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Abstract-Long-term infection by Human Immunodeficiency Virus produces a multitude of clinical symptoms resulting in total 

suppression of the immune system dominated by depletion in CD4+ T cell count and reduction in density of Human 

Immunodeficiency Virus specific Cytotoxic T-Lymphocyte immune responses. Since the dynamics between viral infection and 

replication parameters and the host immunity system changes from short-term to long-term chronic infection, mathematical 

modeling of long-term dynamics necessitates incorporation of negative feedback control mechanism. By applying optimal control 

theory approach to the administration of combination therapy of reverse transcriptase inhibitor and interleukin 2 in the same model, 

the most cost-effective strategy has been established where maximum recovery of CD4+ T cell population is attained. 
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I. INTRODUCTION 

Complete disruption of human immunity system by Human Immunodeficiency Virus (HIV) occurs over an extended period 

of approximately 15 years, culminating in development of full-blown AIDS characterized by appearance of several 

opportunistic infections. Monitoring of viral population through various stages of disease progression reveals rapid increase in 

viral load till it reaches a maximum, followed by a sharp decrease until set point or quasi-steady state is attained [1]. Sequential 

activities of two enzymes, reverse transcriptase and Human Immunodeficiency Virus (HIV) protease, transform uninfected 

CD4
+
T cells into short-lived productively infected cells or long-lived latently infected cells through the creation of an 

infectious virion during each secondary infection. The viral antigen stimulates the generation of CD4
+
T cell dependent Human 

Immunodeficiency Virus (HIV) specific immune responses mediated primarily by Cytotoxic T-Lymphocytes (CTLs) and 

non-cytotoxic CD8
+
T immune cells during primary infection. Cytotoxic T-Lymphocyte (CTL) responses specific for env and  

gag genes of Human Immunodeficiency Virus (HIV) have been reported [2]. Interaction of host immune system with virus 

follows a complex dynamics. High turnover rate of productively infected cells alters circulating T cell homeostasis which is 

re-established by supply of fresh cells from the thymus and proliferation of existing cells. Constant recruitment of CD4
+
T cells 

helps in persistence of Cytotoxic T-Lymphocyte (CTL) activities simultaneously allowing the virus to evolve and mutate fast 

[3]. In case of short-term infection by Human Immunodeficiency Virus (HIV), selection pressure exerted on viral population 

by the immune cells kills the infected cells as well as inhibits viral replication and the infection is kept in check without any 

impairment of the host immune system [4]. The above-mentioned compensatory feedback control may exert a short term 

beneficial effect but in long-term aggravates Human Immunodeficiency Virus (HIV) induced lymphopenia by providing fertile 

substrates for spread of the virus, infection and destruction of the progenitor cells [5]. Increase in the viral population with 

proportional increase in the number of virus-producing infected cells exerts a cytopathic effect on uninfected CD4
+
T cells 

limiting their numbers. Thus, there exists a negative correlation between the viral load and rate of production of uninfected 

target cells [6]. When level of infection is low and also following therapeutic intervention, where CD4
+
T cell depletion has not 

started or the count goes up respectively, specific Cytotoxic T-Lymphocyte (CTL) responses are found to decline slowly 

emphasizing the existence of an indirect inverse relationship between high viral load and the density of Cytotoxic 

T-Lymphocyte (CTL) response [7]. In a nutshell, high initial viral load in conjunction with low initial CD4
+
T cell count 

suppresses CD4
+
T supported proliferation, differentiation and clonal expansion of long-lived pCTL  into eCTL  under the 

influence of IL-2 [8] with subsequent inhibitory effect on the development of Human Immunodeficiency Virus (HIV) induced, 

