IFWS). If the water table (i.e., 
GWEL) rises to the surface, this water is added to surface storage (SURS) and can potentially contribute to runoff [7]. In the 
HWT subroutine, subsurface storage volumes are characterized by a number of porosity parameters; PCW represents the 
micropore and is constant for all three regions, PGW represents the porosity present in macropores in Regions 1 and 2, and 
UPGW represents porosity of the macropores in Region 3. In practice, the porosities for the three regions (PGW, PCW, UPGW) 
are typically quantified using available soil profile data and averaged over the different land-uses and subwatersheds [7].  

 

Fig. 1 Schematic of the Soil Profile Representation Used in the HWT Subroutine (Bicknell et al., 2001) 

While the HWT subroutine was developed specifically for use in low-gradient watersheds that may exhibit high water table 
behaviour, there is currently no literature comparing the performance of these two TGW and HWT groundwater subroutines 
available in HSPF. The objective of this research was to compare the performance, uncertainty, and utility of use of the TGW 
and HWT subroutines when using HSPF to simulate stream discharge in a low-gradient watershed in a Coastal Plain watershed 
in northeast North Carolina and to determine if either subroutine exhibited a demonstrable advantage over the other. 

II. METHODS 

A. Study Site 

The Ahoskie Creek watershed (14,700 ha) in northeastern North Carolina was selected for this study (Fig. 2). Ahoskie 
Creek lies in the Lower Coastal Plain physiographic province, a region characterized by flat surface slopes (<2%) and channel 
slopes (<0.1%) [18]. Ahoskie Creek is in the Chowan River basin which drains to the Albemarle Sound. The dominant land 
uses are forest (50.7%) and cropland (22.9%) [19]. The stream reaches in the watershed were channelized between 1969 and 
1972 to improve drainage. Prior to channelization, the watershed did not have clearly discernible channels resulting in poor 
drainage and frequent flooding events [20]. The low-gradient, documented flooding events, and presence of wetlands indicated 
a high, active water table making the Ahoskie Creek watershed a good candidate for this study. In addition, a long record of 
discharge was available from a USGS gauge on the Ahoskie. 
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Fig. 2 Location of the Ahoskie Creek Watershed, North Carolina, USA 

B. Model Development and Parameterization A 

1)  Watershed Characterization and Observed Data: 

The HSPF model relies on a combination of remotely sensed data and field-based observations to characterize the 
watershed and parameterize the model. Using digital raster graphics (DRG) and digital elevation model (DEM) data [21, 22] 
the Ahoskie Creek watershed was manually delineated into ten (10) subwatersheds, with an average subwatershed area of 1559 
ha (Fig. 3). The land uses for Ahoskie Creek were derived from the National Land Cover Database (NLCD) [23]. The NLCD 
land uses present in the watershed were aggregated into five broad land use categories: forest, 50.7%; cropland, 22.9%; pasture, 
11.3%; residential, 2.2%; and wetlands, 12.9% (Fig 4). When using HSPF, each subwatershed can include pervious land 
segments (PLS) and/or impervious land segments (IPS). Watershed characterization involves parameterizing the various PLSs 
and IPSs for each subwatershed. The Soil Survey Geographic database (SSURGO) (USDA-NRCS) was used to generate the 
HSPF infiltration parameters (INFILT) used in both models and soil porosity parameters (PCW, PGW, UPGW) used only in 
the HWT subroutine. Unique values for INFILT, PCW, PGW, and UPGW were assigned to each PLS by taking an area 
weighted average of the soils intersecting the five different land uses. 

 

Fig. 3 Ahoskie Creek Subwatersheds 
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Fig. 4 Ahoskie Creek Watershed Land Use Distribution 

HSPF uses stage-volume-discharge relationships called Hydraulic Function Tables (FTABLES) at the outlet of each 
subwatershed to quantify discharge. For this study, FTABLES were developed using surveyed stream cross-section data. The 
cross-sectional profiles were assumed to be prismatic within a subwatershed. The length of each reach and the cross-sectional 
profiles formed stage-volume relationships. Manning’s equation was then used for each reach, taking into account the surface 
roughness, slope of the subwatershed, and cross-sectional profile, to calculate discharge and complete the stage-volume-
discharge relationship. The Manning’s roughness coefficient (n) was determined for each reach by examining the streambed 
and banks and comparing them to stream channel reference photos [24].  

