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Abstract- With the growing importance of XML in data 
exchange, much research has been done in providing flexible 
query mechanisms to extract data from XML documents. In 
this paper, we focus on the query evaluation in an XML 
streaming environment, in which data streams arrive 
continuously and queries have to be evaluated even before all 
the data of an XML document are available. Two algorithms 
will be discussed. One is for the unordered tree matching, by 
which only ancestor-descendant and parent-child relationships 
are considered. It requires O(|T’|⋅leafQ) time, where T’ is a 
subtree of document tree T, in which each node matches at 
least one node in query Q and leafQ is the number of leaf nodes 
in Q. The other is for the ordered tree matching, by which the 
left-to-right order of nodes must also be taken into account. It 
runs in O(|T’|⋅|Q|) time. Furthermore, our algorithms achieve 
high time performance without trading off space requirements. 
They have the same caching space and buffering space 
overhead as state-of-the-art stream-querying algorithm. We 
show the efficiency and effectiveness of our algorithms by a lot 
of experiments. 

Keywords- XML Documents; Trees; Paths; XML Streams; 
XML Pattern Matching 

I. INTRODUCTION 

There is much current interest in processing streaming 
XML data, using queries expressed in languages such as 
XPath [52] and XQuery [53]. A streaming environment, as 
found with stock market data, network monitoring, or sensor 
network, differs from non-streaming XPath query 
processing in the following aspect. In a streaming 
environment, data streams which can be potentially infinite, 
arrive continuously, and must be processed in a single 
sequential scan due to the limited storage space available. 
Query results should be distributed incrementally once they 
are found, possibly before we have read all the data. In 
addition, the query processing algorithm should scale well 
in both time and space. An algorithm that meets such an 
environment for query evaluation over XML data is called a 
streaming evaluation algorithm.  

In this paper, we address this issue, and propose two 
streaming algorithms for evaluating unordered and ordered 
tree matching, respectively. 

- Data model and query language 

Abstractly, an XML document can be considered as a 
tree structure with each node standing for an element name 
from a finite alphabet ∑; and an edge for the element-
subelement relationship. 

In an XML streaming environment, an XML document 

tree T is modeled as a stream S of modified SAX (Simple 
API for XML) events: startElement(tag, level, id) and 
endElement(tag, level), where tag is the tag of the node 
being processed, level is the level at which the node appears, 
and id is the unique identifier assigned to the node. A node 
in T exactly corresponds to a startElement (and the 
corresponding endElement event) in S. In addition, if an 
element e has no subelement, a text is possibly associated 
with its startElement. 

These events are the input to our query evaluation 
processor. 

On the other hand, queries in XML query languages, 
such as XPath [52], XQuery [53], XML-QL [21], and Quilt [13, 14], 
typically specify patterns of selection predicates on multiple 
elements that also have some specified tree structured 
relations. For instance, the following XPath expression: 

book[title = ‘Art of Programming’]//author[fn = ‘Donald’ 
and ln = ‘Knuth’] 

matches author elements that (i) have a child subelement fn 
with content ‘Donald’, (ii) have a child subelement ln with 
content ‘Knuth’, and are descendants of book elements that 
have a child title subelement with content ‘Art of 
Programming’. This expression can be represented as a tree 
structure as shown in Fig. 1. 

 

 

 

 

 

In this tree structure, a node v is labeled with an element 
name or a string value, denoted as label(v). Besides, there 
are two kinds of edges: child edges (c-edges) for parent-
child relationships, and descendant edges (d-edges) for 
ancestor-descendant relationships. A c-edge from node v to 
node u is denoted by v → u in the text, and represented by a 
single arc; u is called a c-child of v. A d-edge is denoted v 
⇒ u in the text, and represented by a double arc; u is called 
a d-child of v. Also, a node in Q can be a wildcard ‘*’ that 
matches any element in T. Such a query is often called a 
twig pattern. In the following discussion, we use 
startElement and node interchangeably since each 
startElement event in S exactly corresponds to a node in T. 

- XML query evaluation and tree matching 

Fig. 1 A query tree 
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In any DAG (directed acyclic graph), a node u is said to 
be a descendant of a node v if there exists a path (sequence 
of edges) from v to u. In the case of a twig pattern, this path 
could consist of any sequence of c-edges and/or d-edges. 
Based on these concepts, the tree embedding can be defined 
as follows. 

Definition 1 (unordered tree matching) An embedding of a 
tree pattern Q into an XML document T is a mapping f: Q 
→ T, from the nodes of Q to the nodes of T, which satisfies 
the following conditions: 

(i) Preserve node label: For each u ∈ Q, label(u) = 
label(f(u)). 

(ii) Preserve c/d-child relationships: If u → v in Q, then f(v) 
is a child of f(u) in T; if u ⇒ v in Q, then f(v) is a 
descendant of f(u) in T. � 

If there exists a mapping from Q into T, we say, Q can be 
embedded into T, or say, T contains Q. The purpose of XML 
query evaluation is to find all the subtrees of T, which 
contain Q. 

Notice that an embedding could map several nodes with 
the same tag name in a query to the same node in a database. 
It also allows a tree mapped to a path, by which the order of 
siblings is totally unconsidered. This definition is a little bit 
different from the ordered tree matching defined below.  

Definition 2 (ordered tree matching) An embedding of a 
tree pattern Q into an XML document T is a mapping f: Q 
→ T, from the nodes of Q to the nodes of T, which satisfies 
the following conditions: 

(i) same as (i) in Definition 1. 
(ii) same as (ii) in Definition 1. 
(iii) Preserve left-to-right order: For any two nodes v1 ∈ Q 

and v2 ∈ Q, if v1 is to the left of v2, then f(v1) is to the left 
of f(v2) in T. � 
v1 is said to be to the left of v2 if they are not related by 

the ancestor-descendant relationship and v2 follows v1. 

We illustrate the left-to-right relationship in Fig. 2. 

 

Fig. 2 Illustration for left and right relatives 

This kind of tree mappings is useful in practice. For 
example, an XML data model was proposed by Catherine 
and Bird [6] for representing interlinear text for linguistic 
applications, used to demonstrate various linguistic 
principles in different languages. For the purpose of 
linguistic analysis, it is essential to preserve the linear order 
between the words in a text [6]. In addition to interlinear text, 
the syntactic structure of textual data should be considered, 
which breaks a sentence into syntactic units such as noun 
clauses, verb phrases, adjectives, and so on. These are used 
by the language TreeBank [38] to provide a hierarchical 

representation of sentences. Therefore, by the evaluation of 
a twig pattern query against the TreeBank, the order 
between siblings should be considered [38, 43]. 

