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Abstract- This paper presents the theoretical analysis of a laminated hollow cylinder constructed of isotropic elastic and magneto-

electro-thermoelastic materials under unsteady and uniform surface heating. We obtain the exact solution of the transient 

thermoelastic problem of the laminated hollow cylinder in the plane strain state. As an illustration, we perform numerical 

calculations of a three-layered composite hollow cylinder made of isotropic elastic, piezoelectric and magnetostrictive materials and 

investigate the numerical results for temperature change, displacement, stress, and electric and magnetic potential distributions in 

the transient state. 
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I. INTRODUCTION 

It has recently been found that composites made of piezoelectric and magnetostrictive materials exhibit the magnetoelectric 

effect, which is not seen in piezoelectric or magnetostrictive materials [1-3]. These materials are known as multiferroic 

magnetoelectric composites [4]. These composites exhibit new effects, such as a coupling among magnetic, electric, and elastic 

fields. It is possible to develop a new system of smart composite materials by combining the piezoelectric and magnetostrictive 

materials with other structural materials.  

In the past, various problems in magneto-electro-elastic media that exhibit anisotropic and linear coupling among the 

magnetic, electric, and elastic fields were analyzed. Examples of static problems are as follows. Pan [5] derived the exact 

solution of simply supported and multilayered magneto-electro-elastic plates, and Pan and Heyliger [6] derived the exact 

solution of magneto-electro-elastic laminates in cylindrical bending. Babaei and Chen derived the exact solution of radially 

polarized and magnetized rotating magneto-electro-elastic hollow and solid cylinders [7]. Ying and Wang derived the exact 

solution of rotating magneto-electro-elastic composite hollow cylinders [8]. Wang et al. derived an analytical solution of a 

multilayered magneto-electro-elastic circular plate under simply supported boundary conditions [9]. Examples of dynamic 

problems are as follows. Wang and Ding analyzed the transient responses of a magneto-electro-elastic hollow sphere [10] and a 

magneto-electro-elastic composite hollow sphere [11] subjected to spherically symmetric dynamic loads. Anandkumar et al. 

analyzed the free vibration behavior of multiphase and layered magneto-electro-elastic beams [12]. Huang et al. treated the 

static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading [13]. Wang et al. 

obtained the three-dimensional exact solutions for free vibrations of simply supported magneto-electro-elastic cylindrical 

panels [14]. Chu et al. presented a semi-analytical solution for a layered multiferroic half space under a uniform vertical 

circular load on its surface, analyzed a two-layered system made of BaTiO3 and CoFeO4 [15]. Zhou and Lee obtained the 

closed-form solutions in contact problem for magneto-electro-elastic half-plane materials indented by a moving punch [16]. 

Milazzo and Orlando presented a new finite element based upon an elastic equivalent single-layer model for shear deformable 

and straight magneto-electro-elastic generally laminated beam [17]. Huang and Hu treated a singularity analysis for a magneto-

electro-elastic body of revolution, and obtained the three-dimensional asymptotic solutions [18]. 

Examples of thermal stress problems are as follows. Sunar et al. [19] analyzed thermopiezomagnetic smart structures and 

Kumarval et al. [20] analyzed a three-layered electro-magneto-elastic strip under steady state conditions using the finite 

element method. Hou et al. obtained 2D fundamental solutions of a steady point heat source in infinite and semi-infinite 

orthotropic electro-magneto-thermo-elastic planes [21]
 
and obtained Green’s function for a steady point heat source on the 

surface of a semi-infinite transversely isotropic electro-magneto-thermo-elastic material [22]. Xiong and Ni obtained 2D 

Green’s functions for semi-infinite transversely isotropic electro-magneto-thermo-elastic composites [23]. Rekik et al. treated 

the axisymmetric problem of a partially insulated mixed-mode crack embedded in a functionally graded pyro magneto-electro-

elastic infinite medium subjected to thermal loading [24]. Kondaiah et al. investigated the pyroelectric and pyromagnetic 

effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature using semi-analytical finite 

element procedures [25]. These studies, however, treated thermal stress problems only under steady temperature distribution. It 

is well known that thermal stress distributions in a transient state show significant and large response values as compared to 

those in a steady state. Therefore, transient thermoelastic problems are important. With regard to transient thermal stress 



Advances in Materials Science and Applications  Jun. 2013, Vol. 2 Iss. 2, PP. 48-59 

- 49 - 

problems, Wang and Niraula analyzed transient thermal fracture in transversely isotropic electro-magneto-elastic cylinders [26]. 