Observed daily flow data (1950 to 2011) were obtained from the USGS gaging station located on Ahoskie Creek in 
Ahoskie, NC (02053500). Precipitation and air temperature data were obtained primarily from the National Weather Service 
Cooperative Observer Program (COOP) station in Murfreesboro, NC (315996) that has an average annual rainfall of 116.05 
cm. The Murfreesboro station is located 16 km northwest of the Ahoskie Creek watershed and is the closest active COOP 
station to the watershed. Gaps or inconsistencies in the Murfreesboro climate record were filled using data from Roanoke 
Rapids, NC (317319) and Wakefield, VA (448800) located 64 km northwest and 72 km north, respectively, from the Ahoskie 
Creek watershed. Wind speed, percent sun, and dew point temperature were all obtained from the Norfolk International Airport 
COOP station (446139).  

2)  Monte Carlo Simulations: 

To generate the data for the model performance comparison and uncertainty analysis, one hundred thousand (100,000) 
Monte Carlo (MC) simulation runs were performed for each model variation (i.e., TGW and HWT). To perform the MC 
simulations and isolate the performance of the groundwater subroutines, the parameters used to characterize each groundwater 
subroutine were treated as stochastic, while the parameters common to both models, but external to the groundwater 
subroutines, were treated as deterministic.  

Deterministic parameters values were initially set using the HSPF guidance document, BASINS Technical Note 6 [22]. 
Those initial parameter values were refined through model calibration using only the TGW subroutine model. Dummy 
variables were used during the calibration process for the TGW parameters that would ultimately be treated as stochastic for 
the MC runs. Those dummy parameter values were based on an HSPF model that had been previously calibrated for a nearby 
watershed. The calibration period was from 1 January 1990 through 31 December 2009. Model calibration sufficiency was 
assessed by comparing the simulated and observed stream discharge at an hourly time step. Calibration was deemed 
satisfactory when the Ahoskie Creek TGW model output met the widely used HSPF calibration assessment criteria shown in 
Table I [26]. The values for the calibrated deterministic model parameters are shown in Table II. Model validation was not 
performed given that the focus of this research was to compare the two HSPF groundwater subroutines performance against 
one another.  

TABLE I HSPF MODEL ASSESSMENT CALIBRATION CRITERIA AND THE AHOSKIE CREEK CALIBRATED MODEL ERROR 

Flow Statistic 
Calibration 

Criteria Error (%)
Ahoskie Creek 

Calibrated Model Error (%) 
Error in total runoff (mm) ± 10 9.5 

Error in low flow recession (%) ± 0.01 0.01 
Error in 50% lowest flows (mm) ± 10 9.2 
Error in 10% highest flows (mm) ± 15 7.2 

Error in storm peak (m3/s) ± 15 -12.1 
Seasonal volume error (%) ± 10 10.0 

Summer storm volume (mm) ± 15 13.7 
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TABLE II HSPF MODEL ASSESSMENT CALIBRATION CRITERIA AND THE AHOSKIE CREEK CALIBRATED MODEL ERROR 

Parameter Description, Units Calibrated Value 
Pervious Land Uses (PERLND) 

INFILT Index to infiltration capacity, in/hr 0.023-0.109† 
LSUR Length of overland flow, in/hr 452-513† 

SLSUR Slope of overland flowplane 0.0039-0.0322a 
KVARY Groundwater recession variable, 1/in 0 

PETMAX Temp below which ET is reduced, deg. F 40 
PETMIN Temp below which ET is set to zero, deg. F 35 
INFEXP Exponent in infiltration equation 2 
INFILD Ratio of max/mean infiltration capacities 2 
CEPSC Interception storage capacity, inches 0.06-0.27‡ 

NSUR Manning’s n (roughness) 
0.45 forest;  

0.30 pasture and residential;  
0.27 crop; 0.40 wetlands 

Impervious Land Uses (IMPLND) 
LSUR Length of overland flow, feet 497 

SLSUR Slope of overland flowplane 0.0116 
NSUR Mannings’ n (roughness) 0.1 
RETSC Retention/interception storage capacity, inches 0.1 

PETMAX Temp below which ET is reduced, deg. F 40 
PETMIN Temp below which ET is set to zero, deg. F 35 

Stream Reaches and Reservoirs (RCHRES) 
KS Weighting factor for hydraulic routing 0.5 