For streaming algorithms, we distinguish between two 
kinds of usage-based memory space overheads: 

Caching space – the memory space used for the run-time 
stack to accommodate document elements. 

Buffering space – the memory space used to store 
potential answer nodes. 

We denote the size of the caching and the buffering 
space by CS and BS, respectively. Especially, BS is 
measured as the maximal number of potential answer nodes 
buffered at any time point during the running time. If in Q 
the nodes are labeled with different tag names, BS is in the 
order of |T|.  (See [23]). However, if different nodes in Q are 
labeled with the same tag name, BS might be bounded by 
O(|T|⋅|Q|). In Fig. 3, we show a worst case. 
  

 
Fig. 3 Illustration for the worst case BS 

In the figure, querying Q (shown in Fig. 3(a)) against T 
(shown in Fig. 3(b)) has to buffer c1 through cn for each C in 
Q until b arrives. Fig. 3(c) is the XML document 
represented by T. 

We will present two streaming algorithms according to 
the above two different definitions, respectively. The 
algorithm for evaluating unordered tree matching requires 
O(|T’|⋅leafQ) time and O(|Q|⋅r) caching space, where T’  is a 
subtree of T, in which each node matches at least one node 
in Q and leafT’ (leafQ) represents the number of the leaf 
nodes of T’ (resp. Q), and r is the maximal number of the 
nodes on a path in T, which are labeled with the same tag 
name. The algorithm for evaluating ordered tree matching 
runs in O(|T’|⋅|Q|) time and O(|Q|⋅r) caching space. 

The remainder of the paper is organized as follows. In 
Section II, we review the related work. In Section III, we 
discuss an algorithm for evaluating unordered tree matching. 
In Section IV, we discuss an algorithm for evaluating 
ordered tree matching. Section V is devoted to the 
experiments. Finally, a short conclusion is set forth in 
Section VI. 

II. RELATED WORK 
In the past two decades, there is much research on the 

tree pattern matching for the evaluation of XML queries. 
Nearly all the proposed strategies can roughly be divided 
into two categories. One is for the so-called XML streaming 
environment and the other is index-based.  

- Query evaluation in XML streaming environment 

v all nodes to 
the left of v 

all nodes to 
the right of v 

(b) 

T: Q: 
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 <c1> 1 </ c1> 
  … … 
 <c1> 1 </ cn> 
 <b> 0 </ b> 
</ a> 
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A great many strategies have been proposed to evaluate 
XPath queries in an XML streaming environment [2, 12, 18, 23, 

27, 32, 33, 39, 40]. The methods discussed in [2, 27] are based on 
finite state automata (FSA), but only able to handle single 
path queries, i.e., a query containing branching cannot be 
processed, as observed in [39]. The method proposed in [40] 
is a general strategy, but requires exponential time 
(O(|T|⋅2|Q|)) in the worst case, as analyzed in [40]. The 
methods discussed in [32, 33] do not support //-edges. If we 
extend them to general cases, exponential time is required. 
In [12], Chen et al. first proposed a polynomial time 
algorithm, called TwigM, which runs in O(Th⋅Qd⋅|Q|⋅|T| + 
|Q|2⋅|T|) time and O(|Q|⋅r) caching space, where Th is the 
height of T and Qd is the largest outdegree of a node in Q. 
By this method, each node q of Q is associated with a 
boolean array of length Qd and a stack of size Th, in which 
each element is a node v from T such that its relationship 
with the nodes in the stack associated with q’s parent q’ 
satisfies the relationship between q and q’. Therefore, each 
time to figure out a stack and push a node into it, 
O(Th⋅Qd⋅|Q|) time is required, leading to a time complexity 
of O(Th⋅Qd⋅|Q|⋅|T| + |Q|2⋅|T|). See Theorem 4.4 in [12]. The 
algorithm discussed in [23] greatly improves TwigM, 
running in O(|Q|⋅|T|) time and O(|Q|⋅r) caching space.  

- Query evaluation in indexing environment 

Besides the above mentioned streaming, there is bunch 
of work on the index-based strategies. They can be further 
divided into two groups: the unordered tree pattern queries [5, 

13, 14, 16, 19, 20, 24, 29, 34] and the ordered tree pattern matching [15, 

43, 50, 51]. In the following, we only review some of them. 

The method proposed in [34] is called XISS. It is a 
typical method based on indexing. By this method, single 
elements/attributes are indexed as the basic unit of queries 
and a complex path expression is decomposed into a set of 
basic path expressions. Atom expressions (single elements 
or attributes) are then recognized by directly accessing the 
index structure. However, all other kinds of expressions 
need join operations to stitch individual components 
together to get the final results.  

Paths are also used as the basic indexing units by some 
methods, such as DataGuide [24] and Fabric [20]. By 
DataGuide, a concise summary of path structures for a 
semi-structured database is established, but restricted to raw 
paths. Therefore, complex path expressions or regular 
expression queries cannot be handled. Fabric works better in 
the sense that the so-called refined paths are supported. 
Such queries may contain branches, wild-cards and 
ancestor-descendant operators (//). However, any query not 
in the set of refined paths has to resort to join operations. 

APEX improves DataGuide by introducing the so-called 
adaptive path indexes and uses data mining technique to 
summarize paths that frequently appear in the query 
workload. However, it suffers from two serious problems. 
First, it has to be updated as the query workload changes. 
Second, it keeps every path segment of length 2, instead of 
maintaining all paths starting from the root. Thus, to get the 
final results, the join operations have to be conducted. F+B 

[29] shares the flavour of Fabric [20]. It is based on the so-
called forward and backward index (F&G index [1]), which 
covers all the branching paths. It works well for pre-defined 
query types. In normal cases, however, such a set of F&B 
indexes tends to be large and therefore the performance 
degrades. 

By all the above methods, the indexes over binary 
relationships between pairs of nodes, such as parent-child 
and ancestor-descendant relations, or the indexes over paths 
can be very large, even when the input and final result sizes 
are much more manageable. As an important improvement, 
TwigStack was proposed by Bruno et al. [5], which stores the 
intermediate results in stacks to represent in linear space a 
potentially exponential number of answers. However, 
TwigStack are suitable only for the queries that contain no /-
edges. If a query contains both /-edges and //-edges, some 
useless path matchings have to be conducted. In the worst 
case, O(|D|⋅|Q|) time is needed for doing the merge joins as 
pointed out by Chen et al. (see page 287 in [19]). This 
method is further improved by several researchers, such as 
iTwigJoin [9] which exploits different data partition 
strategies, and TJFast [35] which accesses only leaf nodes by 
using extended Dewey IDs. By both methods, however, the 
path joins can not be avoided. In [19], Chen et al. discussed 
a method, called Twig2Stack, which works in a quite 
different way. It represents the twig results using the so-
called hierarchical stack encoding to avoid any possible 
useless path matchings. In [19], it is claimed that 
Twig2Stack needs only O(|D|⋅|Q| + |subTwigResults|) time 
for generating paths. A careful analysis, however, shows 
that the time complexity for this task is actually bounded by 
O(|D|⋅|Q|2 + |subTwigResults|) for the following reason. 
Each time a node is inserted into a stack associated with a 
node in Q, not only the position of this node in a tree within 
that stack has to be determined, but a link from this node to 
a node in some other stack has to be constructed, which 
requires to search all the other stacks in the worst case. The 
number of these stacks is |Q| (see Fig. 4 in [19] to know the 
working process). 