The exact solution of a transient analysis of multilayered magneto-electro-thermoelastic strip subjected to nonuniform heat 

supply was also obtained [27]. The exact solution of a transient analysis of multilayered magneto-electro-thermoelastic hollow 

cylinder subjected to uniform heat supply was also obtained [28]. 

On the other hand, examples concerned smart materials systems are as follows. The piezoelasticity of the laminated 

piezoelectric structures were reviewed by Saravanos and Heyliger [29]. Analytical studies concerned with 

piezothermoelasticity of smart composite structures were reviewed by Tauchert et al. [30]. Analytical studies having relevance 

to control of transient response in smar piezothermoelastic structures were reviewed by Tauchert and Ashida [31]. The transient 

piezothermoelastic problems in cylindrical composite panels composed of cross-ply/angle-ply and piezoelectric laminae were 

analyzed exactly [32, 33]. The transient piezothermoelastic problems in laminated hollow cylinder constructed of isotropic 

elastic and piezoelectric layers due to asymmetrical heating were analyzed exactly [34]. However, to the best of the authors’ 

knowledge, the transient thermoelastic analysis of laminated structures constructed of structural materials and magneto-electro-

thermoelastic materials has not yet been reported. 

Here, we analyse exactly the transient thermoelasric problem of a laminated hollow cylinder constructed of isotropic elastic 

and magneto-electro-thermoelastic materials under uniform surface heating in a plane strain state by extending our previous 

papers [28]. We assumed that the magneto-electro-thermoelastic materials are polarized and magnetized in the radial direction.  

II. HEAT CONDUCTION PROBLEM 

We considered a laminated hollow cylinder constructed of isotropic elastic and magneto-electro-thermoelastic materials. 

The laminated hollow cylinder’s inner and outer radii are denoted by a and b, respectively. 
ir  is the outer radius of the ith layer. 

Throughout this article, indices i (=1,2,…, N) are associated with the ith layer from the inner side of a composite hollow 

cylinder.  

We assumed that the laminated hollow cylinder is initially at zero temperature and its inner and outer surfaces are suddenly 

heated by surrounding media having constant temperatures Ta and Tb with relative heat transfer coefficients ha and hb, 

respectively. Then, the temperature distribution is one-dimensional, and the transient heat conduction equation for the ith layer 

is written in the following form: 
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The initial and thermal boundary conditions in dimensionless form are 
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In Eqs. (1)-(6), we introduced the following dimensionless values: 
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where Ti is the temperature change; t is time; and T0,  0 and  0 are typical values of temperature, thermal conductivity, and 

thermal diffusivity, respectively. Introducing the Laplace transform with respect to the variable  , the solution of Eq. (1) can 

be obtained so as to satisfy the Conditions (2)-(6). This solution is written as follows: 
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where )(0J  and )(0Y  are zeroth-order Bessel functions of the first and second kind, respectively. Futhermore,   and F  are 

the determinants of NN 22   matrices [akl] and [ekl], respectively; the coefficients 
iA  and 

iB  are defined as determinants of a 
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matrix similar to the coefficient matrix [akl], in which the (2i-1)th column or 2ith column is replaced with the constant vector 

{ck}, respectively. Similarly, the coefficients 
iA  and 

iB   are defined as determinants of a matrix similar to the coefficient 

matrix [ekl], in which the (2i-1)th column or 2ith column is replaced with the constant vector {ck}, respectively. The nonzero 

elements of the coefficient matrices [akl] and [ekl] and the constant vector {ck} are given  
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In Eq. (8), )( j  and 
i  are 
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and 
j  is the jth positive root of the following transcendental equation 
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III. THE RMOELASTIC PROBLEM 

We developed the analysis of a laminated hollow cylinder constructed of isotropic elastic and magneto-electro-

thermoelastic materials as a plane strain problem. The displacement-strain relations are expressed in dimensionless form as 

follows:  
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where the comma denotes partial differentiation with respect to the variable that follows. For the anisotropic and linear 

magneto-electro-thermoelastic material, the constitutive relations are expressed in dimensionless form as follows
 