T helper cell-dependent, persistent Cytotoxic T-Lymphocyte (CTL) response thereby sustaining the disease [5], [3] and 

progression of Human Immunodeficiency Virus (HIV) infection to AIDS. Strong Cytotoxic T-Lymphocyte (CTL) activity is 

responsible for better virus control and slower disease progression. Same Cytotoxic T-Lymphocytes (CTLs) may also 

recognize latently infected cells [2]. Rational introduction of Highly Active Anti Retroviral Therapy (HAART), consisting of a 

combination of reverse transcriptase inhibitor and protease inhibitor, at an optimum time in optimum dose and combination for 

optimum duration, can lead the viral population almost to the verge of extinction, but complete eradication seems to be an 

impossible task because of partial immune reconstitution, even if continued for a long time. Viral relapse is known to occur as 

soon as therapy is discontinued. Thus arises the need of addition of new therapeutic modalities in the form of administration of 

immunomodulatory agent, interleukin 2  (IL-2) in conjunction with Highly Active Anti Retroviral Therapy (HAART) to 
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promote complete immune reconstitution. Net outcome of IL-2 therapy is rejuvenation of peripheral naive T cell pool marked 

by decreases in T cell turnover, proliferation and activation [9]. In contrast, Highly Active Anti Retroviral Therapy (HAART) 

alone results in selective rescue of CD4
+
T memory cells with no change in naive compartment [10]. 

In a previous mathematical model of viral dynamics, Bonhoeffer postulated that there is no significant difference in total 

virus load due to drug administration, primarily the reverse transcriptase inhibitor (RTI), as the reduction in the rate of 

infection actually helps in recovery and restoration of uninfected healthy T cell population [11]. In resent time a model [12] has 

been designed with slight modifications of the above mentioned model with introduction of two negative feedback functions 

both prior to treatment and after drug administration, justifying the inverse relationship between viral load and rate of 

production of uninfected cells on one hand and the decline in strength of immune response and viral load on the other hand. As 

the viral load increases in the later stages of HIV infection, host-virus interaction with respect to fresh cells decreases as the 

availability of uninfected CD4
+
T cells decreases. This can be attributed to the existence of negative feedback factor between 

the viral load and rate of production of uninfected cells from the thymus. This effect of m  on k  was not observed in our 

previous model [12]. On that basis, in the current model, 
mk  is introduced, whereas in the previous model [12], only the 

host-virus interaction parameter, k  was present in the denominator of the equation involving the rate of change of population 

of uninfected CD4
+
 T cells. Modified mathematical model of long-term viral dynamics (Fig. 1) with subsequent analysis and 

numerical simulations has successfully established the necessary conditions for existence of two steady states with respect to 

feedback factor, the rate of infection and killing rate of virus producing cells. Results from analysis emphasize that if the 

feedback factor can be controlled and rate of infection can be minimized, the progression of Human Immunodeficiency Virus 

(HIV) infection can be restricted, i.e the system attains stability. The effect of Highly Active Anti Retroviral Therapy (HAART) 

on long-term host cell HIV dynamics has been previously studied [13, 14]. So far to our knowledge, a single study has been 

established incorporating mathematical modeling in effect to optimal treatment schedule corresponding to different 

combinations of Highly Active Anti Retroviral Therapy (HAART) and IL-2 on the outlook of immune response in Human 

Immunodeficiency Virus (HIV) infection [20]. In the present study we attempt to fill up this particular lacuna in optimal 

control of Human Immunodeficiency Virus (HIV) with dual therapeutic agents and have satisfactorily designed the most 

cost-effective therapeutic intervention leading to restoration of uninfected CD4
+
T cell and decline in infected cell population. 

 

Fig. 1 Schematic explanation of Mathematical model (1) 

II. GENERAL MATHEMATICAL MODEL 

In view of above biological perspective, it becomes practically impossible to exert immunological restriction on the disease 

progression when the feedback factor is low. This happens because of rapid infection of available few uninfected cells and a 

substantial decline in the count of uninfected CD4
+
T cells. This can be explained in the light of host-virus interaction factor. 

