
International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 1 -
DOI: 10.5963/IJCSAI0204001

Efficient Streaming Algorithms for Tree Matching
Problems

 Yangjun Chen1, Leping Zou2

Department of Applied Computer Science,
University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9

1ychen2@uwinnipeg.ca; 2zlpghost@gmail.com

Abstract- With the growing importance of XML in data
exchange, much research has been done in providing flexible
query mechanisms to extract data from XML documents. In
this paper, we focus on the query evaluation in an XML
streaming environment, in which data streams arrive
continuously and queries have to be evaluated even before all
the data of an XML document are available. Two algorithms
will be discussed. One is for the unordered tree matching, by
which only ancestor-descendant and parent-child relationships
are considered. It requires O(|T’|⋅leafQ) time, where T’ is a
subtree of document tree T, in which each node matches at
least one node in query Q and leafQ is the number of leaf nodes
in Q. The other is for the ordered tree matching, by which the
left-to-right order of nodes must also be taken into account. It
runs in O(|T’|⋅|Q|) time. Furthermore, our algorithms achieve
high time performance without trading off space requirements.
They have the same caching space and buffering space
overhead as state-of-the-art stream-querying algorithm. We
show the efficiency and effectiveness of our algorithms by a lot
of experiments.

Keywords- XML Documents; Trees; Paths; XML Streams;
XML Pattern Matching

I. INTRODUCTION

There is much current interest in processing streaming
XML data, using queries expressed in languages such as
XPath [52] and XQuery [53]. A streaming environment, as
found with stock market data, network monitoring, or sensor
network, differs from non-streaming XPath query
processing in the following aspect. In a streaming
environment, data streams which can be potentially infinite,
arrive continuously, and must be processed in a single
sequential scan due to the limited storage space available.
Query results should be distributed incrementally once they
are found, possibly before we have read all the data. In
addition, the query processing algorithm should scale well
in both time and space. An algorithm that meets such an
environment for query evaluation over XML data is called a
streaming evaluation algorithm.

In this paper, we address this issue, and propose two
streaming algorithms for evaluating unordered and ordered
tree matching, respectively.

- Data model and query language

Abstractly, an XML document can be considered as a
tree structure with each node standing for an element name
from a finite alphabet ∑; and an edge for the element-
subelement relationship.

In an XML streaming environment, an XML document

tree T is modeled as a stream S of modified SAX (Simple
API for XML) events: startElement(tag, level, id) and
endElement(tag, level), where tag is the tag of the node
being processed, level is the level at which the node appears,
and id is the unique identifier assigned to the node. A node
in T exactly corresponds to a startElement (and the
corresponding endElement event) in S. In addition, if an
element e has no subelement, a text is possibly associated
with its startElement.

These events are the input to our query evaluation
processor.

On the other hand, queries in XML query languages,
such as XPath [52], XQuery [53], XML-QL [21], and Quilt [13, 14],
typically specify patterns of selection predicates on multiple
elements that also have some specified tree structured
relations. For instance, the following XPath expression:

book[title = ‘Art of Programming’]//author[fn = ‘Donald’
and ln = ‘Knuth’]

matches author elements that (i) have a child subelement fn
with content ‘Donald’, (ii) have a child subelement ln with
content ‘Knuth’, and are descendants of book elements that
have a child title subelement with content ‘Art of
Programming’. This expression can be represented as a tree
structure as shown in Fig. 1.

In this tree structure, a node v is labeled with an element
name or a string value, denoted as label(v). Besides, there
are two kinds of edges: child edges (c-edges) for parent-
child relationships, and descendant edges (d-edges) for
ancestor-descendant relationships. A c-edge from node v to
node u is denoted by v → u in the text, and represented by a
single arc; u is called a c-child of v. A d-edge is denoted v
⇒ u in the text, and represented by a double arc; u is called
a d-child of v. Also, a node in Q can be a wildcard ‘*’ that
matches any element in T. Such a query is often called a
twig pattern. In the following discussion, we use
startElement and node interchangeably since each
startElement event in S exactly corresponds to a node in T.

- XML query evaluation and tree matching

Fig. 1 A query tree

Art of Programming

title

Knuth

book

fn

author

ln

Donald

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 2 -
DOI: 10.5963/IJCSAI0204001

In any DAG (directed acyclic graph), a node u is said to
be a descendant of a node v if there exists a path (sequence
of edges) from v to u. In the case of a twig pattern, this path
could consist of any sequence of c-edges and/or d-edges.
Based on these concepts, the tree embedding can be defined
as follows.

Definition 1 (unordered tree matching) An embedding of a
tree pattern Q into an XML document T is a mapping f: Q
→ T, from the nodes of Q to the nodes of T, which satisfies
the following conditions:

(i) Preserve node label: For each u ∈ Q, label(u) =
label(f(u)).

(ii) Preserve c/d-child relationships: If u → v in Q, then f(v)
is a child of f(u) in T; if u ⇒ v in Q, then f(v) is a
descendant of f(u) in T. �

If there exists a mapping from Q into T, we say, Q can be
embedded into T, or say, T contains Q. The purpose of XML
query evaluation is to find all the subtrees of T, which
contain Q.

Notice that an embedding could map several nodes with
the same tag name in a query to the same node in a database.
It also allows a tree mapped to a path, by which the order of
siblings is totally unconsidered. This definition is a little bit
different from the ordered tree matching defined below.

Definition 2 (ordered tree matching) An embedding of a
tree pattern Q into an XML document T is a mapping f: Q
→ T, from the nodes of Q to the nodes of T, which satisfies
the following conditions:

(i) same as (i) in Definition 1.
(ii) same as (ii) in Definition 1.
(iii) Preserve left-to-right order: For any two nodes v1 ∈ Q

and v2 ∈ Q, if v1 is to the left of v2, then f(v1) is to the left
of f(v2) in T. �
v1 is said to be to the left of v2 if they are not related by

the ancestor-descendant relationship and v2 follows v1.

We illustrate the left-to-right relationship in Fig. 2.

Fig. 2 Illustration for left and right relatives

This kind of tree mappings is useful in practice. For
example, an XML data model was proposed by Catherine
and Bird [6] for representing interlinear text for linguistic
applications, used to demonstrate various linguistic
principles in different languages. For the purpose of
linguistic analysis, it is essential to preserve the linear order
between the words in a text [6]. In addition to interlinear text,
the syntactic structure of textual data should be considered,
which breaks a sentence into syntactic units such as noun
clauses, verb phrases, adjectives, and so on. These are used
by the language TreeBank [38] to provide a hierarchical

representation of sentences. Therefore, by the evaluation of
a twig pattern query against the TreeBank, the order
between siblings should be considered [38, 43].

For streaming algorithms, we distinguish between two
kinds of usage-based memory space overheads:

Caching space – the memory space used for the run-time
stack to accommodate document elements.

Buffering space – the memory space used to store
potential answer nodes.

We denote the size of the caching and the buffering
space by CS and BS, respectively. Especially, BS is
measured as the maximal number of potential answer nodes
buffered at any time point during the running time. If in Q
the nodes are labeled with different tag names, BS is in the
order of |T|. (See [23]). However, if different nodes in Q are
labeled with the same tag name, BS might be bounded by
O(|T|⋅|Q|). In Fig. 3, we show a worst case.

Fig. 3 Illustration for the worst case BS

In the figure, querying Q (shown in Fig. 3(a)) against T
(shown in Fig. 3(b)) has to buffer c1 through cn for each C in
Q until b arrives. Fig. 3(c) is the XML document
represented by T.

We will present two streaming algorithms according to
the above two different definitions, respectively. The
algorithm for evaluating unordered tree matching requires
O(|T’|⋅leafQ) time and O(|Q|⋅r) caching space, where T’ is a
subtree of T, in which each node matches at least one node
in Q and leafT’ (leafQ) represents the number of the leaf
nodes of T’ (resp. Q), and r is the maximal number of the
nodes on a path in T, which are labeled with the same tag
name. The algorithm for evaluating ordered tree matching
runs in O(|T’|⋅|Q|) time and O(|Q|⋅r) caching space.