[26]: 
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where 
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The constitutive equations for the electric and the magnetic fields in dimensionless form are given as  
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The relation between the electric field intensity and the electric potential 
i  in dimensionless form is defined as 

 
ririE ,  (20) 

The relation between the magnetic field intensity and the magnetic potential 
i  in dimensionless form is defined as  
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The equilibrium equation is expressed in dimensionless form as follows: 

 0/)(,  rirrirrri   (22) 

If the electric charge density is zero, the equations of electrostatics and magnetostatics are expressed in dimensionless form 

as follows: 
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where 
kli  are the stress components; 

kli  are the strain components; 
riu  is the displacement in the r direction; 

ki  are the 

coefficients of linear thermal expansion; 
kliC  are the elastic stiffness constants; 

riD  is the electric displacement in the r 

direction; 
riB  is the magnetic flux density in the r direction; 

kie  are the piezoelectric coefficients; 
i1  is the dielectric constant; 

ip1
 is the pyroelectric constant; 

kiq  are the piezomagnetic coefficients; 
i1  is the magnetic permeability coefficient; 

id1
 is the 

magnetoelectric coefficient; 
im1
 is the pyromagnetic constant; and 

0 , 
0Y  and 

0d  are typical values of the coefficient of linear 

thermal expansion, Young’s modulus, and piezoelectric modulus, respectively.  

Substituting Eqs. (16), (20), and (21) into Eqs. (17), and (19) and later into Eqs. (22)-(24), the governing equations of the 

displacement uri, electric potential 
i , and magnetic potential 

i  in the dimensionless form are written as 
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The solutions of Eqs. (26)-(28) are assumed in the following form: 
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In Eq. (29), the first term on the right-hand side gives the homogeneous solution and the second term gives the particular 

solution. The homogeneous solutions of Eq. (29) can be expressed as follows:  
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In Eq. (31), Cki ( 8,3,1 k ) are unknown constants. We have the following relation.  
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In order to obtain the particular solutions, series expansions of Bessel functions given in Eq. (8) are used [35]. Eq. (8) can 
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Here, 
n0  is the Kronecker delta, and *  is Euler’s constant. The particular solutions 

rpiu ,
pi , and 

pi  are obtained as the 

function system like Eq. (33). Then, the stress components, electric displacement, and magnetic flux density can be evaluated 

from Eq. (29). Details of the solutions are omitted from here for brevity. 

For the isotropic elastic material, we analyze by using Airy stress function method. The solutions of displacement and 

stress components can be expressed as follows [36]:  
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In Eq. (36), 
2iC  and 

3iC  are unknown constants. In Eqs. (36) and (37), 
i  is the coefficient of linear thermal expansion; 

iY  

is Young’s modulus; and 
i  is Poisson’s ratio. The following dimensionless values are introduced: 
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If the inner and outer surfaces of the laminated hollow cylinder are traction free, and the interfaces of each adjoining layer 

are perfectly bonded, then the boundary conditions of inner and outer surfaces and the conditions of continuity at the interfaces 

can be represented as follows:  
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ar  ; 01 rr , 

iRr  ;  
1,  irrrri  , 

1,  irri uu  ; 1,,1  Ni  , 

1r ;  0rrN  

(39) 

For example, when the Nth layer is a isotropic elastic layer, the boundary conditions in the radial direction for the electric 

and magnetic fields are expressed as  

ar  ;  0,0 11  rr BD  or 0,0 11   , 

iRr  ;  
1,  irri DD ,

1,  irri BB , 
1 ii  , 

1 ii   ; 2,,1  Ni  , 

1 NRr ;  0,0  NN   

(40) 

The unknown constants in Eqs. (30) and (36) are determined so as to satisfy the boundary conditions in (39) and (40).  

IV. NUMERICAL RESULTS 

In order to illustrate the foregoing analysis, we consider a three-layered hollow cylinder composed of isotropic elastic, 

piezoelectric and magnetostrictive layers. The isotropic elastic layer is made up of mild steel, the piezoelectric layer is made up 

of BaTiO3, and the magnetostrictive layer is made up of CoFe2O4. Two kinds of three-layered hollow cylinders are investigated. 