As uninfected CD4
+
T cells decrease, host-virus interaction decreases and CTL response fails to develop, resulting in 

disease progression. When the rate of infection is high and m attains a much higher value, it exerts a significant effect on 

host-virus interaction and 
mk  becomes negligibly small. However, this situation happens only if the viral load is sufficiently 

high when the infected cell population is considerably greater. Consequently, the final effect is lowering in the number of 

uninfected cell count. The above statements justify the introduction of 
mk  in the model in lieu of k  [12] , for proper 

characterization of long-term HIV dynamics with respect to existence of negative feedback effect in the system. Thus, we 

reconstruct the mathematical model [12] considering x , y  and z  which represents the uninfected CD4
+
T cell, infected 

CD4
+
T cell and CTL response and hence the control equations are as follows: 
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The system needs to analyze with the following initial condition: 0>(0)x , 0>(0)y , 0>(0)z  and we denote   

0}.0,0,,),,{(= 33  zyxRzyxR  

Here 21,dd  and 3d  are the natural death rate of uninfected CD4
+
T cell, infected CD4

+
T cell and CTL response 

respectively. We consider   as the constant production rate of uninfected CD4
+
T cell from thymus, where 0>  because 

thymus is always functioning. Here we also consider   is the rate of infection at which the uninfected cell become infected 

by the virus particle, and p  is the killing rate of infected cell by CTL. We assume s  as the rate of stimulation of CTL 

responses. Here 1s  and 2s  are growth terms and m  is defined as feedback factor. We also assume k  as host-virus 

interaction coefficient. Considering the dimensionless quantities 
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The dimensionless form of the model becomes 
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A. Theoretical Analysis 

1)  Steady State Analysis: 

The system (3) has the following steady state. The first one is disease free equilibrium given by ,0,0)(
1

l
E  and another is 

infected equilibrium ),,( **** ZYXE . The infected steady state *E  of the system (3) is obtained from  
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 (4) 

If the last Equation (4) has only one positive root then the steady state exists and uniqueness of the steady state is 

confirmed by Descartes rule of sign. Thus we get the condition (5) stated below, for which *E  always exists. 
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From the above existence condition we can conclude that if the rates at which the uninfected T cell become infected by the 
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virus particle is restricted then only infected steady state exists. We can also state that the uninfected T cell population and 

CTL response are both affected by the feedback factor if and only if m  increases reflected by decline in uninfected T cell 

and CTL response. 

2)  Stability of the system: 

Here we consider the basic reproduction ratio 0R , which means the average number of secondary infection caused by a 

single infected T cell in an entirely susceptible T cell. Here .=
21

0
dd

R
  For E  the Jacobian matrix becomes J   where 

the eigen values for J   are )( , 2

1

1 


 
l  and 

3 . 

Thus we get the proposition. 

Proposition 1: For E , if 1<0R  then E  is local asymptotically stable. If 1>0R  then the system E  is unstable. 

The Jacobian matrix for *E  is *J . The characteristic equation for )( *EJ  is 0=32
2

1
3 aaa   . 

where, 

 

0>)}]({)}([{=

0,>)(=

0,>=

*
113

**
121

*
3

*
3

*
1

***
21

***
3312

*
311

YBAYXYa

YBAYYYXYa

Ya













 (6) 

and 

0.>
)(1

=
2*

1*
*

m

m

Y

mY





  

From Routh-Hurwitz condition, the necessary and sufficient condition for locally asymptotically stability of the steady state 
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Proposition 2: The system *E  is stable if )(i  1>0R  and )(ii  0>321 aaa   are satisfied. 

B. Numerical Analysis 

We now numerically illustrate the change of the stability due to varying the time delay. We choose the initial condition of 

the parameters as given in Table 1. At t=0 the values of the model variables are considered as 1000=(0)x , 100=(0)y , 

10=(0)z . It should be noted that the asymptotic time series solutions of the model equation do not depend on the choice of the 

initial values of the model variables. Variation of the parameter p  is restricted by the condition 0.050.01
3

:
d

ps
[11]. The 

parameter s  and 3d  are mentioned in the Table 1. 