The remainder of the paper is organized as follows. In
Section II, we review the related work. In Section III, we
discuss an algorithm for evaluating unordered tree matching.
In Section IV, we discuss an algorithm for evaluating
ordered tree matching. Section V is devoted to the
experiments. Finally, a short conclusion is set forth in
Section VI.

II. RELATED WORK
In the past two decades, there is much research on the

tree pattern matching for the evaluation of XML queries.
Nearly all the proposed strategies can roughly be divided
into two categories. One is for the so-called XML streaming
environment and the other is index-based.

- Query evaluation in XML streaming environment

v all nodes to
the left of v

all nodes to
the right of v

(b)

T: Q:

B C C C

<a>
 <c1> 1 </ c1>
 … …
 <c1> 1 </ cn>
 0 </ b>
</ a>

(c) (a)

a
A

. . . c1 ci cn b
1 i n 0

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 3 -
DOI: 10.5963/IJCSAI0204001

A great many strategies have been proposed to evaluate
XPath queries in an XML streaming environment [2, 12, 18, 23,

27, 32, 33, 39, 40]. The methods discussed in [2, 27] are based on
finite state automata (FSA), but only able to handle single
path queries, i.e., a query containing branching cannot be
processed, as observed in [39]. The method proposed in [40]
is a general strategy, but requires exponential time
(O(|T|⋅2|Q|)) in the worst case, as analyzed in [40]. The
methods discussed in [32, 33] do not support //-edges. If we
extend them to general cases, exponential time is required.
In [12], Chen et al. first proposed a polynomial time
algorithm, called TwigM, which runs in O(Th⋅Qd⋅|Q|⋅|T| +
|Q|2⋅|T|) time and O(|Q|⋅r) caching space, where Th is the
height of T and Qd is the largest outdegree of a node in Q.
By this method, each node q of Q is associated with a
boolean array of length Qd and a stack of size Th, in which
each element is a node v from T such that its relationship
with the nodes in the stack associated with q’s parent q’
satisfies the relationship between q and q’. Therefore, each
time to figure out a stack and push a node into it,
O(Th⋅Qd⋅|Q|) time is required, leading to a time complexity
of O(Th⋅Qd⋅|Q|⋅|T| + |Q|2⋅|T|). See Theorem 4.4 in [12]. The
algorithm discussed in [23] greatly improves TwigM,
running in O(|Q|⋅|T|) time and O(|Q|⋅r) caching space.

- Query evaluation in indexing environment

Besides the above mentioned streaming, there is bunch
of work on the index-based strategies. They can be further
divided into two groups: the unordered tree pattern queries [5,

13, 14, 16, 19, 20, 24, 29, 34] and the ordered tree pattern matching [15,

43, 50, 51]. In the following, we only review some of them.

The method proposed in [34] is called XISS. It is a
typical method based on indexing. By this method, single
elements/attributes are indexed as the basic unit of queries
and a complex path expression is decomposed into a set of
basic path expressions. Atom expressions (single elements
or attributes) are then recognized by directly accessing the
index structure. However, all other kinds of expressions
need join operations to stitch individual components
together to get the final results.

Paths are also used as the basic indexing units by some
methods, such as DataGuide [24] and Fabric [20]. By
DataGuide, a concise summary of path structures for a
semi-structured database is established, but restricted to raw
paths. Therefore, complex path expressions or regular
expression queries cannot be handled. Fabric works better in
the sense that the so-called refined paths are supported.
Such queries may contain branches, wild-cards and
ancestor-descendant operators (//). However, any query not
in the set of refined paths has to resort to join operations.

APEX improves DataGuide by introducing the so-called
adaptive path indexes and uses data mining technique to
summarize paths that frequently appear in the query
workload. However, it suffers from two serious problems.
First, it has to be updated as the query workload changes.
Second, it keeps every path segment of length 2, instead of
maintaining all paths starting from the root. Thus, to get the
final results, the join operations have to be conducted. F+B

[29] shares the flavour of Fabric [20]. It is based on the so-
called forward and backward index (F&G index [1]), which
covers all the branching paths. It works well for pre-defined
query types. In normal cases, however, such a set of F&B
indexes tends to be large and therefore the performance
degrades.

By all the above methods, the indexes over binary
relationships between pairs of nodes, such as parent-child
and ancestor-descendant relations, or the indexes over paths
can be very large, even when the input and final result sizes
are much more manageable. As an important improvement,
TwigStack was proposed by Bruno et al. [5], which stores the
intermediate results in stacks to represent in linear space a
potentially exponential number of answers. However,
TwigStack are suitable only for the queries that contain no /-
edges. If a query contains both /-edges and //-edges, some
useless path matchings have to be conducted. In the worst
case, O(|D|⋅|Q|) time is needed for doing the merge joins as
pointed out by Chen et al. (see page 287 in [19]). This
method is further improved by several researchers, such as
iTwigJoin [9] which exploits different data partition
strategies, and TJFast [35] which accesses only leaf nodes by
using extended Dewey IDs. By both methods, however, the
path joins can not be avoided. In [19], Chen et al. discussed
a method, called Twig2Stack, which works in a quite
different way. It represents the twig results using the so-
called hierarchical stack encoding to avoid any possible
useless path matchings. In [19], it is claimed that
Twig2Stack needs only O(|D|⋅|Q| + |subTwigResults|) time
for generating paths. A careful analysis, however, shows
that the time complexity for this task is actually bounded by
O(|D|⋅|Q|2 + |subTwigResults|) for the following reason.
Each time a node is inserted into a stack associated with a
node in Q, not only the position of this node in a tree within
that stack has to be determined, but a link from this node to
a node in some other stack has to be constructed, which
requires to search all the other stacks in the worst case. The
number of these stacks is |Q| (see Fig. 4 in [19] to know the
working process).

In 2003, Wang et al. [50] proposed a first index-based
method, called ViST, for handling ordered twig pattern
queries. By this method, a document is stored as a sequence:
(a1, p1), …, (ai, pi), …, (am, pm), where each ai is an element
or a word in the document, and pi a path from the root to it.
Using this method, the join operations are replaced by
searching a trie structure (wrongly called suffix tree in [50]).
The drawback of this method is that a large index structure
has to be created. (As pointed out in [43], the size of indexes
can be higher than linear in the total number of elements in
an XML document.) Another problem of this method is that
a document tree that does not contain a query pattern may
be designated as one of the answers due to the ambiguity
caused by identical sibling nodes. This problem is removed
by the so-called forward prefix checking discussed in [51].
Doing so, however, the theoretical time complexity is
dramatically increased.

Such problems are removed by a method, called PRIX,
discussed in [43]. This method constructs two Prüfer
sequences to represent an XML document: a numbered

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 4 -
DOI: 10.5963/IJCSAI0204001

Prüfer sequence and a labeled Prüfer sequence. For all the
labeled Prüfer sequences, a virtual trie is constructed, used
as an index structure. In this way, the size of indexes is
greatly reduced to O(|T|). However, it suffers from very high
CPU time overhead because the string matching defined in
[43] allows a query pattern string to match non-consecutive
segments within a document target string (see Definition 4.1
in [43], page 306). The time complexity of PRIX is bounded
by O(k⋅|Q|⋅log|Q|) time (see page 328 in [43]), where k is the
number of subsequences of a labeled Prüfer document
sequence, which match Q’s labeled Prüfer sequence. In the
worst case, k is in the order of O(|T||Q|) according the
following analysis. For each position i (in the target)
matching the first element in the pattern string the second
element of the pattern can match possibly at |T| - i - 1
positions; and for each position j matching the second
element in the pattern, the third element in the pattern can
possibly match at |T| - j - 1 positions, and so on. This shows
that k can be an exponential number.

III. ALGORITHM FOR UNORDERED TREE MATCHING

In this section, we describe a streaming algorithm for
evaluating unordered tree matching. First, in Subsection A,
we consider simple cases that a twig pattern contains only
//-edges, wildcards and branches. Then, in Subsection B, we
prove the correctness of the algorithm and analyze its
computational complexities. Next, in Subsection C, we
extend the simple-case algorithm to general cases.