†Varies with land use, ‡Varies by month and with land use 

The MC simulations that were used to generate data for the model comparison were executed using a Visual Basic.NET 
program (VBP) script written specifically for this study. The VBP script populated the groundwater subroutine parameter 
values in the fixed-format HSPF User Control Input (UCI) file by sampling uniform parameter distributions, whose ranges 
were based on the “typical” parameter values provided in BASINS Technical Note 6 [25]. The HWT subroutine used the same 
stochastic parameters used in the TGW model plus three additional parameters – the surface runoff recession coefficient 
(SRRC), the surface runoff exponent (SREXP), and the interflow storage capacity (IFWSC). The SRRC parameter adjusts 
surface runoff and is a function of surface storage. The SREXP is a multiplicative factor used in the calculation of surface 
runoff. And IFWSC is the maximum interflow storage capacity when the ground-water elevation (GWEL) rises above the upper 
influence elevation (UELV). These HWT-specific parameters were assigned uniform distributions with initial distribution ranges 
based on HSPF user guidance [7]. The maximum value for the IFWSC parameter was set at of 6.8 to ensure model stability. The 
upper bound of the SREXP was set to 2.0 to prevent excess water from being attributed to surface runoff. Table III shows the 
TGW and HWT subroutine parameters that were treated as stochastic for this study and uniform distribution limits.  

TABLE III STOCHASTIC PARAMETERS AND RANGES FOR THE TRADITIONAL GROUND-WATER (TGW) SUBROUTINE 

Parameter Parameter Description, Units Minimum Maximum 
TGW and HWT Subroutines 

INTFW† Interflow inflow 1.000 3.000 
IRC† Interflow recession coefficient, 1/day 0.100 1.000 

UZSN† Upper zone nominal storage, in. 3.000 8.000 
LZSN Lower zone nominal storage, in. 0.500 0.700 

AGWRC Ground-water recession rate, 1/day 0.920 0.990 
DEEPFR‡ Fraction of ground water lost to deep, inactive aquifers 0.001 0.050 
BASETP‡ Fraction of remaining ET potential satisfied by baseflow 0.001 0.050 

AGWETP 
Fraction of remaining ET potential satisfied by 

 active ground-water storage 
0.001 0.200 

LZETP - Forest Lower zone ET potential 0.600 0.800 
LZETP - Cropland Lower zone ET potential 0.500 0.700 
LZETP - Pasture Lower zone ET potential 0.400 0.600 

LZETP - Residential Lower zone ET potential 0.200 0.500 
LZETP - Wetlands Lower zone ET potential 0.600 0.900 

HWT Subroutine only 
SRRC Surface runoff recession coefficient 0.010 0.990 

SREXP Surface runoff exponent 0.100 2.000 
IFWSC Max Interflow storage capacity 0.100 6.800 

† Each land use was represented in HSPF with a separate parameter but all were given the same initial distribution. 

‡ The forest, cropland, pasture, and residential land uses were all represented in HSPF with one parameter. Wetlands were represented with a separate 
parameter but given same initial distribution. 
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The HSPF infiltration parameter (INFILT) has been shown to be a sensitive parameter [27, 28] and is frequently adjusted 
when calibrating HSPF. For this study, after the initial calibration, INFILT was held constant across all land uses. Holding 
INFILT constant further isolated the groundwater subroutines from the rest of the HSPF model. In the same vein, the soil 
porosity parameters (PCW, PGW, UPGW) used in the HWT model were held constant throughout the MC simulations. Again, 
this allows for more consistency between runs and isolation of the groundwater subroutines. It is important to note that while 
the baseline TGW model used to calibrate the deterministic parameters used lower zone evapotranspiration (LZETP) values 
that varied by both landuse and month, the two models used for subroutine comparison treated LZETP as a stochastic 
parameter and allowed LZETP to vary only by land use. Preventing the land use-specific LZETP values from varying by 
month reduced one source of variability between subroutine parameterization permitting a more direct subroutine performance 
and uncertainty comparison.  