TABLE 1 LIST OF PARAMETERS FOR INFECTIVITY 

Parameters Definition Range (day
1

) Reference 

  Constant rate of production of CD4


T cells 1-10 (
3mm ) [17] 

1d  Death rate of uninfected CD4


T cells 0.007-0.1 (
3mm ) [17] 

  Rate of infection of uninfected T cell 0.00025-0.5 (
3mm ) [11] 

2d  Death rate of virus  producing cells 0.2-0.3 (
3mm ) [18], [19] 

p  Killing rate of virus  producing cells 0.002 [11] 

s  Rate of stimulation of CTL 0.1-1 [11] 

3d  Death rate of CTL 0.1-0.15 [11] 
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Fig. 2 (left panel) shows the existence and stability condition for the system E . Here we plot the basic reproduction ratio 

0R  with respect to   and 2d . It is easily seen that for reducing value of   basic reproduction ratio 0R  reduces 

proportionately and if we restrict 0.1< , then it shows that 1<0R , which reflects the stability of the system. But if 2d  

increases 1<0R  regardless of large value of  . 

     

Fig. 2 Left panel:(A) Phase plane for the condition of existence of the stability of the uninfected steady state E . Center panel: (B) Mesh diagram showing 

the existence condition of 
*E  for  , p  and 1=m . Right panel: (C) Mesh diagram showing the existence condition of 

*E  for  , p  and 2=m  

From Fig. 3 (right panel) we observe that if 4m , the stationary point becomes unstable which implies that infected 

steady-state is disturbed and the viral count starts increasing. It contradicts in vivo viral replication because high viral load is 

known to exert a negative feedback effect on the supply of fresh target cells and attains a quasi-steady state of viral population. 

In Fig. 3 (a), (b) we see that for 1=m , 0>1a  when 0.004< . But if 0.004> , 0<1a . Thus if the rate of infection is 

restricted then *E  remains stable. But when 2=m  (Fig. 3(c), (d)) the system *E  remains stable for 0.004> . 

   

Fig. 3 Left Panel: Phase plane for the condition of existence of the stability of the infected steady state 
*E . Right panel: Figure shows that when 4m  

the system becomes unstable. Whereas when 4<m  the system remain stable. That means for large compatibility the system become unstable 

If   lies above a threshold value .0.004).( ei  and feedback factor is of lower magnitude 1)=(m , it becomes practically 

impossible to exert immunological restriction on the disease progression because of rapid infection of available few uninfected 

cells, failure of establishment of effective, sustained CTL response in presence of viral antigen and a substantial decline in the 

count of uninfected T cells in comparison to the number of infected cells. The system is yet to attain persistent infection 

equilibrium. 

However, if   lies below the threshold value, it will take longer time to infect uninfected cells. Immune system is strong 

enough to control the infection because of the development of effective CTL response. Viral load and the number of infected 

cells are on a decline leading to the generation of disease free equilibrium.  Infected steady state can be attained if the 

feedback factor increases 2)=(m  when 0.004> , since, now the immune system is totally impaired due to weakening of 

HIV-specific CTL-mediated responses and further viral replication is inhibited due to depletion of uninfected CD4


T cells 

and death and destruction of T cell progenitors. 

III. THE OPTIMAL CONTROL PROBLEM 

In this section our main aim is to minimize the cost as well as minimize the infected CD4
+
T cell and maximize the 
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uninfected CD4
+
T cell. In this section we study the optimal control problem for the stable system, keeping m  below 4 . 