A. Basic Algorithm

Recall that in a streaming environment, the input to the
XML query processor is a steam of modified SAX events;
and an event is either startElement(tag, level, id) or
endElement(tag, level). In order to evaluate a query Q, we
have to scan a stream S from the beginning to the end and
report any startElement event once the corresponding
subtree is found containing Q.

For this purpose, we will maintain a global stack
structure with each entry in it being a triplet: <p, e, c>,
where e is a startElement event, p is a pointer to an entry in
stack where its parent startElement is stored and c a pointer
to the head of a linked list containing all the nodes
constructed for its child elements, as illustrated in Fig. 4.

Fig. 4 Illustration for stack structure

During the process, two other data structures are also
maintained and computed to facilitate the discovery of
subtree matchings according to Definition 1.

- Each node v (corresponding to a startElement event in S)
in a document tree T is associated with a set, denoted
α(v), containing all those nodes q in Q such that Q[q]
can be embedded into T[v].

- Each q in Q is associated with a value δ(q), defined as
follows.

Initially, for each q ∈ Q, δ(q) is set to φ. During the tree
matching process, δ(q) is dynamically changed as below.

(i) Let v be a node in T with parent node u.
(ii) If q appears in α(v), change the value of δ(q) to u.

Then, each time before we insert q into α(v), we will do
the following checkings:

1. Check whether label(q) = label(v).
2. Let q1, ..., qk be the child nodes of q. For each qi (i = 1,...,

k), check whether δ(qi) is equal to v.

If both (1) and (2) are satisfied, insert q into α(v).

Below is the algorithm, which takes an event stream S
and a twig pattern Q as the input. During the process, S is
scanned from the beginning to the end and once a
startElement event is found such that the subtree rooted at
the corresponding node contains Q it will be reported.

In the algorithm, a virtual startElement event is used,
which is considered to be the parent of the first startElement
event in S (which corresponds to the root of T). The level
number of the virtual event is set to be -1, and its tag and id
are both set to be nil. Two variables E and E’ are used. E’ is
for the current startElement event being processed while E
is to store the parent of the current startElement event. In
addition, each time a node v is constructed, a subprocedure
containment-check(v, Q) is invoked to find all those q ∈ Q
such that T[v] contains Q[q] and store them in α(v).

Algorithm query-evaluation(S, Q)
input: S - an XML stream; Q - a twig pattern.
output: report any startElement such that for the

corresponding node v, T[v] contains Q.
begin
1. push(the first element of S, stack);
2. E := virtual event;
3. while stack is not empty do {
4. E’ := top(stack); (*check the top element in stack*)
5. E’.p := address of E; (*establish parent link for E’*)
6. let e be the next element in S;
7. if e is a startElement event then {
8. E := E’;
9. push(e, stack);
10. }
11. else (*e is an endElement event.*)
12. {E’’ := pop(stack); (*pop the top element out of stack*)
13. generate node v for E’’; E := E’’.p;
14. append v to the end of (E’’.p).c;
15. call containment-check(v, Q);
16. }
17. }
end

The above algorithm processes the events in S one by
one. Therefore, the corresponding document tree T is
searched in the depth-first traversal fashion. Each time a
startElement event is encountered, it will be pushed into

ck
 …

 … c1

 …

 …
 p e c

stack structure:

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 5 -
DOI: 10.5963/IJCSAI0204001

stack (see line 1 and lines 6 - 9) and stay there until its
corresponding endElement is encountered (see lines 11 - 12).
In this case, it will be popped out of stack and a node v for it
will be constructed (see line 13), for which a containment
check will be performed (see line 15).

Example 1 Consider the document tree T in Fig. 5(a). Its
XML stream S is shown in Fig. 5(b). Applying the
algorithm query-evaluation() to S, we will regain T if line
15 is not executed. In Fig. 6, we trace the first 9 steps of the
execution process.

Fig. 5 A document tree and its XML stream

In the sample trace, special attention should be paid to
Step 4, 8 and 9.

In Step 4, endE(c, 2) is encountered and the top element
E = (c, 2, 3) of the stack is popped out. For this element, a
node v3 is created. At the same time, a child link (from E’ =
(a, 1, 2)) is set to point to it since E.p = 1, which is the
position (in the stack) where E’ is stored.

In step 8, node v4 is constructed. It is a child of the
element (a, 1, 2) and therefore is appended to the end of the
linked list associated with (a, 1, 2). We also notice that v4
itself is the parent of v5.

In step 9, v2 is generated. Since it is a child of (a, 0, 1), a
child link (from (a, 0, 1)) is established to point to it.
Particularly, we have a subtree rooted at v2 created. �

Fig. 6 Trace of Example 1

From the above discussion, we can see that a document
tree can always be constructed by scanning the
corresponding XML stream S. For the purpose of query
evaluation, however, we have to check the containment each
time a node of T is constructed. This is done by calling
Algorithm containment-check(v, Q), in which another two
functions are invoked to do different checkings:

- element-check(u, q): u is an element containing sub-
elements. It checks whether T[u] contains Q[q]. If it is
the case, return {q}. Otherwise, it returns an empty set ∅.

- bottom-element-check(u, Q): u is an element containing
no subelement. It returns a set of nodes in Q: {q1, ..., qk}
such that for each qi (1 ≤ i ≤ k) the following conditions
are satisfied.

 (i) label(u) = label(qi).
 (ii) if qi has a child, then the child must be a text and

matches the text associated with u.

Algorithm containment-check(v, Q)
input: v - a node in T; Q - a twig pattern.
output: α(v) - a set of query node q such that T[v] contains
Q[q].
begin
1. C := ∅; C1 := ∅; C2 := ∅; α := ∅;
2. if v.c is not nil then (*v has some subelements.*)
3. { let v1, ..., vk be the child nodes of v;
4. α := α(v1) ∪ ... ∪ α(vk);
5. for each q ∈ α do
6. { δ(q) := v; C := C ∪ {q’s parent}; }
7. remove all α(vj) (j = 1, ..., k);
8. for each q’ in C do
9. C1 := C1 ∪ element-check(v, q’);
10. }
11. C2 := bottom-element-check(v, Q);
12. return α(v) = α ∪ C1 ∪ C2;
end

Function element-check(u, q)
begin
1. C1 := ∅;
2. if label(q) = label(u) then
 (*If q is ‘*’, the checking is always successful.*)
3. {let q1, ..., qk be the child nodes of q;
4. if for each qi (i = 1, ..., k) δ(qi) is equal to u
5. then {C1 := {q};

v3 a v1

a v2

v6 c

v5 b

c v3

v4 e

b v7

v8 b

1. startE(a, 0, 1) 9. endE(a, 1)
2. startE(a, 1, 2) 10. startE(c, 1, 6)
3. startE(c, 2, 3) 11. startE(b, 2, 7)
4. endE(c, 2) 12. endE(b, 2)
5. startE(e, 2, 4) 13. startE(b, 2, 8)
6. startE(b, 3, 5) 14. endE(b, 2)
7. endE(b, 3) 15. endE(c, 1)
8. endE(e, 2) 16. endE(a, 0)

(a)

(b)

 p startE c

At the beginning, stack is
empty.

Step 1: 1st startE into stack

(a, 0, 1)

Step 2: 2nd startE into stack

0 (a, 1, 2)
(a, 0, 1)

 p startE c

Step 3: 3rd startE into stack

1 (c, 2, 3)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

Step 4: meet an endE; pop
stack; a node v3 is constructed.

0 (a, 1, 2)
(a, 0, 1)

 p startE c
v3

1 (e, 2, 4)
0 (a, 1, 2)

Step 5: 4th startE into stack

(a, 0, 1)
 p startE c

v3

Step 6: 5th startE into stack

(b, 3, 5) 2
1 (e, 2, 4)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

v3

Step 7: meet an endE; pop
stack; a node v5 is constructed.