In 2003, Wang et al. [50] proposed a first index-based 
method, called ViST, for handling ordered twig pattern 
queries. By this method, a document is stored as a sequence: 
(a1, p1), …, (ai, pi), …, (am, pm), where each ai is an element 
or a word in the document, and pi a path from the root to it. 
Using this method, the join operations are replaced by 
searching a trie structure (wrongly called suffix tree in [50]). 
The drawback of this method is that a large index structure 
has to be created. (As pointed out in [43], the size of indexes 
can be higher than linear in the total number of elements in 
an XML document.) Another problem of this method is that 
a document tree that does not contain a query pattern may 
be designated as one of the answers due to the ambiguity 
caused by identical sibling nodes. This problem is removed 
by the so-called forward prefix checking discussed in [51]. 
Doing so, however, the theoretical time complexity is 
dramatically increased.  

Such problems are removed by a method, called PRIX, 
discussed in [43]. This method constructs two Prüfer 
sequences to represent an XML document: a numbered 
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Prüfer sequence and a labeled Prüfer sequence. For all the 
labeled Prüfer sequences, a virtual trie is constructed, used 
as an index structure. In this way, the size of indexes is 
greatly reduced to O(|T|). However, it suffers from very high 
CPU time overhead because the string matching defined in 
[43] allows a query pattern string to match non-consecutive 
segments within a document target string (see Definition 4.1 
in [43], page 306). The time complexity of PRIX is bounded 
by O(k⋅|Q|⋅log|Q|) time (see page 328 in [43]), where k is the 
number of subsequences of a labeled Prüfer document 
sequence, which match Q’s labeled Prüfer sequence. In the 
worst case, k is in the order of O(|T||Q|) according the 
following analysis. For each position i (in the target) 
matching the first element in the pattern string the second 
element of the pattern can match possibly at |T| - i - 1 
positions; and for each position j matching the second 
element in the pattern, the third element in the pattern can 
possibly match at |T| - j - 1 positions, and so on. This shows 
that k can be an exponential number. 

III. ALGORITHM FOR UNORDERED TREE MATCHING  

In this section, we describe a streaming algorithm for 
evaluating unordered tree matching. First, in Subsection A, 
we consider simple cases that a twig pattern contains only 
//-edges, wildcards and branches. Then, in Subsection B, we 
prove the correctness of the algorithm and analyze its 
computational complexities. Next, in Subsection C, we 
extend the simple-case algorithm to general cases. 

A. Basic Algorithm 

Recall that in a streaming environment, the input to the 
XML query processor is a steam of modified SAX events; 
and an event is either startElement(tag, level, id) or 
endElement(tag, level). In order to evaluate a query Q, we 
have to scan a stream S from the beginning to the end and 
report any startElement event once the corresponding 
subtree is found containing Q. 

For this purpose, we will maintain a global stack 
structure with each entry in it being a triplet: <p, e, c>, 
where e is a startElement event, p is a pointer to an entry in 
stack where its parent startElement is stored and c a pointer 
to the head of a linked list containing all the nodes 
constructed for its child elements, as illustrated in Fig. 4. 

 
Fig. 4 Illustration for stack structure 

During the process, two other data structures are also 
maintained and computed to facilitate the discovery of 
subtree matchings according to Definition 1. 

- Each node v (corresponding to a startElement event in S) 
in a document tree T is associated with a set, denoted 
α(v), containing all those nodes q in Q such that Q[q] 
can be embedded into T[v]. 

- Each q in Q is associated with a value δ(q), defined as 
follows. 

Initially, for each q ∈ Q, δ(q) is set to φ. During the tree 
matching process, δ(q) is dynamically changed as below. 

(i) Let v be a node in T with parent node u.  
(ii) If q appears in α(v), change the value of  δ(q) to u. 

Then, each time before we insert q into α(v), we will do 
the following checkings: 

1. Check whether label(q) = label(v). 
2. Let q1, ..., qk be the child nodes of q. For each qi (i = 1,..., 

k), check whether δ(qi) is equal to v. 

If both (1) and (2) are satisfied, insert q into α(v). 

Below is the algorithm, which takes an event stream S 
and a twig pattern Q as the input. During the process, S is 
scanned from the beginning to the end and once a 
startElement event is found such that the subtree rooted at 
the corresponding node contains Q it will be reported. 

In the algorithm, a virtual startElement event is used, 
which is considered to be the parent of the first startElement 
event in S (which corresponds to the root of T). The level 
number of the virtual event is set to be -1, and its tag and id 
are both set to be nil. Two variables E and E’ are used. E’ is 
for the current startElement event being processed while E 
is to store the parent of the current startElement event. In 
addition, each time a node v is constructed, a subprocedure 
containment-check(v, Q) is invoked to find all those q ∈ Q 
such that T[v] contains Q[q] and store them in α(v). 

Algorithm query-evaluation(S, Q) 
input:  S - an XML stream; Q - a twig pattern. 
output: report any startElement such that for the 

corresponding node v, T[v] contains Q. 
begin 
1. push(the first element of S, stack); 
2. E := virtual event; 
3. while stack is not empty do { 
4.  E’ := top(stack); (*check the top element in stack*) 
5.  E’.p := address of E; (*establish parent link for E’*) 
6.  let e be the next element in S; 
7.  if  e is a startElement event then { 
8.   E := E’; 
9.   push(e, stack); 
10.  } 
11.  else (*e is an endElement event.*) 
12.  {E’’ := pop(stack);  (*pop the top element out of stack*) 
13.  generate node v for E’’; E := E’’.p; 
14.  append v to the end of (E’’.p).c;   
15.  call containment-check(v, Q); 
16.  } 
17. } 
end 

The above algorithm processes the events in S one by 
one. Therefore, the corresponding document tree T is 
searched in the depth-first traversal fashion. Each time a 
startElement event is encountered, it will be pushed into 

ck 
 … 

 … c1 

 … 

 … 
 p     e       c 

stack structure: 
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stack (see line 1 and lines 6 - 9) and stay there until its 
corresponding endElement is encountered (see lines 11 - 12). 
In this case, it will be popped out of stack and a node v for it 
will be constructed (see line 13), for which a containment 
check will be performed (see line 15).  