Thus we construct the optimal control problem where the state system is 
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and the control function is defined as  
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Here the control functions )(1 tu  and )(2 tu  represent the percentage of effect RTI and IL-2 on interaction of T cell with 

virus and the parameters P  and Q  represent respectively the weight factor on the benefit of the cost of RTI and IL-2 

therapy. Here the control function )(1 tu  and )(2 tu  are bounded [15]. The control )(1 tu  represents the efficacy of the drug 

therapy in inhibiting the reverse transcription i.e., blocking new infection. The control )(2 tu  represents the efficacy of IL-2 

therapy. In this problem we are seeking the optimal control pair ),(
*

2
*

1 uu  such that 
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1 UuuuuJuuJ    Where U  is the control set defined by, 
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To determine the optimal control 
*

1u  and 
*

2u , we use the “Pontryagin Minimum Principle”[16]. To solve the problem 

we use the Hamiltonian given by 
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By using the “Pontryagin Minimum Principle” and the existence condition for the optimal control theory [16] we obtain the 

theorem. 

Proposition 3: The objective cost function ),( 21 uuJ  over U  is minimum for the optimal control ),(=
*

2

*

1

* uuu  

corresponding to the interior equilibrium ),,( *** zyx . Also there exist adjoint function 321  , ,   satisfying the Equation 

(14). 

Proof: By using Pontryagin Minimum Principle [16] the unconstrained optimal control variable 
*
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*
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Then according to the standard control arguments, we can conclude for *
1u : 
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The above equation are the necessary condition satisfying the optimal control )(tu  and the variable.  The system (4) is 

the adjoint system and in our problem it becomes 
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We have analyzed the optimality of the system which consists of the state system, the adjoint system together with the 

initial condition and the transversality conditions. The transversability condition is given at final time ft  by 

1,2,3=  0,=)( it fi . 

Using the state system (7), and the adjoint system (14), we can conclude that the objective function (8) will be minimized, 

for *
1u , and *

2u  (12), if the initial conditions are 000 =(0) ,=(0) ,=(0) zzyyxx , and the transversality condition 

1,2,3=  0,=)( it fi  does hold. 

A. Numerical Analysis 

For the numerical illustration of the optimal control problem (7) and (8) we assume 100=ft , which can be used as an 

initial guess. We solve the optimality system by making the changes of the variable ftt/=  and transferring the interval 

[0,1] . Here   represents the step size which is used for better strategy with a line search method which will maximize the 

reduction of performance measure. We choose ff tt 1=  and initially 1=ft . We also assume that 0.1=ft  and our 

desired value of 100=ft . This process is continued until the desire problem is solved. Thus we have got the successive 

values which are chosen as a homotopy path. Here we choose the initial condition for the state variable as 
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2=  1,=  5,= 000 zyx  [14] and we have also used the parameters given in Table 1. 

The solutions are displayed in Fig. 4 (Table 2), Fig. 5 (Table 3), Fig. 6 (Table 4), Fig. 7 (Table 5). Here we have plotted the 

trajectories of the state variables and the optimal control variables for different values of the cost in the form of weight factor. 

From the numerical study we have observed that if the weight factor of IL-2 increases then the treatment control 2u  will 

remain at upper bound for short period of time in comparison with respect to the earlier case. Also it is observed that the 

treatment control 1u  takes more time to reach at its maximum value (which is comparatively lower to previous one). We have 

also observed that the weight factor of HAART does not make any significant impact on the system due to the negative 

feedback effect. Thus the combination of drug therapeutic treatment (HAART and IL-2) is more effective in presence of 

negative feedback effect. 

  

 

 

Fig. 4 Optimal trajectories of the state variables and control variables for 10=P  and 10=Q  

TABLE 2 VARIABLE VALUES AT THE FINAL TIME OF TREATMENT FOR THE OPTIMAL CONTROL INPUT WITH DIFFERENT SET OF COST 

P Q fx  fy  
fz  *

1u  
*
2u  

10 10 22.52 0.8076 6.724 0.04251 at 0.1023 1 up to 0.9798 
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Fig. 5 Optimal trajectories of the state variables and control variables for 10=P  and 100=Q  

TABLE 3 VARIABLE VALUES AT THE FINAL TIME OF TREATMENT FOR THE OPTIMAL CONTROL INPUT WITH DIFFERENT SET OF COST 

P Q fx  
fy  fz  *

1u  
*
2u  

10 100 19.66 0.8071 5.859 0.0399 at 0.1446 1 up to 0.6566 

  