1 (e, 2, 4)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

v3

v5

Step 8: meet an endE; pop
stack; a node v4 is constructed.

0 (a, 1, 2)
(a, 0, 1)

 p startE c
v3 v4

v5

Step 9: meet an endE; pop
stack; a node v2 is constructed.

(a, 0, 1)
 p startE c

v4

v5

v2

 p startE c

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 6 -
DOI: 10.5963/IJCSAI0204001

6. if q is root then report u};}
7. return C1;
end

Function bottom-element-check(u, Q)
begin
1. C2 := ∅; flag := false;
2. for each leaf node q in Q do {
3. if q is a text then {
4. let q’ be the parent of q;
5. if label(q’) = label(u) and q matches the text
 associated with u
6. then { C2 := C2 ∪ {q’}; flag := true; }
7. else {
8. if label(q) = label(u) then {
9. C2 := C2 ∪ {q}; flag := true;
10. }
11. if q is root and flag := true then report u;
12. flag := false;
13. }
14. return C2;
end

One of the inputs to the algorithm containment-check()
is a node v constructed in the execution of query-
evaluation(S, Q). If v corresponds to an element that has no
subelement, the function bottom-element-check() is called
(see line 11), by which α(v) will be established by checking
it against all the leaf nodes of Q. Otherwise, α(vi) will be
checked for all the child nodes vi of v (see lines 3 - 6).
Concretely, for each q in α (= α(v1) ∪ ... ∪ α(vk)), the value
of δ(q) will be changed to v. Meanwhile, q’s parent will be
stored in a temporary variable C. Then, all the nodes q’ in C
are the candidates to be further checked. This is done by
calling element-check(v, q’) to see whether T[v] contains
Q[q’] (see lines 8 - 9). Special attention should be paid to
the fact that bottom-element-check() should also be applied
to v to find all the leaf nodes of Q which matches v.

Finally, we notice that in the execution of element-
check(), δ(q)’s are utilized to facilitate the checkings (see
lines 3 - 5 in element-check()).

The following example helps for illustration.

Example 2 Consider T and S shown in Fig. 4(a) and Q
shown in Fig. 7.

Fig. 7 A tree pattern query

By executing query-evaluation(S, Q), the nodes of T will
be constructed bottom up.

The first constructed node is v3, by which containment-
check(v3, Q) is invoked. Since it is a leaf node and matches
q3 in Q, containment-check(v3, Q) returns α(v3) = {q3} (see
lines 11 in containment-check()).

The second constructed node is v5. In the same way, we
will set α(v5) = {q2}.

When v4 is constructed, containment-check(v4, Q) is
called. Since it is the parent of v5, we will first set δ(q2) to v4
in terms of α(v5) = {q2} (see line 4 and 6 in containment-
check(), and Fig. 7 for illustration.) After that, element-
check(v4, q1) is invoked. (Note that q1 is the parent of q2. See
lines 8 - 9.) Since label(v4) = e ≠ label(q1) = a, it returns C1
= ∅. bottom-element-check(v4) also returns C2 = ∅. So α(v4)
= α(v5) ∪ C1 ∪ C2 = {q2} (see line 12 in containment-
check()).

Fig. 8 Sample trace

The next created node is v2. For this node, we will first
set δ(q2) = δ(q3) = v2 in the execution of containment-
check(v2, Q) (in terms of α(v4) = {q2} and α(v3) = {q3},
respectively). Next, we call element-check(v2, q1) to check
whether label(v2) = label(q1). It is the case. So we will
further check whether δ(qi) (i = 2, 3) is equal to v2. Since
both δ(q2) and δ(q3) are equal to v2, we have that T[v2]
contains Q[q1]. Therefore, C1 = {q1}, and α(v2) is set to be
α(v3) ∪ α(v4) ∪ C1 ∪ C2 = α(v3) ∪ α(v4) ∪ {q1} ∪ ∅ =
{q1, q2, q3}.

In a next step, v7 will be constructed. It is a leaf node and
matches q2. Therefore, α(v7) = {q2}.

Similarly, we will set α(v8) = {q2}.

When v6 is constructed, δ(q2) will be changed to v6
(according to α(v7) = α(v8) = {q2}), but δ(q3) (= v2)
remains not modified. Since element-check(v6, q1) returns ∅,
α(v6) = α(v7) ∪ α(v8) ∪ C1 ∪ C2 = {q2, q3}.

Finally, we will meet v1. In the execution of
containment-check(v1, Q), δ(q1) is set to v1, δ(q2) to v1, and
δ(q3) to v1. Since label(v1) = label(q1), δ(q2) = v1 and δ(q3) =
v1, element-check(v1, q1) returns {q1}. Therefore, α(v1) is set
to α(v2) ∪ α(v6) ∪ C1 ∪ C2 = {q1, q2, q3}. �

B. Correctness and Complexities

In this subsection, we prove the correctness of
containment-check() and analyze its computational
complexities.

First of all, we denote by t(v) the time when v is created.

Concerning t(v), we have the following lemma.

Lemma 1 Let v1, v2, and v3 be three nodes in a tree with
t(v3) > t(v2) > t(v1). If v1 is a descendant of v3, then v2 must
also be a descendant of v3.
Proof. We consider two cases: i) v2 is to the right of v1, and
ii) v2 is an ancestor of v1. In case (i), v2 is pushed into stack
later than v1 and therefore later than v3. This shows that v2 is

q3
b q2

q1
a Q:

c

α(v4) = {q2}

α(v2) = {q1, q2, q3}

c b q3 q2

q1 a Q:

c a v6 v2

v1 a T:

b v3 e v4 b v7 b v8

b v5

α(v3) = {q3}

α(v5) = {q2}

δ(q2) = v4
In terms of α(v5) =
{q2}, δ(q2) is set to
be v4 since v4 is the
parent of v5.

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 7 -
DOI: 10.5963/IJCSAI0204001

a descendant of v3. Otherwise, if v2 is not a descendant of v3,
we have t(v2) > t(v3). Contradication. In case (ii), v1, v2, and
v3 are on the same path. Since t(v3) > t(v2) > t(v1), v2 must be
a descendant of v3. �

We illustrate Lemma 1 by Fig. 9.

Fig. 9 Illustration for Lemma 1

This lemma ensures that the value of δ(q) is always
appropriately established. Although δ(q) may be changed
more than once during the computation, at the time point we
check q, δ(q) must be the parent or the ancestor of a node v
such that T[v] embeds Q[q].

From the above analysis, we have the following
proposition.

Proposition 1 Let v be a node in T. Then, for each q in
α(v) generated by containment-check(), we have that T[v]
contains Q[q].

Proof. The proposition can be proved by induction of the
tree height by using Lemma 1. �

Now we analyze the time complexity of the algorithm.

The dominant cost of the algorithm is the time spent on
unifying α(v1), ..., α(vk), where vi (i = 1, ..., k) is a child node
of some node v in T. This part of cost is bounded by

O(||
||

Qd
T

i
i∑) = O(|T|⋅|Q|),

where di represents the ourdegree of a node vi in T.

However, this computational complexity can be
improved by reducing the size of each α(v).

For this purpose, we assign each node q in Q a pair of
numbers as follows. By traversing Q in preorder, each node
q will obtain a number s(q) when it is first encountered.
When the search finishes examining all the children of q, it
will get its second number t(q). These two numbers can be
used to characterize the ancestor-descendant relationships as
follows.

Let q and q’ be two nodes of a tree Q. Then, q’ is a
descendant of q iff s(q’) < s(q) < t(q) < t(q’).

In addition, if t(q’) < s(q), q’ is to the left of q.

Assume that q and q’ are two query nodes appearing in
α(v). If q’ is a descendant of q, then we can remove q’ from
α(v) since the containment of Q[q] in T[v] implies the
containment of Q[q’] in T[v]. This can be done as follows.