Example 1 Consider the document tree T in Fig. 5(a). Its 
XML stream S is shown in Fig. 5(b). Applying the 
algorithm query-evaluation( ) to S, we will regain T if line 
15 is not executed. In Fig. 6, we trace the first 9 steps of the 
execution process. 

 
 
 
 
 
 
 

Fig. 5 A document tree and its XML stream 

In the sample trace, special attention should be paid to 
Step 4, 8 and 9. 

In Step 4, endE(c, 2) is encountered and the top element 
E = (c, 2, 3) of the stack is popped out. For this element, a 
node v3 is created. At the same time, a child link (from E’ = 
(a, 1, 2)) is set to point to it since E.p = 1, which is the 
position (in the stack) where E’ is stored. 

In step 8, node v4 is constructed. It is a child of the 
element (a, 1, 2) and therefore is appended to the end of the 
linked list associated with (a, 1, 2). We also notice that v4 
itself is the parent of v5. 

In step 9, v2 is generated. Since it is a child of (a, 0, 1), a 
child link (from (a, 0, 1)) is established to point to it. 
Particularly, we have a subtree rooted at v2 created. � 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

Fig. 6 Trace of Example 1 

From the above discussion, we can see that a document 
tree can always be constructed by scanning the 
corresponding XML stream S. For the purpose of query 
evaluation, however, we have to check the containment each 
time a node of T is constructed. This is done by calling 
Algorithm containment-check(v, Q), in which another two 
functions are invoked to do different checkings: 

- element-check(u, q): u is an element containing sub-
elements. It checks whether T[u] contains Q[q]. If it is 
the case, return {q}. Otherwise, it returns an empty set ∅. 

- bottom-element-check(u, Q): u is an element containing 
no subelement. It returns a set of nodes in Q: {q1, ..., qk} 
such that for each qi (1 ≤ i ≤ k) the following conditions 
are satisfied. 

 (i) label(u) = label(qi). 
 (ii) if qi has a child, then the child must be a text and 

matches the text associated with u. 

Algorithm containment-check(v, Q) 
input: v - a node in T; Q - a twig pattern. 
output: α(v) - a set of query node q such that T[v] contains 
Q[q].  
begin 
1. C := ∅; C1 := ∅; C2 := ∅; α := ∅; 
2. if v.c is not nil then (*v has some subelements.*) 
3. { let v1, ..., vk be the child nodes of v; 
4. α := α(v1) ∪ ... ∪ α(vk); 
5. for each q ∈ α do  
6. { δ(q) := v; C := C ∪ {q’s parent}; } 
7. remove all α(vj) (j = 1, ..., k);  
8. for each q’ in C do 
9. C1 := C1 ∪ element-check(v, q’); 
10. } 
11. C2 := bottom-element-check(v, Q); 
12. return α(v) = α ∪ C1 ∪ C2; 
end 

Function element-check(u, q) 
begin 
1. C1 := ∅; 
2. if label(q) = label(u) then 
 (*If q is ‘*’, the checking is always successful.*) 
3. {let q1, ..., qk be the child nodes of q; 
4. if for each qi (i = 1, ..., k) δ(qi) is equal to u  
5. then {C1 := {q};  

v3 a v1 

a v2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

v6 c 

v5 b 

c v3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

v4 e 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b v7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

v8 b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. startE(a, 0, 1) 9. endE(a, 1) 
2. startE(a, 1, 2) 10. startE(c, 1, 6) 
3. startE(c, 2, 3) 11. startE(b, 2, 7)  
4. endE(c, 2) 12. endE(b, 2)  
5. startE(e, 2, 4) 13. startE(b, 2, 8)  
6. startE(b, 3, 5) 14. endE(b, 2)  
7. endE(b, 3) 15. endE(c, 1) 
8. endE(e, 2) 16. endE(a, 0)  

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 p        startE         c 

At the beginning, stack is 
empty. 

Step 1: 1st startE into stack 

(a, 0, 1) 

Step 2: 2nd startE into stack 

0 (a, 1, 2) 
(a, 0, 1) 

 p        startE         c 

Step 3: 3rd startE into stack 

1 (c, 2, 3) 
0 (a, 1, 2) 

(a, 0, 1) 
 p        startE         c 

Step 4: meet an endE; pop 
stack; a node v3 is constructed. 

0 (a, 1, 2) 
(a, 0, 1) 

 p        startE         c 
v3 

1 (e, 2, 4) 
0 (a, 1, 2) 

Step 5: 4th startE into stack 

(a, 0, 1) 
 p        startE         c 

v3 

Step 6: 5th startE into stack 

(b, 3, 5) 2 
1 (e, 2, 4) 
0 (a, 1, 2) 

(a, 0, 1) 
 p        startE         c 

v3 

Step 7: meet an endE; pop 
stack; a node v5 is constructed. 

1 (e, 2, 4) 
0 (a, 1, 2) 

(a, 0, 1) 
 p        startE         c 

v3 

v5 

Step 8: meet an endE; pop 
stack; a node v4 is constructed. 

0 (a, 1, 2) 
(a, 0, 1) 

 p        startE         c 
v3 v4 

v5 

Step 9: meet an endE; pop 
stack; a node v2 is constructed. 

(a, 0, 1) 
 p        startE         c 

v4 

v5 

v2 

 p        startE         c 
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6. if q is root then report u};} 
7. return C1; 
end 

Function bottom-element-check(u, Q) 
begin 
1. C2 := ∅; flag := false; 
2. for each leaf node q in Q do { 
3.  if q is a text then { 
4.   let q’ be the parent of q; 
5.   if label(q’) = label(u) and q matches the text  
   associated with u 
6.   then { C2 := C2 ∪ {q’}; flag := true; } 
7.   else { 
8. if label(q) = label(u) then { 
9. C2 := C2 ∪ {q}; flag := true; 
10. } 
11. if q is root and flag := true then report u; 
12. flag := false; 
13. } 
14. return C2; 
end 

One of the inputs to the algorithm containment-check( ) 
is a node v constructed in the execution of query-
evaluation(S, Q). If v corresponds to an element that has no 
subelement, the function bottom-element-check( ) is called 
(see line 11), by which α(v) will be established by checking 
it against all the leaf nodes of Q. Otherwise, α(vi) will be 
checked for all the child nodes vi of v (see lines 3 - 6). 
Concretely, for each q in α (= α(v1) ∪ ... ∪ α(vk)), the value 
of δ(q) will be changed to v. Meanwhile, q’s parent will be 
stored in a temporary variable C. Then, all the nodes q’ in C 
are the candidates to be further checked. This is done by 
calling element-check(v, q’) to see whether T[v] contains 
Q[q’] (see lines 8 - 9). Special attention should be paid to 
the fact that bottom-element-check( ) should also be applied 
to v to find all the leaf nodes of Q which matches v. 