Case 1 shows the stacking sequence BaTiO3/CoFe2O4/(mild steel) and Case 2 shows the stacking sequence 

CoFe2O4/BaTiO3/(mild steel). We assume that the outer surface of the three-layered hollow cylinder is heated. Then, 

numerically calculable parameters of the heat condition and shape are presented as follows: 

0.1 ba HH , 0aT ,  1bT , 3N ,  

7.0a , 79.0,77.0,75.0,73.0,71.01 R , 8.02 R , mb 01.0  
(41) 

The following are material constants considered for mild steel [37]: 

 mKW /6.51 , sm /1088.13 26 , K/1108.11 6 , GPaY 206 , 3.0  (42) 

The following are material constants considered for BaTiO3 [2, 5, 27]:  

Kz /1107.15 6
, Kr /1104.6 6 ,  GPaCC 1663322  , GPaC 7723  , GPaCC 781312  , 

GPaC 16211  ,  2

32 /4.4 mCee  , 2

1 /6.18 mCe  , 229

1 /106.12 NmC , 

KmCp 224

1 /102  , 226

1 /1010 CNs , mKWr /5.2 , smr /1088.0 26  

(43) 

The corresponding constants for CoFe2O4 [5, 27] are  

Kzr /11010 6  
, GPaCC 2863322  ,  GPaC 17323  , GPaCC 5.1701312  , 

GPaC 5.26911  ,  AmNqq /3.80532  , AmNq /7.6991  , 229

1 /10093.0 NmC , 

KmCp 224

1 /102  , 226

1 /10157 CNs , mKWr /2.3 ,  smr /1077.0 26  

(44) 

The typical values of material parameters such as 
0 , 

0 , 
0 , 

0Y , and 
0d , used to normalize the numerical data, based on 

those of BaTiO3 are as follows:  

 
r 0
, 

r 0
, 

r 0
, GPaY 1160  , NCd /1078 12

0

  (45) 

In the numerical calculations, the boundary conditions at the surfaces for the electric and magnetic fields are expressed as  

 ar  ;  0,0 11  rr BD  (46) 

The numerical results for Case 1 and 75.01 R  are shown in Figs. 1-4. Fig. 1 shows the variation of temperature change 

along the radial direction. Fig. 2 shows the variation of displacement 
ru  along the radial direction. From Figs. 1 and 2, it is 

clear that the temperature and displacement increase with time and have the largest values in steady state. Figs. 3(a), (b) and (c) 

show variations of thermal stresses 
rr ,  , and 

zz , respectively, along the radial direction. Fig. 3(a) reveals that the 

maximum tensile stress occurs in the transient state and the maximum compressive stress occurs in the steady state. From Fig. 

3(b), it is clear that the compressive stress occurs in the first layer and tensile stress occurs in the second layer. From Fig. 3(c), 

it is clear that the compressive stress occurs inside the hollow cylinder and its absolute value increases with time. Figs. 4(a) and 
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4(b) show variations of electric potential   and magnetic potential  , respectively, along the radial direction. Fig. 4 reveals 

that the absolute value of the electric and magnetic potential increases with time and attains its maximum value in the steady 

state. The electric potential is almost zero in the second layer, i.e. the magnetostrictive layer. The magnetic potential is almost 

constant in the first layer, i.e. the piezoelectric layer.  

  

Fig. 1 Variation of temperature change in the radial direction 

(Case 1, 75.01 R ) 
Fig. 2 Variation of displacement 

ru  in the radial direction (Case 1, 

75.01 R ) 

     

Fig. 3 Variation of thermal stresses in the radial direction (Case 1, 75.01 R ): 

 (a) normal stress 
rr  (b) normal stress 

  and (c) normal stress 
zz  

  

Fig. 4 Variation of (a) electric potential and (b) magnetic potential in the radial direction (Case 1, 75.01 R ) 

The numerical results for Case 2 and 75.01 R  are shown in Figs. 5-8. Fig. 5 shows the variation of temperature change 

along the radial direction. Fig. 6 shows the variation of displacement 
ru  along the radial direction. From Figs. 1, 2, 5, and 6, 

there is little difference between Case 1 and Case 2 for the temperature change and displacement
ru . Figs. 7(a), (b) and (c) 

show the variations of thermal stresses 
rr ,  , and 

zz , respectively, along the radial direction. From Fig. 7(a), it is clear that 

(b)(a)