First of all, we notice that the algorithm searches T
bottom-up. For a leaf node v in T, α(v) is initialized with all
those leaf nodes in Q, which match v. This can be carried
out by searching the leaf nodes in Q from left to right. Then,

for any two leaf nodes q and q’ in α(v), if q’ appears before
q, we have that s(q’) < s(q). That is, α(v) is initially sorted
by the s(q) values. We can store α(v) as a linked list. Let α1

and α2 be two sorted lists with |α1| ≤ leafQ and |α2| ≤ leafQ.
The union of α1 and α2 (α1 ∪ α2) can be performed by
scanning both α1 and α2 from left to right and inserting the
elements in α2 into α1 one by one. During this process, any
element in α1, if it is a descendant of some element in α2,
will be removed; and any element in α2, if it is a descendant
of some element in α1, will not be inserted into α1. The
result is stored in α1. Obviously, the resulting linked list is
still sorted by s() values and its size is bounded by leafQ.
We denote this process as merge(α1, α2) and define
merge(α1, ..., αk-1, αk) to be merge(merge((α1, ..., αk-1), αk).
In this way, the time complexity of the algorithm can be
improved to O(|T|⋅leafQ).

In terms of the above analysis, we have the following
proposition.

Proposition 2 The time complexity of containment-
check() is bounded by O(|T|⋅leafQ).

Proof. See the above discussion. �

Now we analyze the space complexity. First, we notice
that at any time point stack contains only some nodes on a
path in T. So the caching space must be bounded by O(Th).
However, we can slightly change our algorithm to reduce
the time complexity to O(|Q|⋅r):

1. In the execution of query-evaluation(S, Q), each time
we push an element v into stack we will check whether
the tag name of v appears in Q. If it is the case, push v
into stack; otherwise, not. Using a hash table over an
array containing all the tag names appearing Q, this
checking needs only O(1) time.

2. In the linked list pointed to by E.c (see Fig. 4) the nodes
are the descendants of E, satisfying the following two
conditions:

i) All these nodes are not descendants of each other.

ii) Let v be one of these nodes. Then, on the path from E
to v, no node is labeled with a tag name appearing in Q.

In order to satisfy conditions (i) and (ii), we need to
assign each node v in T two values: s(v) and t(v) as for the
nodes in Q. s(v) and t(v) are generated when the
corresponding startElement(tag, level, id) and
startElement(tag, level, id) are encountered, respectively.

Finally, we point out that since the size of α(v) is
bounded by leafQ, the worst case buffering space can be
reduced to O(|T|⋅ leafQ).

C. General Cases

The algorithm discussed in Subsection A can be easily
extended to general cases that a query tree contains both /-
edges and //-edges, as well as wildcards and branches.

Let q1, ..., qk be the child nodes of q. Let v1, ..., vl be the

v3

v1 v2

v3

v1
v2

v2 is to the right of v1; or
appears as an ancestor of v1 but,
as a descendant of v3.

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 8 -
DOI: 10.5963/IJCSAI0204001

child nodes of v. If T[v] contains Q[q], the following two
conditions must hold:

- for each /-edge (q, qi) (1 ≤ i ≤ k), there must exist a vj (1
≤ j ≤ l) such that (v, vj) matches (q, qi), and

- T[vj] contains Q[qi].

In terms of this analysis, we modify Algorithm
containment-check() as follows.

Algorithm general-containment-check(v, Q)
input: v - a node in T; Q - a twig pattern.
output:  (v) - a set of query node q such that T[v] contains
Q[q].
begin
1. C := ∅; C1 := ∅; C2 := ∅; α := ∅;
2. if v.c is not nil then (*v has some subelements.*)
3. { let v1, ..., vk be the chi ld nodes of v;
4. for i = 1 to k do {
5. for q ∈ α(vi) do {
6. if ((q is a d-child) or
7. (q is a c-child and q matches vi))
8. then δ(q) := v
9. }}
10. α := merge(α(v1), ..., α(vk));
11. assume that α = {q1, ..., qj};
12. for i = 1 to j do {
13. if (qi’s parent ≠ qi-1’s parent)
 then C := C ∪ {qi’s parent};}
14. remove all (vj) (j = 1, ..., k);
15. for each q in C do
16. C1 := C1 ∪ element-check(v, q);
17. }
18. S2 := bottom-element-check(v);
29. α(v) := merge(α, C1, C2);
end

The first difference of the above algorithm from the
algorithm containment-check() is that before we set the
value for δ(q) we will check whether q is a //-child or a /-
child. If q is a /-child, we will further check whether it
matches vi (see lines 6 - 8). We notice that q appearing in
α(vi) only indicates that Q[q] can be embedded into T[vi],
but not necessarily means that q matches vi.

The second difference is line 10 and lines 12 - 13. In line
10, we use the merge operation to union α(v1), ..., and α(vk)
together. In lines 12 -13, we generate a set C that contains
the parent nodes of all those nodes appearing in α (=
merge(α(v1), ..., α(vk)), where vj is a child node of the
current node v. Since the nodes in α are sorted (according to
the nodes’ pre and post values), if there are more than one
nodes in α sharing the same parent, they must appear
consecutively in the list. So each time we insert a parent
node q’ (of some q in α) into C, we need to check whether it
is the same as the previously inserted one. If it is the case, q’
will be ignored. Thus, the size of C is also bounded by
O(leafQ).

IV. ALGORITHM FOR ORDERED TREE MATCHING

In this section, we discuss our second algorithm
according to Definition 2.

In the algorithm, we will keep two kinds of data
structures defined below.

χ(q) – a link associated with q in Q, pointing to the left-
most leaf node in Q[q] as illustrated in Fig. 10(a).

Fig. 10 Labeled trees and postorder numbering

For a leaf node q’, χ(q’) is defined to be q’ itself. So in
Fig. 9(a), we have χ(q1) = χ(q2) = χ(q3) = q3. If we consider
q’ = χ(q) as a function, we can also define its reverse
function, denote by χ-1(q’). Its value is a set containing all
those nodes q such that χ(q) = q’, including q’ itself. For
example, for q3 in Fig. 9(a), we have χ-1(q3) = {q1, q2, q3}, χ-

1(q4) = {q4}, and χ-1(q5) = {q5}.

The nodes of Q are also numbered in postorder as shown
in Fig. 9(b). So the nodes in Q will be referred to by their
postorder numbers. In addition, a virtual node for Q is
created, numbered 0 and considered to be to the left of any
node in Q.

Bv – an array of length |Q|, indexed from 0 to |Q| - 1. In
Bv, each entry Bv[i] is a pointer to a unit containing a node j
in Q such that j is the closest node to the right of i such that
T[v] embeds Q[j]. Initially, each Bv[i] is set to be φ.

The unit pointed to by Bv[i] is denoted by f(Bv[i]).

Using Bv’s, the ordered tree embedding can be checked
as follows.

Let v be a node created by executing query-evaluation(S,
Q). Let v1, ..., vk be the child nodes of v. Let q1, ..., ql be the
child nodes of q currently checked. To know whether T[v]
embeds Q[q], we first check

1vB starting from
1vB [p], where

p = χ(q) - 1. We begin the searching from χ(q) - 1 because it
is the closest node to the left of the first child of q.

• Let f(
1vB [p]) = p’. If p’ is an ancestor of q1, this shows

that T[v1] embeds Q[q] and thus T[v] embeds Q[q].
• If p’ is q1 and (q, q1) is a // -edge, or both (q, q1) and (v,

v1) are /-edges, we will check f(
2vB [p’]) in a next step to

see whether f(
2vB [p’]) is an ancestor of q2 or equal to q2.

• Otherwise, we check f(
2vB [p]) in a next step to see

whether f(
2vB [p’]) is an ancestor of q1 or equal to q1.

This process continues until one of the following
conditions is satisfied:

(i) All
ivB ’s (i = 1, ..., k) are exhausted, or

(ii) All qj (j = 1, ..., l) are covered.

virtual
node

q1 A

B q5 q2 B

q3 B C q4

1

0

(b)

Q:
q1 A

B q5 q2 B

q3 B C q4

χ(q2)
χ(q1)

(a)

Q:

2

3

4

7

q7 B q6 B q7 B q6 B
5

6
χ(q5)

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 9 -
DOI: 10.5963/IJCSAI0204001

Case (i) shows that T[v] is not able to embed Q[q] while
the case (ii) indicates an embedding of Q[q] in T[v].