C. Model Performance Comparison 

For the comparisons made in this study, the model was run on an hourly time step. A three-year model assessment period 
(1 January 2006 to 31 December 2009) was used to compare model performance with a one-year startup period (1 January 
2005 to 31 December 2005) to allow the model’s state variables to equilibrate. The response variable was average daily flow 
rate in cubic meters per second (m3/s). Model performance was compared using three (3) metrics and the model response 
variable average daily flow rate (m3s-1).  The first metric, the Nash-Sutcliffe efficiency (NSE), is a good measure of overall 
model performance over the three year simulation period and was calculated using Equation (1). NSE values can range from -
  to 1 [29]. The NSE index was chosen because it is commonly used in hydrologic literature and incorporates both variation 
about the mean and total variance not described by the model [30]. A NSE value was calculated for each run of the two models.  
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where  

Qo = observed daily average flow rate (m3/s) 

Qm = simulated daily average flow rate (m3/s) 

t = time, in days 

The second metric used to compare model performance provided a measure of how effectively the models simulated the 
lowest 50% of observed flows. The third metric used was a measure of how effectively the models simulated the highest 10% 
of observed flows. These metrics are often used by HSPF modelers who use the HSPEXP calibration assessment tool [31] to 
assess calibration adequacy. When computing the 50% lowest flows metric, HSPEXP sums the volume of the lowest 50% of 
observed flows and then sums the simulated flow volumes for those time intervals. The volume of the highest 10% flows is 
summed similarly. The percent error for both metrics was computed using Equation (2). Based on the calibration criteria 
(Table I), an error of +/- 10% is considered acceptable for the 50% low flow metric and +/- 15% is acceptable for the high flow 
metric. While the response variable considered in this study was daily average flow rate instead of flow volume, the HSPEXP 
guidance for both metrics was used to assess model performance. The performance metric results from the two models were 
compared using the non-parametric Wilcoxon Rank-Sum test. 
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1)  Behavioural Parameter Set Selection: 

The concept of behavioural versus non-behavioural parameter sets was first introduced by [32] and is used in the 
Generalized Likelihood Uncertainty Estimation (GLUE) method of estimation uncertainty [33]. Parameter sets resulting in 
model runs that fall above a threshold criteria are considered to be behavioural and provide an acceptable characterization of 
the watershed [33, 34]. The criteria for selecting the behavioural parameter sets for each model was determined by examining 
the cumulative distribution function (CDF) curves of each of the three previously discussed metrics. An upper inflection point 
in the curve indicated a threshold value below which the CDF value dropped sharply. Parameter sets for the model runs that 
yielded a metric value above the inflection point threshold value were considered behavioural and used in the model 
performance and uncertainty analyses. All other parameter sets were considered non-behavioural and were not considered 
further. This process of selecting behavioural parameter sets resulted in three different groups of behavioural parameter sets for 
both models.  

2)  Quantifying Model Uncertainty: 

Uncertainty in hydrological modeling is unavoidable [34, 35] and comes from multiple sources (e.g., model input data, 
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model structure, and the variability of individual parameters [35, 36, 37, 38, 39]). Any robust comparison of model 
performance should attempt to quantify and compare relevant sources of uncertainty. The Average Relative Interval Length 
(ARIL) metric, Equation (3), introduced by [40], was used to quantify the uncertainty present in the two models resulting from 
groundwater subroutine model structure and parameter uncertainty. The ARIL metric provides a single measure for comparing 
the relative width of the confidence intervals throughout a specified time period. The 95% confidence intervals were formed 
using the 2.5% and 97.5% quantiles of the distribution of simulated flow values at each time step. The ARIL metric provides a 
single value that can be used to compare model performance. Smaller ARIL values indicate narrower confidence bands and 
less model uncertainty.  

 

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tobs

lower,ttupper

Q

LimitLimit

n
ARIL

,

,1
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where 

n = number of time steps 

Limitupper,t  = 97.5% quantile for time step t 

Limitlower, t  = 2.5% quantile for time step t 

Qobs, t  = observed discharge value for time step t 

3)  Assessing Parameter Identifiability: 

In conjunction with estimates of model uncertainty due to parameter variability, a regional sensitivity analysis of model 
parameters can be useful in determining parameters to which the model is more sensitive [34, 41, 42]. The most sensitive 
parameters will have an identifiable value or range that tends to yield better model results with respect to a particular model 
performance metric. Models with more identifiable parameters may be easier to calibrate to observed data [43, 44]. Parameter 
identifiability, especially in an over-parameterized model like HSPF, can be challenging during calibration [30]. Parameters 
that exhibited a trend towards a particular value or range were more sensitive within the model structure were considered to be 
“identifiable” [34, 45]. Parameter identifiability in this study was determined by comparing the predefined or a priori, uniform 
distributions of each parameter to their respective posterior distributions. Posterior parameter distributions were developed 
using the behavioural parameter sets discussed previously.  