(c)(b)(a)
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the maximum tensile stress occurs between the first layer and the second layer. Fig. 7(b) reveals that maximum tensile stress 

occurs in the first layer and maximum compressive stress occurs in the second layer. Fig. 7(c) reveals that compressive stress 

occurs inside the hollow cylinder and its absolute value increases with time. The maximum compressive stress occurs in the 

third layer.  Figs. 8(a) and 8(b) show the variations of electric potential   and magnetic potential  ,  respectively,  along the 

radial direction. From these figures, it is clear that the absolute values of the electric and magnetic potential increases with time, 

and attain their maximum value in the steady state. The electric potential is almost constant in the first layer, i.e. the 

magnetostrictive layer. In contrast, the magnetic potential is almost zero in the second layer, i.e. the piezoelectric layer.  

  

Fig. 5 Variation of temperature change in the radial direction  

(Case 2, 75.01 R ) 

Fig. 6 Variation of displacement 
ru  in the radial direction  

(Case 2, 75.01 R ) 

  

Fig. 7 Variation of thermal stresses in the radial direction (Case 2, 75.01 R ): (a) normal stress 
rr  (b) normal stress 

  and (c) normal stress 
zz  

  

Fig. 8 Variation of (a) electric potential and (b) magnetic potential in the radial direction (Case 2, 75.01 R ) 

In order to assess the influence of the position of the interface between the first layer and the second layer, numerical 

results for case 1 and 79.0,77.0,75.0,73.0,71.01 R  were obtained; these results are shown in Figs. 9 and 10. Figs. 9(a) and (b) 

(b)(a)

(b)(a) (c)
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show the variations of thermal stresses 
rr  and 

 , respectively, in the steady state. Figs. 10(a) and (b) show the variations of 

electric and magnetic potential, respectively, in the steady state. From Figs. 9(a) and (b), it is clear that the distribution of the 

thermal stress 
rr  changes substantially with a change in the parameter 

1R , whereas the maximum tensile stress 
  increases 

with an increase 
1R . It can be seen from Figs. 10(a) and (b) that the absolute values of electric potential increase and those of 

magnetic potential decrease with an increase in 
1R . 

  

Fig. 9 Variation of thermal stresses in the radial direction (Case 1,  ):   (a) normal stress 
rr  and (b) normal stress 

  

  

Fig. 10 Variation of (a) electric potential and (b) magnetic potential in the radial direction (Case 1,  ) 

In order to examine the convergence of the series expansions of Bessel functions, the influence of the upper limit (
maxn ) 

of series of Eq. (33) on the temperature change for Case 1 and 75.01 R  is shown in Table I. In order to examine the 

convergence of the numerical results, the influence of the upper limit (
maxj ) of series of Eq. (8) on the temperature change, 

displacement, stresses, electric potential and magnetic potential are shown in Table II. From the viewpoint of convergence, the 

numerical results in the transient state were obtained under the condition that the upper limit of series with respect to n  and j  

are taken as 120max n  and 12max j . 

TABLE I INFLUENCE OF THE UPPER LIMIT OF SERIES OF EQ. (33) (CASE 1, 75.01 R ) 

01.0 , 12max j  Use of Eq. (8) 
Use of Eq. (33) 

40max n  

Use of Eq. (33) 

80max n  

Use of Eq. (33) 

120max n  

)7.0( rT  2.5578E-01 2.5578E-01 2.5578E-01 2.5578E-01 

)75.0( rT  First layer 

Second layer 

3.1073E-01 

3.1073E-01 

3.1061E-01 

3.3600E-01 

3.1073E-01 

3.1073E-01 

3.1073E-01 

3.1073E-01 

)8.0( rT   Second layer 4.0308E+00 4.5564E+00 4.0308E+00 4.0308E+00 

(b)(a)

(b)(a)



Advances in Materials Science and Applications  Jun. 2013, Vol. 2 Iss. 2, PP. 48-59 

- 57 - 

TABLE II INFLUENCE OF THE UPPER LIMIT OF SERIES OF EQ. (8) (CASE 1, 75.01 R ) 