In the computation, Bv’s will dynamically be maintained
as follow.

• If we find Q[x] can be embedded in T[v], we will create
a unit U containing x and set Bv[q1], ..., Bv[qk] to a be a
pointer to U, where each ql (1 ≤ l ≤ k) is a query node to
the left of x, to record the fact that x is the closest node to
the right of ql such that T[v] embeds Q[x].

• If some time later we find another node x’ such that Q[x’]
can be embedded in T[v], we distinguish between two
cases:

 a) If x’ is to the right of x, we will generate a new unit U’
containing x’ and set Bv[p1], ..., Bv[ps] to U’, where each
pl (1 ≤ l ≤ s) is to the left of x’ but to the right of qk.

 b) If x’ is an ancestor of x, we will change Bv as below.

Let j = χ(x’) - 1. If Bv[j] and Bv[j + 1] point to different
units, simply change the value in the unit pointed to by
Bv[j] to x’.

Otherwise, Bv[j] and Bv[j + 1] point to the same unit W.
Create a new unit W’ and store the value of W in W’.
Find k ≥ j + 1 such that Bv[j + 1] = Bv[j + 2] = ... = Bv[k]
but Bv[k] ≠ Bv[k + 1]. Change all these entries to point to
W’ and then change the value in W to x’.

We also note that once Bv[j + 1], ..., Bv[k] are changed
for the first time, they will not be changed any more. If we
search Q bottom-up. (That is, each time a node v is created,
we will search Q bottom-up to find any q such that T[v]
embeds Q[q].) This property can be analyzed as follows.

Let q’ be a query node encountered in the subsequent
computation such that T[v] embeds Q[q’]. Then, q’ must be
to the right of q or an ancestor of q’. If q’ is to the right of q,
these entries obviously will not be changed. If q’ is an
ancestor of q, we have χ(q’) ≤ j + 1. If χ(q’) = j + 1, the unit
pointed to by Bv[j + 1] will be changed to q’. If χ(q’) < j + 1,
some entries before Bv[j + 1] will be changed. In both cases,
Bv[j + 1], ..., Bv[k] will not be touched. Therefore, for each v
in T, this part of cost is bounded by |Q|.

Finally, we need to merge each
ivB into Bv since the

embedding of a subtree in T[vi] implies the embedding of
that subtree in T[v]. merge(Av, ivA) is defined as below:

In this definition, we handle φ as a negative integer (e.g.,

-1) and consider it as a descendant of any node. Obviously,
if f(Bv[j]) and f(

ivB [j]) are on the same path, merge(Bv[j],

ivB [j]) should be set to be a pointer to max{f(Bv[j]),
f(

ivB [j])}. (Here, we use max{f(Bv[j]), f(
ivB [j])} to

represent the unit containing max{f(Bv[j]), f(
ivB [j])}.)

However, if f(Bv[j]) and f(
ivB [j]) are on different paths,

merge(Bv[j], ivB [j]) is set to be min{f(Bv[j]), f(ivB [j])}. It is
because in Bv each entry Bv[j] is a pointer to a unit
containing the closest node j’ to the right of j such that T[v]
contains Q[j’]. After this operation, we can remove

1vB , ...,

kvB since they will not be used any more.

From the above discussion, we can see that for each
created node vi, we need O(di ⋅|Q|) time to check the tree
embedding, where di is the outdegree of node vi in T. So the
total time complexity is bounded by

O(||
||

Qd
T

i
i ⋅∑) = O(|T|⋅|Q|).

However, the buffering space is in the order of
O(leafT’⋅|Q|). It is because after a v is checked all the arrays
associate with its children are removed. Thus, at any time
point during the execution, at most Tleaf nodes in T are
associated with a array.

The algorithm is somehow related to the method
discussed in [30], in which each node in Q is associated
with an array of size |T|. So its space complexity is in the
order of O(|T|⋅|Q|). Especially, this method cannot be
adapted to a data streaming environment.

V. EXPERIMENTS

In this section, we report the test results. We conducted
our experiments on a DELL desktop PC equipped with
Pentium(R) 4 CPU 2.80GHz, 0.99GB RAM and 20GB hard
disk. The code was compiled using Microsoft Visual C++
compiler version 6.0, running standalone.

- Tested methods
In the experiments, we have tested four methods on the

tree matching:
- TwigM [12],
- Gou’s method [23],
- the method for the unordered tree matching (discussed in

this paper, chen-1 for short), and
- the method for the ordered tree matching (discussed in

this paper, chen-2 for short).
The theoretical computational complexities of these

methods are summarized in Table 1.

The index for PRIX is a trie structure over all the labeled
Prüfer sequences, implemented as a B+-tree [30]. The indexes
for all the other three methods are XB-trees [4].

TABLE I TIME AND SPACE COMPLEXITIES

Methods Query Time CS BS
TwigM O(Th⋅Qd⋅|Q|⋅|T| + |Q|2⋅|T|) O(|Q|⋅r) O(|T|⋅|Q|)
Gou’s O(|T|⋅|Q|) O(|Q|⋅r) O(|T|⋅|Q|)
Chen-1 O(|T’|⋅leafQ) O(|Q|⋅r) O(leafT’⋅|Q|)
Chen-2 O(|T’|⋅|Q|) O(|Q|⋅r) O(leafT’⋅|Q|)

- Data

The data sets used for the tests are TreeBank data set

merge(Bv, ivB)[j]=

pointer to max{f(Bv [j]),
f(

ivB [j])},

pointer to min{f(Bv [j]),
f(

ivB [j])},

if f(Bv[j]) and f(
ivB [j])

are on the same path;

otherwise.

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 10 -
DOI: 10.5963/IJCSAI0204001

[36], DBLP data set [36] and a synthetic XMARK data set
[41]. The TreeBank data set is a real data set with a narrow
and deeply recursive structure that includes multiple
recursive elements. The DBLP data set is another real data
set with high similarity in structure. It is in fact a wide and
shallow document. The XMark (with scaling factors of 1 to
5) is a well-known benchmark data set, which is used for
scalability analysis. The important parameters of these data
sets are summarized in Table 2.

TABLE II DATA SETS FOR EXPERIMENTAL EVALUATION

 TREEBANK DBLP XMARK

1 2 3 4 5

DATA SIZE

82 127 113 228 340 454 568

NODES

2.43 3.33 1.72 3.33 5.1 6.7 8.33

MAX/AVERAGE
DEPTH 36/7.9 6/2.9 12/6.2

- Test results

In the experiments, we tested altogether 21 queries
shown in Table 3, 4, and 5.

TABLE III QUERIES FOR TREEBANK DATA SET

query XPath expression
Q1 //VP[DT]//PRP_DOLLAR
Q2 //S/VP/PP[IN]/NP
Q3 //S/VP//PP[NP/VB]/IN
Q4 //VP[.//PP/IN]//NP/*//JJ
Q5 //S[CC][.//PP]//NP[VBZ][IN]//JJ

TABLE IV QUERIES FOR DBLP

query XPath expression
Q6 //article/authot=“C.J. Codd”
Q7 //inproceedings[author=“Jim Gray”][year=“1990”]
Q8 //inproceedings[key][author=“Jim Gray”][year=“1990”]
Q9 //inproceeding[author][title][.//pages][.//url]

Q10 //articles[author][title][.//volume][.//pages][.//url]/*

TABLE V QUERIES FOR XMARK

query XPath expression
Q11 /site//open_auction[.//seller/person]/
Q12 /site//open_auction[.//seller/person][.//bidder]/
Q13 site//open_auction[.//seller/person][.//bidder/increase]/
Q14 /site//open_auction[.//seller/person][.//bidder[increase][.//initial]]/
Q15 /site//open_auction[.//seller/person][.//bidder/increase][.//initial]/*

/description/

To avoid the frequent use of the axes like following-
sibling in the tables, we assume that the order between the
siblings in a tree query follows the left-to-right order in the
corresponding XPath expression. For example,
//inproceedings[key][author] indicates that key is followed
by author.