To assess parameter identifiability, the a priori and posterior parameter ranges were normalized from 0 to 1, and curvature 
of the normalized CDF posterior distribution was then compared to the normalized CDF a priori, uniform distribution. The 
CDF curve of a uniform distribution exhibits a 1 to 1 slope over the range from 0 to 1. The vertical distance between the two 
distributions was calculated at 1000 points along the normalized parameter range. Any parameter that showed a maximum 
vertical difference between the a priori and posterior CDF > 0.1, or 10% of the cumulative probability was considered to be 
identifiable (i.e. non-uniform). The selected parameter identifiability threshold is arbitrary but it allows for relative comparison 
of the number of identifiable parameters between the two models. Fig. 5 shows an example of a non-identifiable and an 
identifiable parameter. While other studies [43, 46] have used the Kolmogorov-Smirnov (KS) statistic to detect a priori and 
posterior parameter distribution differences, we chose to use the identifiability metric described above because the large 
parameter value sample size used in this study (10,000) yielded KS statistic p-values less than 0.05 for almost every parameter, 
even those whose posterior distributions appeared uniform when examined visually. 

 

Fig. 5 Examples of a Non-Identifiable (A) and an Identifiable Parameter (B) 
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III. RESULTS AND DISCUSSION 

A. Behavioural Parameter Sets 

The model performance histograms and resulting CDF curves used to determine behavioural parameter set threshold based 
on each of the three model performance metrics are shown in Fig. 6. Four of the six CDF curves exhibited an upper inflection 
point where the sharp trend towards better model performance decreased at, or near, the 90th percentile. For consistency, the 
90th percentile was chosen as the threshold value used to determine behavioural parameter sets for all three of the model 
performance metrics. Only model runs performing at or above the 90th percentile value for each of the metrics were used in 
the model performance and uncertainty analyses. Given 100,000 model runs, the 90th percentile threshold generated 10,000 
behavioural parameter sets for each of the three model performance metrics. 

 

Fig. 6 CDF Curves and Histograms Used to Determine Behavioral Parameter Sets for the TGW (A) and HWT (B) Models.  
The solid, horizontal line indicates the inflection point 

B. Model Performance Comparison 

Using only the behavioural parameter sets, the performance of the two models was compared using the NSE (average daily 
flow rate) and the percent errors for the 50% lowest flows and 10% highest flows. As shown in Fig. 7, the HWT model 
significantly outperformed the TGW model with regards to the NSE metric. In fact, the maximum NSE achieved by the TGW 
model (0.60) was much less than the worst performing HWT behavioural model run (0.72). With respect to the 50% lowest 
average daily flow rate metric, the TGW model statistically outperformed the HWT model though both models did a poor job 
of simulating low flows; the percent errors were greater than 100% for both models. It is important to note, however, that many 
of the observed average daily flow rates used to assess this metric were quite low (<0.15 m3/s), so even a small error in the 
simulated flow rate will result in a large percent error. With respect to the 10% highest flow metric, the TGW again statistically 
outperformed the HWT model. However, means of the 10% high flow distributions for both models, fell well within the 
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HSPEXP calibration criteria of +/-15%. Because the sample size for these comparisons was so large (10,000 values each), any 
difference in the means of the performance metric distributions for the two models was statistically significant when compared 
using the Wilcoxon Rank-Sum test, i.e. all p-values were less than 0.05. Therefore, from a practical perspective, both the TGW 
and HWT models performed equally poor when simulating low flows (mean percent errors of 129.0 and 138.1%, respectively). 
Further, they both performed equally well when simulating the 10% highest flows (mean percent errors of 0.5 and 3.8%, 
respectively). But, when model performance is compared over the entire observed flow range for the assessment period using 
the NSE metric, the HWT model clearly outperformed the TGW model when predicting daily average flow rate. The mean 
HWT NSE value was some 70% greater than the TGW NSE value.  