Finally, we notice that in the execution of element-
check( ), δ(q)’s are utilized to facilitate the checkings (see 
lines 3 - 5 in element-check( )). 

The following example helps for illustration. 

Example 2 Consider T and S shown in Fig. 4(a) and Q 
shown in Fig. 7.  
 
 
 
 

Fig. 7 A tree pattern query 

By executing query-evaluation(S, Q), the nodes of T will 
be constructed bottom up.  

The first constructed node is v3, by which containment-
check(v3, Q) is invoked. Since it is a leaf node and matches 
q3 in Q, containment-check(v3, Q) returns α(v3) = {q3} (see 
lines 11 in containment-check( )). 

The second constructed node is v5. In the same way, we 
will set α(v5) = {q2}. 

When v4 is constructed, containment-check(v4, Q) is 
called. Since it is the parent of v5, we will first set δ(q2) to v4 
in terms of α(v5) = {q2} (see line 4 and 6 in containment-
check( ), and Fig. 7 for illustration.) After that, element-
check(v4, q1) is invoked. (Note that q1 is the parent of q2. See 
lines 8 - 9.) Since label(v4) = e ≠ label(q1) = a, it returns C1 
= ∅. bottom-element-check(v4) also returns C2 = ∅. So α(v4) 
= α(v5) ∪ C1 ∪ C2 = {q2} (see line 12 in containment-
check( )). 

 
 
 
 
 
 
 

Fig. 8 Sample trace 

The next created node is v2. For this node, we will first 
set δ(q2) = δ(q3) = v2 in the execution of containment-
check(v2, Q)  (in terms of α(v4) = {q2} and α(v3) = {q3}, 
respectively). Next, we call element-check(v2, q1) to check 
whether label(v2) = label(q1). It is the case. So we will 
further check whether δ(qi) (i = 2, 3) is equal to v2. Since 
both δ(q2) and δ(q3) are equal to v2, we have that T[v2] 
contains Q[q1]. Therefore, C1 = {q1}, and α(v2) is set to be 
α(v3) ∪ α(v4) ∪ C1 ∪ C2 =  α(v3) ∪ α(v4) ∪ {q1} ∪ ∅ = 
{q1, q2, q3}.  

In a next step, v7 will be constructed. It is a leaf node and 
matches q2. Therefore, α(v7) = {q2}. 

Similarly, we will set α(v8) = {q2}. 

When v6 is constructed, δ(q2) will be changed to v6 
(according to   α(v7) = α(v8) = {q2}), but δ(q3) (= v2) 
remains not modified. Since element-check(v6, q1) returns ∅, 
α(v6) = α(v7) ∪ α(v8) ∪ C1 ∪ C2 = {q2, q3}. 

Finally, we will meet v1. In the execution of 
containment-check(v1, Q), δ(q1) is set to v1, δ(q2) to v1, and 
δ(q3) to v1. Since label(v1) = label(q1), δ(q2) = v1 and δ(q3) = 
v1, element-check(v1, q1) returns {q1}. Therefore, α(v1) is set 
to α(v2) ∪ α(v6) ∪ C1 ∪ C2 = {q1, q2, q3}. � 

B. Correctness and Complexities 

In this subsection, we prove the correctness of 
containment-check( ) and analyze its computational 
complexities. 

First of all, we denote by t(v) the time when v is created. 

Concerning t(v), we have the following lemma. 

Lemma 1 Let v1, v2, and v3 be three nodes in a tree with 
t(v3) > t(v2) > t(v1). If v1 is a descendant of v3, then v2 must 
also be a descendant of v3. 
Proof. We consider two cases: i) v2 is to the right of v1, and 
ii) v2 is an ancestor of v1. In case (i), v2 is pushed into stack 
later than v1 and therefore later than v3. This shows that v2 is 

q3 
b q2 

q1 
a Q: 

c 

α(v4) = {q2} 

α(v2) = {q1, q2, q3} 

c b q3 q2 

q1 a Q: 

c a v6 v2 

v1 a T: 

b v3 e v4 b v7 b v8 

b v5 

α(v3) = {q3} 

α(v5) = {q2} 

δ(q2) = v4 
In terms of α(v5) = 
{q2}, δ(q2) is set to 
be v4 since v4 is the 
parent of v5. 
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a descendant of v3. Otherwise, if v2 is not a descendant of v3, 
we have t(v2) > t(v3). Contradication. In case (ii), v1, v2, and 
v3 are on the same path. Since t(v3) > t(v2) > t(v1), v2 must be 
a descendant of v3.  � 

We illustrate Lemma 1 by Fig. 9. 

 
Fig. 9 Illustration for Lemma 1 

This lemma ensures that the value of δ(q) is always 
appropriately established. Although δ(q) may be changed 
more than once during the computation, at the time point we 
check q, δ(q) must be the parent or the ancestor of a node v 
such that T[v] embeds Q[q]. 

From the above analysis, we have the following 
proposition. 

Proposition 1 Let v be a node in T. Then, for each q in 
α(v) generated by containment-check( ), we have that T[v] 
contains Q[q].  

Proof. The proposition can be proved by induction of the 
tree height by using Lemma 1. � 

Now we analyze the time complexity of the algorithm. 

The dominant cost of the algorithm is the time spent on 
unifying α(v1), ..., α(vk), where vi (i = 1, ..., k) is a child node 
of some node v in T. This part of cost is bounded by  

O( ||
||

Qd
T

i
i∑ ) = O(|T|⋅|Q|), 

where di represents the ourdegree of a node vi in T. 

However, this computational complexity can be 
improved by reducing the size of each α(v). 

For this purpose, we assign each node q in Q a pair of 
numbers as follows. By traversing Q in preorder, each node 
q will obtain a number s(q) when it is first encountered. 
When the search finishes examining all the children of q, it 
will get its second number t(q). These two numbers can be 
used to characterize the ancestor-descendant relationships as 
follows. 

Let q and q’ be two nodes of a tree Q. Then, q’ is a 
descendant of q iff s(q’) < s(q) < t(q) < t(q’). 

In addition, if t(q’) < s(q), q’ is to the left of q. 

Assume that q and q’ are two query nodes appearing in 
α(v). If q’ is a descendant of q, then we can remove q’ from 
α(v) since the containment of Q[q] in T[v] implies the 
containment of Q[q’] in T[v]. This can be done as follows. 