In this test, we measure the CPU time performance of
the streaming algorithms as t = ttotal – tI/O, where ttotal is the
total running time and tI/O is the time for reading (from disk
into memory) XML documents and storing the results on
disk.

In Fig. 11, we show the running time of all the methods
for TreeBank, which shows that Chen-1 outperforms all the
other methods. TwigM has the worst performance while
Gou’s and Chen-2 are comparable. For Q4, Chen-2 is
clearly worse than Gou’s. It is because in the presence of ‘*’,
the checking of the left-to-right relationships uses extra time,
but does not filter a significant amount of false drops.
However, for the other four queries, Chen-2 works slightly
better than Gou’s.

0

1

2

3

4

Q1 Q2 Q3 Q4 Q5

TwigM Gou's Chen-1 Chen-2

Fig. 11 Running time for TreeBank

In Fig. 12 and 13, we show the whole execution times
for processing queries against DBLP and XMark,
respectively. These two figures also that Chen-1 has the best
performance.

0

2

4

6

8

10

Q6 Q7 Q8 Q9 Q10

TwigM Gou's Chen-1 Chen-2

Fig. 12 Execution time for DBLP

0
0.4
0.8
1.2
1.6

2

Q11 Q12 Q13 Q14 Q15

TwigM Gou's Chen-1 Chen-2

Fig. 13 Execution time for XMark

As discussed in Section I, the caching space is bounded
by O(|Q|⋅r). Since many practical XML documents are not
very deep, this space cost can be ignored in practice.
However, the buffering space is normally very high since in

E
xecution tim

e (sec.)
E

xecution tim
e (sec.)

E
xecution tim

e (sec.)

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 11 -
DOI: 10.5963/IJCSAI0204001

the process of a query evaluation, a huge number of
potential answer nodes may have to be buffered. In Fig. 14,
15, and 16, we show the sizes of the buffering spaces used
during the evaluation of queries against TreeBank, DBLP,
and Xmark, respectively. From these figures we can see that
the space requirement of Chen-2 is the lowest among all the
tested methods for the following reasons:

1. By Chen-2, not only the ancestor/descendant, but also
left-to-right relationships are used to get rid of non-
qualifying nodes.

2. Before a node in T is checked, only for each of its
children the corresponding matching query nodes are
buffered.

3. Using the merging operation, the buffering space is
effectively reduced.

In addition, we notice that the buffering space of Chen-1
is also much smaller than Gou’s due to (2) and (3) listed
above.

Fig. 16 Size of buffering space for XMark

VI. CONCLUSIONS

In this paper, two efficient algorithm for the query
evaluation in an XML streaming environment is presented.

One is for the unordered tree matching. The algorithm runs
in O(|T’|⋅leafQ) time and O(|T’|⋅leafQ) space, where leafT’
stands for the number of the leaf nodes in T’ and leafQ for
the number of the leaf nodes in a query tree Q. The other is
for the ordered tree matching, by which the left-to-right or-
der of nodes much also be taken into account. It runs in time
and space complexities are bounded by O(|T’|⋅|Q|). But its
space overhead is in the order of O(leafT’⋅|Q|). These
computational complexities are much better than any
existing strategy for this problem.

REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu, Data on the web:

from relations to semistructured data and XML, Morgan
Kaufmann Publisher, Los Altos, CA 94022, USA, 1999.

[2] I. Avila-Campillo, T.J. Green, A. Gupta, M. Onizuka, D.
Raven, and D. Suciu (2002), XMLTK: An XML Toolkit for
Scalable XML Stream Processing, in Programming Langauge
Technologoes for XML(PLAN-X), 2002.

[3] A. Aghili, H. Li, D. Agrawal, and A.E. Abbadi, TWIX: Twig
structure and content matching of selective queries using bi-
nary labeling, in: INFOSCALE, 2006.

[4] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D.
Srivastava, and Y. Wu, Structural Joins: A primitive for effi-
cient XML query pattern matching, in Proc. of IEEE Int. Conf.
on Data Engineering, 2002.

[5] N. Bruno, N. Koudas, and D. Srivastava, Holistic Twig Joins:
Optimal XML Pattern Matching, in Proc. SIGMOD Int. Conf.
on Management of Data, Madison, Wisconsin, June 2002, pp.
310-321.

[6] B. Catherine and S. Bird, Towards a general model of Inter-
linear text, in Proc. of EMELD Workshop, Lansing, MI, 2003.

[7] D. D. Chamberlin, J.Clark, D. Florescu and M. Stefanescu.
"XQuery1.0: An XML Query Language," http://
www.w3.org/TR/query-datamodel/.

[8] D. D. Chamberlin, J. Robie and D. Florescu. “Quilt: An XML
Query Language for Heterogeneous Data Sources,” WebDB
2000.

[9] T. Chen, J. Lu, and T.W. Ling, On Boosting Holism in XML
Twig Pattern Matching, in: Proc. SIGMOD, 2005, pp. 455-
466.

[10] B. Choi, M. Mahoui, and D. Wood, On the optimality of ho-
listic algorithms for twig queries, in: Proc. DEXA, 2003, pp.
235-244.

[11] C. Chung, J. Min, and K. Shim, APEX: An adaptive path in-
dex for XML data, ACM SIGMOD, June 2002.

[12] Y. Chen, S.B. Davison, Y. Zheng, An Efficient XPath Query
Processor for XML Streams, in Proc. ICDE, Atlanta, USA,
April 3-8, 2006.

[13] Y. Chen and D. Che, Efficient Processing of XML Tree
Pattern Queries, Journal of Advanced Computational
Intelligence and Intelligent Informatics, Vol. No. 5, 2006, pp.
738-743.

[14] Y. Chen and D. Che, Efficient Processing of XML Tree
Pattern Queries in the Presence of Integrity Constraints,
Journal of Advanced Computational Intelligence and
Intelligent Informatics, Vol. No. 5, 2006, pp. 744-751.

[15] Y. Chen, Evaluating Tree Pattern Queries based on tree
embedding, in: Proc. Int. Conf. Software Engineering and
Data Technologies (ICSOFT’2006), Vol II, Setubal, Portugal:
Springer Verlag, Sept. 11-14, 2006, pp. 79-85.

N
um

ber of buffered nodes
0

20000
40000
60000
80000

100000

Q6 Q7 Q8 Q9 Q10

TwigM Gou's Chen-1 Chen-2

Fig. 15 Size of buffering space for DBLP

N
um

ber of buffered nodes

0
20000
40000
60000
80000

100000

Q11 Q12 Q13 Q14 Q15

TwigM Gou's Chen-1 Chen-2

N
um

ber of buffered
nodes

0
50

100
150
200
250

Q1 Q2 Q3 Q4 Q5

TwigM Gou's Chen-1 Chen-2

 Fig. 14 Size of buffering space for TreeBank

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 12 -
DOI: 10.5963/IJCSAI0204001

[16] Y. Chen, On the Stack Encoding and Twig Joins, WSEAS
Transactions on Information Science & Applications, Vol. 3,
No. 10, October 2006, pp. 1865-1872.

[17] Y. Chen, An Efficient Algorithm for Tree Matching in XML
Databases, Journal of Computer Science, 3(7):487-493,
Science Publication, 2007.

[18] Y. Chen, On the XML Data Stream and XPath Queries, in
Proc. 19th Information Resources Management Association
Intl. Conference, Niagara, Ontario, Canada, May 18-20, 2008,
pp. 62-72.

[19] S. Chen, H-G. Li, J. Tatemura, W-P. Hsiung, D. Agrawa, and
K.S. Canda, Twig2Stack: Bottom-up Processing of General-
ized-Tree-Pattern Queries over XML Documents, in Proc.
VLDB, Seoul, Korea, Sept. 2006, pp. 283-294.

[20] B.F. Cooper, N. Sample, M. Franklin, A.B. Hialtason, and M.
Shadmon, A fast index for semistructured data, in: Proc.
VLDB, Sept. 2001, pp. 341-350.