 

Fig. 7 Boxplots Showing Mean, Median, and Distribution of the TGW and HWT Models When Compared Using Three Metrics: (A) NSE  
Based on Daily Average Flow Rate, (B) Percent Error for the Lowest 50% of Daily Average Flow Rates (B),  

and (C) the Percent Error for the Highest 10% of Daily Average Flow Rates 

C. Uncertainty Analysis 

Model performance variability due to structural and parameter uncertainty was quantified using the ARIL metric and the 
behavioural model runs for each of the three model performance metrics (Table IV). The ARIL values computed for NSE 
(average daily flow rate) were calculated over the entire three year simulation period (1461 days). The ARIL values for the 
lowest 50% and highest 10% lowest daily average flow rates were calculated using only that data from low and high flow 
events, 731 and 146 days, respectively. The ARIL values for the TGW model were smaller than the HWT model for each of 
the three performance metrics (Table IV), indicating that the TGW model had less overall uncertainty than the HWT 
throughout the simulation period including periods of low and high flows. One cause of the greater uncertainty associated with 
the HWT model is the additional HWT subroutine parameters that are not used in the TGW subroutine (PCW, PGW, UPGW, 
IFWSC, SRRC, SREXP). These additional parameters and the complexity of the HWT subroutine created more model input 
and structural uncertainty which increased overall model uncertainty. 

TABLE IV ARIL VALUES CALCULATED BASED ON THE THREE PERFORMANCE METRICS 

Performance Metric TGW HWT 

NSE (average daily flow rate) 1.898 2.105 

50% Lowest Flows 2.826 3.105 

10% Highest Flows 0.366 0.447 
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D. Parameter Identifiability 

Parameter identifiability for the TGW and HWT subroutines was compared by examining the difference between the 
posterior parameter distributions and the a priori, uniform distributions for each parameter. Some parameters showed posterior 
distributions that were uniform while others showed a significant trend towards a particular parameter value or range. Fig. 8 
contains illustrations of selected parameters with posterior distributions where there was a clearly identifiable preference for a 
particular parameter value or range. Table 5 contains the maximum vertical distance between the a priori and posterior 
parameter distributions; vertical distances  than 0.1 are bolded. The HWT subroutine yielded 20 identifiable parameters 
across all three model performance metrics, while the TGW subroutine yielded 17. Considering the fact that the HWT 
subroutine used three more stochastic parameters than the TGW model, 21.5% of the HWT parameters across all three metrics 
were found to be identifiable compared to 20.2% of the TGW parameters. 

 

Fig. 8 Illustration of Selected Identifiable Posterior Parameter Distributions for the TGW (A) and HWT (B) Models  
and the Three Performance Metrics: NSE (1), 50% Lowest Flows (2), and 10% Highest Flows (3) 
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TABLE V MAXIMUM VERTICAL DISTANCE BETWEEN PARAMETER A PRIORI DISTRIBUTIONS AND POSTERIOR DISTRIBUTIONS 