First of all, we notice that the algorithm searches T 
bottom-up. For a leaf node v in T, α(v) is initialized with all 
those leaf nodes in Q, which match v. This can be carried 
out by searching the leaf nodes in Q from left to right. Then, 

for any two leaf nodes q and q’ in α(v), if q’ appears before 
q, we have that s(q’) < s(q). That is, α(v) is initially sorted 
by the s(q) values. We can store α(v) as a linked list. Let α1 

and α2 be two sorted lists with |α1| ≤ leafQ and |α2| ≤ leafQ. 
The union of α1 and α2 (α1 ∪ α2) can be performed by 
scanning both α1 and α2 from left to right and inserting the 
elements in α2 into α1 one by one. During this process, any 
element in α1, if it is a descendant of some element in α2, 
will be removed; and any element in α2, if it is a descendant 
of some element in α1, will not be inserted into α1. The 
result is stored in α1. Obviously, the resulting linked list is 
still sorted by s( ) values and its size is bounded by leafQ. 
We denote this process as merge(α1, α2) and define 
merge(α1, ..., αk-1, αk) to be merge(merge((α1, ..., αk-1), αk). 
In this way, the time complexity of the algorithm can be 
improved to O(|T|⋅leafQ). 

In terms of the above analysis, we have the following 
proposition. 

Proposition 2 The time complexity of containment-
check( ) is bounded by O(|T|⋅leafQ). 

Proof. See the above discussion. � 

Now we analyze the space complexity. First, we notice 
that at any time point stack contains only some nodes on a 
path in T. So the caching space must be bounded by O(Th). 
However, we can slightly change our algorithm to reduce 
the time complexity to O(|Q|⋅r): 

1. In the execution of query-evaluation(S, Q), each time 
we push an element v into stack we will check whether 
the tag name of v appears in Q. If it is the case, push v 
into stack; otherwise, not. Using a hash table over an 
array containing all the tag names appearing Q, this 
checking needs only O(1) time. 

2. In the linked list pointed to by E.c (see Fig. 4) the nodes 
are the descendants of E, satisfying the following two 
conditions: 

i) All these nodes are not descendants of each other.  

ii) Let v be one of these nodes. Then, on the path from E 
to v, no node is labeled with a tag name appearing in Q.  

In order to satisfy conditions (i) and (ii), we need to 
assign each node v in T two values: s(v) and t(v) as for the 
nodes in Q. s(v) and t(v) are generated when the 
corresponding startElement(tag, level, id) and 
startElement(tag, level, id) are encountered, respectively. 

Finally, we point out that since the size of α(v) is 
bounded by leafQ, the worst case buffering space can be 
reduced to O(|T|⋅ leafQ).   

C. General Cases 

The algorithm discussed in Subsection A can be easily 
extended to general cases that a query tree contains both /-
edges and //-edges, as well as wildcards and branches.  

Let q1, ..., qk be the child nodes of q. Let v1, ..., vl be the 

v3  

v1  v2  

v3  

v1  
v2  

v2  is to the right of v1; or 
appears as an ancestor of v1 but, 
as a descendant of v3. 
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child nodes of v. If T[v] contains Q[q], the following two 
conditions must hold: 

- for each /-edge (q, qi) (1 ≤ i ≤ k), there must exist a vj (1 
≤ j ≤ l) such that (v, vj) matches (q, qi), and 

- T[vj] contains Q[qi]. 

In terms of this analysis, we modify Algorithm 
containment-check( ) as follows. 

Algorithm general-containment-check(v, Q) 
input: v - a node in T; Q - a twig pattern. 
output:  (v) - a set of query node q such that T[v] contains 
Q[q].  
begin 
1. C := ∅; C1 := ∅; C2 := ∅; α := ∅; 
2. if v.c is not nil then (*v has some subelements.*) 
3. { let v1, ..., vk be the chi ld nodes of v; 
4.  for i = 1 to k do {  
5.   for q ∈ α(vi) do { 
6.    if ((q is a d-child) or  
7.    (q is a c-child and q matches vi)) 
8.   then δ(q) := v 
9.  }} 
10. α := merge(α(v1), ..., α(vk)); 
11. assume that α = {q1, ..., qj}; 
12. for i = 1 to j do { 
13. if (qi’s parent ≠ qi-1’s parent) 
  then C := C ∪ {qi’s parent};} 
14. remove all (vj) (j = 1, ..., k);  
15. for each q in C do 
16. C1 := C1 ∪ element-check(v, q); 
17. } 
18. S2 := bottom-element-check(v); 
29. α(v) := merge(α, C1, C2); 
end 

The first difference of the above algorithm from the 
algorithm containment-check( ) is that before we set the 
value for δ(q) we will check whether q is a //-child or a /-
child. If q is a /-child, we will further check whether it 
matches vi (see lines 6 - 8). We notice that q appearing in 
α(vi) only indicates that Q[q] can be embedded into T[vi], 
but not necessarily means that q matches vi. 

The second difference is line 10 and lines 12 - 13. In line 
10, we use the merge operation to union α(v1), ..., and α(vk) 
together. In lines 12 -13, we generate a set C that contains 
the parent nodes of all those nodes appearing in α (= 
merge(α(v1), ..., α(vk)), where vj is a child node of the 
current node v. Since the nodes in α are sorted (according to 
the nodes’ pre and post values), if there are more than one 
nodes in α sharing the same parent, they must appear 
consecutively in the list. So each time we insert a parent 
node q’ (of some q in α) into C, we need to check whether it 
is the same as the previously inserted one. If it is the case, q’ 
will be ignored. Thus, the size of C is also bounded by 
O(leafQ).  

IV. ALGORITHM FOR ORDERED TREE MATCHING  

In this section, we discuss our second algorithm 
according to Definition 2.  

In the algorithm, we will keep two kinds of data 
structures defined below. 

χ(q) – a link associated with q in Q, pointing to the left-
most leaf node in Q[q] as illustrated in Fig. 10(a). 

 

Fig. 10 Labeled trees and postorder numbering 

For a leaf node q’, χ(q’) is defined to be q’ itself. So in 
Fig. 9(a), we have χ(q1) = χ(q2) = χ(q3) = q3. If we consider 
q’ = χ(q) as a function, we can also define its reverse 
function, denote by χ-1(q’). Its value is a set containing all 
those nodes q such that χ(q) = q’, including q’ itself. For 
example, for q3 in Fig. 9(a), we have χ-1(q3) = {q1, q2, q3}, χ-

1(q4) = {q4}, and χ-1(q5) = {q5}. 