[21] A. Dutsch, M. Fernandez, D. Florescu, A. Levy, D.Suciu, A
Query Language for XML, in: Proc. 8th World Wide Web
Conf., May 1999, pp. 77-91.

[22] D. Florescu and D. Kossman, Storing and Querying XML
data using an RDMBS, IEEE Data Engineering Bulletin,
22(3):27-34, 1999.

[23] G. Gou and R. Chirkova, Efficient Algorithms for Evaluating
XPath over Streams, in: Proc. SIGMOD, June 12-14, 2007.

[24] R. Goldman and J. Widom, DataGuide: Enable query formu-
lation and optimization in semistructured databases, in: Proc.
VLDB, Aug. 1997, pp. 436-445.

[25] G. Gottlob, C. Koch, and R. Pichler, Efficient Algorithms for
Processing XPath Queries, ACM Transaction on Database
Systems, Vol. 30, No. 2, June 2005, pp. 444-491.

[26] C.M. Hoffmann and M.J. O’Donnell, Pattern matching in
trees, J. ACM, 29(1):68-95, 1982.

[27] Z.G. Ives, A.Y. Halevy, and D.S. Weld (2002), An XML
query engine for network-bound data, VLDB Journal, 11(4),
2002.

[28] Jiang, Z., Luo, C., Hou, W.-C., Zhu, Q., and Che, D., “Effi-
cient Processing of XML Twig Pattern: A Novel One-Phase
Holistic Solution,” In Proc. the 18th Int’l Conf. on Database
and Expert Systems Applications (DEXA), pp. 87-97, Sept.
2007.

[29] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth, Cover-
ing indexes for branching path queries, in: ACM SIGMOD,
June 2002.

[30] P. Kilpeläinen and H. Mannila. Ordered and unordered tree
inclusion. SIAM J. Comput, 24:340-356, 1995.

[31] C. Koch, Efficient Processing of Expressive Node-Selecting
Queries on XML Data in Secondary Storage: A Tree Autom-
ata-based Approach, in: Proc. VLDB, Sept. 2003.

[32] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier
(2004), Schema-based Scheduling of Event Processor and
Buffer Minimization for Queries on Structured Data Stream,
in: Proc. of VLDB, 2004.

[33] B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou
(2002), A Transducer-based XML Query Processor, in: Proc.
of VLDB, 2002.

[34] Q. Li and B. Moon, Indexing and Querying XML data for
regular path expressions, in: Proc. VLDB, Sept. 2001, pp.
361-370.

[35] J. Lu, T.W. Ling, C.Y. Chan, and T. Chan, From Region En-
coding to Extended Dewey: on Efficient Processing of XML
Twig Pattern Matching, in: Proc. VLDB, pp. 193 - 204, 2005.

[36] J. McHugh, J. Widom, Query optimization for XML, in Proc.
of VLDB, 1999.

[37] G. Miklau and D. Suciu, Containment and Equivalence of a
Fragment of XPath, J. ACM, 51(1):2-45, 2004.

[38] K. Müller, Semi-automatic construction of a question tree-
bank, in Proc. of the 4th Intl. Conf. on Language Resources
and Evaluation, Lisbon, Portual, 2004.

[39] F. Peng and S.S. Chawathe (2003), XPath queries on
streaming data, in: Proc. of SIGMOD, 2003.

[40] F. Peng and S.S. Chawathe (2003), XSQ: A Streaming XPath
Engine, Technical Report CS-TR-4493, University of
Maryland, 2003.

[41] L. Qin, J.X. Yu, and B. Ding, “TwigList: Make Twig Pattern
Matching Fast,” In Proc. 12th Int’l Conf. on Database Sys-
tems for Advanced Applications (DASFAA), pp. 850-862,
Apr. 2007.

[42] P. Ramanan, Holistic Join for Generalized Tree Patterns, In-
formation Systems 32 (2007) 1018-1036.

[43] P. Rao and B. Moon, Sequencing XML Data and Query
Twigs for Fast Pattern Matching, ACM Transaction on
Database Systems, Vol. 31, No. 1, March 2006, pp. 299-345.

[44] A.R. Schmidt, F. Waas, M.L. Kersten, D. Florescu, I.
Manolescu, M.J. Carey, and R. Busse, The XML benchmark
project, Technical Report INS-Ro1o3, Centrum voor
Wiskunde en Informatica, 2001.

[45] C. Seo, S. Lee, and H. Kim, An Efficient Index Technique for
XML Documents Using RDBMS, Information and Software
Technology 45(2003) 11-22, Elsevier Science B.V.

[46] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. Dew-
itt, and J.F. Naughton, Relational databases for querying
XML documents: Limitations and opportunities, in Proc. of
VLDB, 1999.

[47] U. of Washington, The Tukwila System, available from http:/
/data.cs.washington.edu/integration/tukwila/.

[48] U. of Wisconsin, The Niagara System, available
fromhttp://www.cs.wisc.edu /niagara/.

[49] U of Washington XML Repository, available from http://
www.cs.washington.edu /research/xmldatasets.

[50] H. Wang, S. Park, W. Fan, and P.S. Yu, ViST: A Dynamic In-
dex Method for Querying XML Data by Tree Structures,
SIGMOD Int. Conf. on Management of Data, San Diego, CA.,
June 2003.

[51] H. Wang and X. Meng, On the Sequencing of Tree Structures
for XML Indexing, in Proc. Conf. Data Engineering, Tokyo,
Japan, April, 2005, pp. 372-385.

[52] World Wide Web Consortium. XML Path Language (XPath),
W3C Recommendation, 2007. See http://www.w3.org/TR/
xpath20.

[53] World Wide Web Consortium. XQuery 1.0: An XML Query
Language, W3C Recommendation, Version 1.0, Jan. 2007.
See http://www.w3.org/TR/xquery.

[54] XMARK: The XML-benchmark project, http://monet-
db.cwi.nl/xml, 2002.

[55] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman,
on Supporting containment queries in relational database
management systems, in Proc. of ACM SIGMOD, 2001.

[56] M. Götz, C. Koch, and W. Martens, Efficient Algorithms for
the tree Homeomorphism Problem, in Pro. Int. Symposium on
Database Programming Language, 2007.

[57] Z. Bar-Yossef, M. Fontoura, and V. Josifovski, On the mem-
mory requirements of XPath evaluation over XML streams,
Journal of Computer and System Sciences 73 (2007) 391-441.

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 1-13

- 13 -
DOI: 10.5963/IJCSAI0204001

[58] R.B. Lyngs, M. Zuker & C.N.S. Pedersen, Internal loops in
RNA secondary structure prediction, in Proceedings of the 3rd
annual international conference on computational molecular
biology (RECOMB), 260-267 (1999).

[59] Y. Rui, T.S. Huang, and S. Mehrotra, Constructing table-of-
content for videos, ACM Multimedia Systems Journal, Spe-
cial Issue Multimedia Systems on Video Libraries, 7(5):359-
368, Sept 1999.

[60] M. Zaki. Efficiently mining frequent trees in a forest. In Proc.
of KDD, 2002.

Yangjun Chen received his BS in
Information System Engineering from
the Technical Institute of Changsha,
China, in 1982, and his Diploma and
PhD in Computer Science from the
University of Kaiserslautern, Germany,
in 1990 and 1995, respectively. From
1995 to 1997, he worked as a Post-

Doctor at the Technical University of Chemnitz-Zwickau,
Germany. After that, he worked as a Senior Engineer at the
German National Research Center of Information
Technology (GMD) for more than two years. Since 2000, he
has been a Professor in the Department of Applied
Computer Science at the University of Winnipeg, Canada.
His research interests include deductive databases, federated
databases, document databases, constraint satisfaction

problem, graph theory and
combinatorics. He has more than 150
publications in these areas.

Leping Zou received his BS from the
South-West JiaoTong University of
China, in 2003. He is a graduate student
in the Department of Applied Computer
Science, University of Winnipeg,
Canada.