Parameter 
TGW HWT 

NSE 
Lowest 50% 

of Flows 
Highest 10% 

of Flows 
NSE

Lowest 50% 
of Flows 

Highest 10% 
of Flows 

AGWETP 0.05 0.19 0.01 0.01 0.24 0.02 

AGWETP-Wetlands 0.01 0.03 0.02 0.01 0.03 0.01 

AGWRC 0.02 0.09 0.03 0.07 0.35 0.12 

BASETP 0.12 0.33 0.03 0.01 0.27 0.04 

BASETP-Wetlands 0.03 0.05 0.02 0.02 0.05 0.02 

DEEPFR 0.04 0.43 0.03 0.08 0.40 0.07 

DEEPFR-Wetlands 0.02 0.06 0.01 0.02 0.06 0.02 

INTFW-Forest 0.43 0.07 0.03 0.02 0.04 0.05 

INTFW-Cropland 0.26 0.02 0.03 0.02 0.03 0.03 

INTFW-Pasture 0.14 0.02 0.02 0.01 0.02 0.02 

INTFW-Residential 0.04 0.02 0.02 0.01 0.01 0.01 

INTFW-Wetlands 0.14 0.03 0.02 0.01 0.03 0.03 

IRC-Forest 0.06 0.13 0.05 0.13 0.12 0.13 

IRC-Cropland 0.05 0.05 0.03 0.06 0.06 0.06 

IRC-Pasture 0.02 0.03 0.02 0.04 0.03 0.03 

IRC-Residential 0.01 0.01 0.02 0.01 0.02 0.02 

IRC-Wetlands 0.03 0.03 0.02 0.05 0.04 0.03 

LZETP-Forest 0.11 0.14 0.02 0.05 0.14 0.04 

LZETP-Cropland 0.06 0.08 0.02 0.03 0.08 0.04 

LZETP-Pasture 0.07 0.09 0.02 0.03 0.08 0.03 

LZETP-Residential 0.03 0.04 0.01 0.02 0.04 0.02 

LZETP-Wetlands 0.06 0.06 0.02 0.03 0.05 0.02 

LZSN 0.33 0.09 0.08 0.06 0.07 0.16 

UZSN-Forest 0.33 0.14 0.17 0.27 0.18 0.29 

UZSN-Cropland 0.18 0.08 0.06 0.12 0.08 0.13 

UZSN-Pasture 0.12 0.06 0.04 0.06 0.07 0.07 

UZSN-Residential 0.03 0.02 0.02 0.02 0.03 0.02 

UZSN-Wetlands 0.08 0.04 0.03 0.06 0.05 0.08 

IFWSC – – – 0.01 0.01 0.02 

SREXP – – – 0.53 0.06 0.34 

SRRC – – – 0.22 0.10 0.40 

Identifiable 
Parameters 

10 6 1 5 8 7 

*Numbers shown in bold indicate an identifiable parameter 

IV. CONCLUSION 

This study compared the performance and uncertainty of two models that implemented two alternative groundwater 
simulation subroutines available in HSPF. The two models were applied to Ahoskie Creek, a low-gradient, high water table 
watershed in the Coastal Plain of northeast North Carolina. The high water table (HWT) groundwater subroutine was 
developed specifically for use when modeling low-gradient, high water table watersheds. This specialized subroutine employs 
a more sophisticated conceptualization of the groundwater system than HSPF’s traditional groundwater subroutine (TGW).  

Model performance was assessed using three metrics that compared overall model performance, and the performance of the 
models when predicting the highest and lowest flows. We used Monte Carlo simulations to generate sufficient model output 
data to quantify model structure and parameter uncertainty associated with the two groundwater subroutines. Further, we 
examined a priori groundwater subroutine parameter distributions (using the Monte Carlo simulations) with posterior 
parameter distributions derived from behavioural parameter sets to quantify parameter identifiability, a surrogate measure of 
the relative ease of model calibration. 

In this study, both models performed well when simulating the 10% highest daily average flow rates, falling well within the 
HSPEXP criteria of +/- 15%. Neither model performed well when simulating the 50% lowest daily average flow rates. Both 
models greatly exceeded the +/- 10% HSPEXP criterion. The HWT model, however, significantly outperformed the TGW 
model when simulating daily average flow (NSE) over the full three-year assessment period, an indication that the HWT model 
out-performed the TGW over the full range of simulated flows.  

Given the inherent limitations associated with hydrological models and the heterogeneity of watersheds, various forms of 
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model uncertainty are unavoidable. Therefore, a balance between model performance and model uncertainty should be 
considered when selecting an appropriate model for a given application. In this study, based on the Average Relative Interval 
Length (ARIL) metric which was used to quantify the uncertainty present in the two models resulting from both groundwater 
subroutine model structure and parameter uncertainty, the HWT model exhibited slightly more combined uncertainty than did 
the TGW model. However, both the TGW and HWT models exhibited a similar degree of parameter uncertainty, each 
producing roughly the same proportion of identifiable parameters. Although this study did not directly address the level of 
effort required to calibrate either the HWT or TGW groundwater subroutine, if one subroutine had yielded a significantly 
higher number of identifiable parameters, it follows that calibration of that subroutine would likely be more straightforward.  

When choosing between the two groundwater subroutines evaluated here, the context in which the HSPF model is being 
applied must be considered. Although the HWT the model could be considered more accurate, it did produce greater 
uncertainty than the TGW model. Therefore, in an application where the accuracy of hydrology simulation is perhaps the most 
critical concern, i.e., an application where accurately predicting pollutant loading is the issue (e.g., TMDL development), the 
increased uncertainty associated with the HWT model may be tolerable. In the case of the TMDL development application, the 
greater uncertainty associated with the HWT model could be accommodated with the TMDL margin of safety (MOS). In 
applications where the balance between model performance and uncertainty is more critical, the choice of which groundwater 
subroutine to employ is less clear cut. 
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