The nodes of Q are also numbered in postorder as shown 
in Fig. 9(b). So the nodes in Q will be referred to by their 
postorder numbers. In addition, a virtual node for Q is 
created, numbered 0 and considered to be to the left of any 
node in Q. 

Bv – an array of length |Q|, indexed from 0 to |Q| - 1. In 
Bv, each entry Bv[i] is a pointer to a unit containing a node j 
in Q such that j is the closest node to the right of i such that 
T[v] embeds Q[j]. Initially, each Bv[i] is set to be φ. 

The unit pointed to by Bv[i] is denoted by f(Bv[i]). 

Using Bv’s, the ordered tree embedding can be checked 
as follows. 

Let v be a node created by executing query-evaluation(S, 
Q). Let v1, ..., vk be the child nodes of v. Let q1, ..., ql be the 
child nodes of q currently checked. To know whether T[v] 
embeds Q[q], we first check 

1vB starting from 
1vB [p], where 

p = χ(q) - 1. We begin the searching from χ(q) - 1 because it 
is the closest node to the left of the first child of q.  

• Let f(
1vB [p]) = p’. If p’ is an ancestor of q1, this shows 

that T[v1] embeds Q[q] and thus T[v] embeds Q[q]. 
• If p’ is q1 and (q, q1) is a // -edge, or both (q, q1) and (v, 

v1) are /-edges, we will check f(
2vB [p’]) in a next step to 

see whether f(
2vB [p’]) is an ancestor of q2 or equal to q2. 

• Otherwise, we check f(
2vB [p]) in a next step to see 

whether f(
2vB [p’]) is an ancestor of q1 or equal to q1.  

This process continues until one of the following 
conditions is satisfied: 

(i) All
ivB ’s (i = 1, ..., k) are exhausted, or 

(ii) All qj (j = 1, ..., l) are covered. 

virtual 
node 

q1  A 

B  q5 q2  B 

q3  B C  q4 

1 

0 

(b) 

Q: 
q1  A 

B  q5 q2  B 

q3  B C  q4 

χ(q2) 
χ(q1) 

(a) 

Q: 

2 

3 

4 

7 

q7 B q6 B q7 B q6 B 
5 

6 
χ(q5) 
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Case (i) shows that T[v] is not able to embed Q[q] while 
the case (ii) indicates an embedding of Q[q] in T[v]. 

In the computation, Bv’s will dynamically be maintained 
as follow. 

• If we find Q[x] can be embedded in T[v], we will create 
a unit U containing x and set Bv[q1], ..., Bv[qk] to a be a 
pointer to U, where each ql (1 ≤  l ≤ k) is a query node to 
the left of x, to record the fact that x is the closest node to 
the right of ql such that T[v] embeds Q[x]. 

• If some time later we find another node x’ such that Q[x’] 
can be embedded in T[v], we distinguish between two 
cases: 

 a) If x’ is to the right of x, we will generate a new unit U’ 
containing x’ and set Bv[p1], ..., Bv[ps] to U’, where each 
pl (1 ≤ l ≤ s) is to the left of x’ but to the right of qk.  

 b) If x’ is an ancestor of x, we will change Bv as below. 

Let j = χ(x’) - 1. If Bv[j] and Bv[j + 1] point to different 
units, simply change the value in the unit pointed to by 
Bv[j] to x’.  

Otherwise, Bv[j] and Bv[j + 1] point to the same unit W. 
Create a new unit W’ and store the value of W in W’. 
Find k ≥ j + 1 such that Bv[j + 1] = Bv[j + 2] = ... = Bv[k] 
but Bv[k] ≠ Bv[k + 1]. Change all these entries to point to 
W’ and then change the value in W to x’. 

We also note that once Bv[j + 1], ..., Bv[k] are changed 
for the first time, they will not be changed any more. If we 
search Q bottom-up. (That is, each time a node v is created, 
we will search Q bottom-up to find any q such that T[v] 
embeds Q[q].) This property can be analyzed as follows. 

Let q’ be a query node encountered in the subsequent 
computation such that T[v] embeds Q[q’]. Then, q’ must be 
to the right of q or an ancestor of q’. If q’ is to the right of q, 
these entries obviously will not be changed. If q’ is an 
ancestor of q, we have χ(q’) ≤ j + 1. If χ(q’) = j + 1, the unit 
pointed to by Bv[j + 1] will be changed to q’. If χ(q’) < j + 1, 
some entries before Bv[j + 1] will be changed. In both cases, 
Bv[j + 1], ..., Bv[k] will not be touched. Therefore, for each v 
in T, this part of cost is bounded by |Q|. 

Finally, we need to merge each 
ivB into Bv since the 

embedding of a subtree in T[vi] implies the embedding of 
that subtree in T[v]. merge(Av, ivA ) is defined as below:  

 
In this definition, we handle φ as a negative integer (e.g., 

-1) and consider it as a descendant of any node. Obviously, 
if f(Bv[j]) and f(

ivB [j]) are on the same path, merge(Bv[j], 

ivB [j]) should be set to be a pointer to max{f(Bv[j]), 
f(

ivB [j])}.  (Here, we use max{f(Bv[j]), f(
ivB [j])} to 

represent the unit containing max{f(Bv[j]), f(
ivB [j])}.) 

However, if f(Bv[j]) and f(
ivB [j]) are on different paths, 

merge(Bv[j], ivB [j]) is set to be min{f(Bv[j]), f( ivB [j])}. It is 
because in Bv each entry Bv[j] is a pointer to a unit 
containing the closest node j’ to the right of j such that T[v] 
contains Q[j’]. After this operation, we can remove

1vB , ..., 

kvB since they will not be used any more. 

From the above discussion, we can see that for each 
created node vi, we need O(di ⋅|Q|) time to check the tree 
embedding,  where di is the outdegree of node vi in T. So the 
total time complexity is bounded by 

O( ||
||

Qd
T

i
i ⋅∑ ) = O(|T|⋅|Q|). 

However, the buffering space is in the order of 
O(leafT’⋅|Q|). It is because after a v is checked all the arrays 
associate with its children are removed. Thus, at any time 
point during the execution, at most Tleaf nodes in T are 
associated with a array. 

The algorithm is somehow related to the method 
discussed in [30], in which each node in Q is associated 
with an array of size |T|. So its space complexity is in the 
order of O(|T|⋅|Q|). Especially, this method cannot be 
adapted to a data streaming environment. 

V. EXPERIMENTS 

In this section, we report the test results. We conducted 
our experiments on a DELL desktop PC equipped with 
Pentium(R) 4 CPU 2.80GHz, 0.99GB RAM and 20GB hard 
disk. The code was compiled using Microsoft Visual C++ 
compiler version 6.0, running standalone. 