01.0   120max n  1max j  6max j  12max j  

)7.0( rT  2.4998E-01 2.5578E-01 2.5578E-01 

)75.0( rT  First layer 

Second layer 

3.0724E-01 

3.0724E-01 

3.1073E-01 

3.1073E-01 

3.1073E-01 

3.1073E-01 

)8.0( rT   Second layer 

Third layer 

4.3183E-01 

4.3183E-01 

4.3080E-01 

4.3080E-01 

4.3080E-01 

4.3080E-01 

)0.1( rT  5.0376E-01 5.0229E-01 5.0229E-01 

)7.0( rur  3.1416E-01 3.1409E-01 3.1409E-01 

)75.0( rur First layer 

Second layer 

3.2053E-01 

3.2053E-01 

3.2073E-01 

3.2073E-01 

3.2073E-01 

3.2073E-01 

)8.0( rur  Second layer 

Third layer 

3.3318E-01 

3.3318E-01 

3.3344E-01 

3.3344E-01 

3.3344E-01 

3.3344E-01 

)0.1( rur  4.2714E-01 4.2699E-01 4.2699E-01 

)75.0( rrr First layer 

Second layer 

3.8272E-03 

3.8272E-03 

3.2396E-03 

3.2396E-03 

3.2396E-03 

3.2396E-03 

)8.0( rrr Second layer 

Third layer 

1.4562E-02 

1.4562E-02 

1.3906E-02 

1.3906E-02 

1.3906E-02 

1.3906E-02 

)7.0( r  1.0730E-01 9.7061E-02 9.7061E-02 

)75.0( r First layer 

Second layer 

-1.7183E-02 

2.5420E-01 

-2.3193E-02 

2.4960E-01 

-2.3193E-02 

2.4960E-01 

)8.0( r Second layer 

Third layer 

7.9590E-02 

-4.3966E-03 

8.1033E-02 

-2.0815E-03 

8.1033E-02 

-2.0815E-03 

)0.1( r  -1.2698E-01 -1.2448E-01 -1.2448E-01 

)7.0( r  -1.2077E-03 -1.2573E-03 -1.2573E-03 

)75.0( r  First layer 

Second layer 

1.2591E-07 

1.2591E-07 

1.2624E-07 

1.2624E-07 

1.2624E-07 

1.2624E-07 

)7.0( r  -1.8855E+08 -1.8904E+08 -1.8904E+08 

)75.0( r  First layer 

Second layer 

-1.8855E+08 

-1.8855E+08 

-1.8904E+08 

-1.8904E+08 

-1.8904E+08 

-1.8904E+08 

In order to confirm the results, the numerical results from this formulation are compared with those obtained using the two-

layered composite hollow cylinder constructed of isotropic elastic and piezoelectric layers [26]. The variations of 

displacement
ru , thermal stresses

rr ,   and electric potential are shown in Figs. 11(a), (b), (c) and (d), respectively. P/M/S in 

Fig. 11 shows the numerical results for case 1, 799.01 R  and 8.02 R . P/S  in Fig. 11 shows the numerical results for the 

two-layered composite hollow cylinder constructed of isotropic elastic and piezoelectric layers which is the stacking sequence 

BaTiO3/(mild steel) and 8.01 R .As shown in Fig. 11, there is little difference between two analytical models. 

  

(b)(a)
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Fig. 11 Comparison between two analytical models: 

(a) displacement 
ru , (b) normal stress 

rr  ,  (c) normal stress 
  and (d) electric potential 

V. CONCLUSIONS 

In this study, we obtained the exact solution of the transient thermoelastic problem of a laminated hollow cylinder 

constructed of isotropic elastic and magneto-electro-thermoelastic materials under uniform surface heating as the plane strain 

state. As an illustration, we carried out numerical calculations for a three-layered hollow cylinder composed of piezoelectric 

and magnetostrictive materials and examined its behavior in the transient state in terms of temperature change, displacement, 

stress, and electric and magnetic potential distributions. Furthermore, the effects of the stacking sequence and position of the 

interface were investigated. Though numerical calculation was carried out for a three-layered hollow cylinder, numerical 

calculation for a laminated hollow cylinder constructed of isotropic elastic and magneto-electro-thermoelastic materials with 

an arbitrary number of layer and arbitrary stacking sequence can be carried out. The present solution can serve as a benchmark 

to the analysis of a laminated hollow cylinder constructed of isotropic elastic and magneto-electro-thermoelastic materials 

based on various numerical methods. 
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