- Tested methods 
In the experiments, we have tested four methods on the 

tree matching: 
- TwigM  [12], 
- Gou’s method [23], 
- the method for the unordered tree matching (discussed in 

this paper, chen-1 for short), and 
- the method for the ordered tree matching (discussed in 

this paper, chen-2 for short). 
The theoretical computational complexities of these 

methods are summarized in Table 1. 

The index for PRIX is a trie structure over all the labeled 
Prüfer sequences, implemented as a B+-tree [30]. The indexes 
for all the other three methods are XB-trees [4]. 

TABLE I TIME AND SPACE COMPLEXITIES 

Methods Query Time CS BS 
TwigM O(Th⋅Qd⋅|Q|⋅|T| + |Q|2⋅|T|) O(|Q|⋅r) O(|T|⋅|Q|) 
Gou’s O(|T|⋅|Q|) O(|Q|⋅r) O(|T|⋅|Q|) 
Chen-1 O(|T’|⋅leafQ) O(|Q|⋅r) O(leafT’⋅|Q|) 
Chen-2 O(|T’|⋅|Q|) O(|Q|⋅r) O(leafT’⋅|Q|) 

- Data 

The data sets used for the tests are TreeBank data set 

merge(Bv, ivB )[j]=  

pointer to max{f(Bv [j]), 
f(

ivB [j])}, 

pointer to min{f(Bv [j]), 
f(

ivB [j])}, 

 

if f(Bv[j]) and f(
ivB [j]) 

are on the same path; 

otherwise. 
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[36], DBLP data set [36] and a synthetic XMARK data set 
[41]. The TreeBank data set is a real data set with a narrow 
and deeply recursive structure that includes multiple 
recursive elements. The DBLP data set is another real data 
set with high similarity in structure. It is in fact a wide and 
shallow document. The XMark (with scaling factors of 1 to 
5) is a well-known benchmark data set, which is used for 
scalability analysis. The important parameters of these data 
sets are summarized in Table 2. 

TABLE II DATA SETS FOR EXPERIMENTAL EVALUATION 

 TREEBANK DBLP XMARK 

1 2 3 4 5 

DATA SIZE 
 

82 127 113 228 340 454 568 

NODES 
 

2.43 3.33 1.72 3.33 5.1 6.7 8.33 

MAX/AVERAGE 
DEPTH 36/7.9 6/2.9 12/6.2 

 
- Test results 

In the experiments, we tested altogether 21 queries 
shown in Table 3, 4, and 5. 

TABLE III QUERIES FOR TREEBANK DATA SET 

query XPath expression 
Q1 //VP[DT]//PRP_DOLLAR 
Q2 //S/VP/PP[IN]/NP 
Q3 //S/VP//PP[NP/VB]/IN 
Q4 //VP[.//PP/IN]//NP/*//JJ 
Q5 //S[CC][.//PP]//NP[VBZ][IN]//JJ 

TABLE IV QUERIES FOR DBLP 

query XPath expression 
Q6 //article/authot=“C.J. Codd” 
Q7 //inproceedings[author=“Jim Gray”][year=“1990”] 
Q8 //inproceedings[key][author=“Jim Gray”][year=“1990”] 
Q9 //inproceeding[author][title][.//pages][.//url] 

Q10 //articles[author][title][.//volume][.//pages][.//url]/* 

TABLE V QUERIES FOR XMARK 

query XPath expression 
Q11 /site//open_auction[.//seller/person]/ 
Q12 /site//open_auction[.//seller/person][.//bidder]/ 
Q13 site//open_auction[.//seller/person][.//bidder/increase]/ 
Q14 /site//open_auction[.//seller/person][.//bidder[increase][.//initial]]/ 
Q15 /site//open_auction[.//seller/person][.//bidder/increase][.//initial]/*

/description/ 

To avoid the frequent use of the axes like following-
sibling in the tables, we assume that the order between the 
siblings in a tree query follows the left-to-right order in the 
corresponding XPath expression. For example, 
//inproceedings[key][author] indicates that key is followed 
by author. 

In this test, we measure the CPU time performance of 
the streaming algorithms as t = ttotal – tI/O, where ttotal is the 
total running time and tI/O is the time for reading (from disk 
into memory) XML documents and storing the results on 
disk.  

In Fig. 11, we show the running time of all the methods 
for TreeBank, which shows that Chen-1 outperforms all the 
other methods. TwigM has the worst performance while 
Gou’s and Chen-2 are comparable. For Q4, Chen-2 is 
clearly worse than Gou’s. It is because in the presence of ‘*’, 
the checking of the left-to-right relationships uses extra time, 
but does not filter a significant amount of false drops. 
However, for the other four queries, Chen-2 works slightly 
better than Gou’s.  
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Fig. 11 Running time for TreeBank 

In Fig. 12 and 13, we show the whole execution times 
for processing queries against DBLP and XMark, 
respectively. These two figures also that Chen-1 has the best 
performance. 
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Fig. 12 Execution time for DBLP 
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Fig. 13 Execution time for XMark 

As discussed in Section I, the caching space is bounded 
by O(|Q|⋅r). Since many practical XML documents are not 
very deep, this space cost can be ignored in practice.  
However, the buffering space is normally very high since in 
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the process of a query evaluation, a huge number of 
potential answer nodes may have to be buffered. In Fig. 14, 
15, and 16, we show the sizes of the buffering spaces used 
during the evaluation of queries against TreeBank, DBLP, 
and Xmark, respectively. From these figures we can see that 
the space requirement of Chen-2 is the lowest among all the 
tested methods for the following reasons: 

1. By Chen-2, not only the ancestor/descendant, but also 
left-to-right relationships are used to get rid of non-
qualifying nodes. 

2. Before a node in T is checked, only for each of its 
children the corresponding matching query nodes are 
buffered. 

3. Using the merging operation, the buffering space is 
effectively reduced. 

In addition, we notice that the buffering space of Chen-1 
is also much smaller than Gou’s due to (2) and (3) listed 
above. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16 Size of buffering space for XMark 

VI. CONCLUSIONS 

In this paper, two efficient algorithm for the query 
evaluation in an XML streaming environment is presented. 

One is for the unordered tree matching. The algorithm runs 
in O(|T’|⋅leafQ) time and O(|T’|⋅leafQ) space, where leafT’ 
stands for the number of the leaf nodes in T’ and leafQ for 
the number of the leaf nodes in a query tree Q. The other is 
for the ordered tree matching, by which the left-to-right or-
der of nodes much also be taken into account. It runs in time 
and space complexities are bounded by O(|T’|⋅|Q|). But its 
space overhead is in the order of O(leafT’⋅|Q|). These 
computational complexities are much better than any 
existing strategy for this problem. 
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