  

 

Fig. 6 Optimal trajectories for the state variables and control variables for 100=P  and 10=Q  

TABLE 4 VARIABLE VALUES AT THE FINAL TIME OF TREATMENT FOR THE OPTIMAL CONTROL INPUT WITH DIFFERENT SET OF COST 

P Q fx  fy  
fz  *

1u  *
2u  

100 10 22.51 0.8082 6.723 0.004278 at 0.1651 1 up to 0.98 
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Fig. 7 Optimal trajectories for the state variables and control variables for 100=P  and 100=Q  

TABLE 5 VARIABLE VALUES AT THE FINAL TIME OF TREATMENT FOR THE OPTIMAL CONTROL INPUT WITH DIFFERENT SET OF COST 

P Q fx  fy  fz  *
1u  

*
2u  

100 100 19.66 0.8076 5.859 0.00399 at 0.1701 1 up to 0.6566 

IV. DISCUSSION 

In this research article we consider the effect of negative feedback control on host-virus interaction parameter, infected T 

cell, uninfected T cell and CTL differentiation. Our analytical study reveals that the system has two steady states - disease free 

equilibrium and the infected equilibrium. Here we see that if the basic reproduction ratio 1<0R  then the system E  is 

locally asymptotically stable, but if 1>0R  then E  is unstable. We also find out 
*E  exist if 


 21<

dd  and 

21

11 )(
<

sd

skd
p

m  . Further the disease free equilibrium E  is asymptotically stable in the   region if 1<0R , and the 

system E  does not exist if 1>0R . Also the infected equilibrium exists if 1>0R  and   is restricted by the restriction 






 21

13

21 <<
)(

dd

skd

sp
m 

. If feedback factor, m  increases, infected steady state continues to exist even for lower values of 

 , provided the condition 0R  is satisfied. Thus in a nut shell we can conclude that if 1<0R , number of secondary infected 

cells approaches zero as time proceeds to infinity because less than one new cell will be infected by a primary infected cell for 

which the system attains disease free equilibrium or E  becomes locally asymptotically stable and if 1>0R , stability of 

E  is lost. 

In our numerical analysis Fig. 3(right panel) shows that when 3m , 0>321 aaa  , but for large value of 4)(m , 

0<321 aaa  . Thus negative feedback effects of infected cells always mess up the immune system which can no longer act 

against viral replication. When the infection rate   is small, CTL may control the disease (Fig. 3, left panel). Also when   

lies below its threshold value the immune system acts properly against the infected cells but if m  increases, the immune 

system totally collapses to act against viral replication (Fig. 3 (a), (b)). 
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The aim of any successful therapeutic intervention is to use minimum strength/dose of drug/drugs for a minimum time to 

obtain the maximum effect i.e. increased CD
4 T cell count. In Figs. 4-7, alterations in uninfected and infected T cell 

population in response to optimal treatment schedule of control variable, IL-2 when both HAART and IL-2 are administered, 

are depicted. Comparison of results of variations in numerical values of weight factors associated with control variables, 

)(1 tu  and )(2 tu , indicates that maximum increase in uninfected CD4
+
 T cell count is observed at a comparatively low dose 

of HAART when combined with a high dose of IL-2. No extra beneficial effect is obtained if HAART is given at a weight 

factor either in 10  or 100. Another interesting revelation is that the infected cell population declines to similar level 

whatever may be the combination of weight factors associated with two control variables of treatment schedule. It has also 

been observed that time at which chemotherapy exerts, maximum effect does not depend on weight factors. Thus, the best 

possible cost-effective therapeutic outcome can be achieved at an optimal treatment schedule consisting of two control 

variables where the weight factors associated with HAART and IL-2 are 10  and 10  respectively. Also it is clearly observed 

that higher weight factor means drug is more toxic and that drugs are used less. Here both drugs are given within same time 

interval. But we have observed that time of giving maximal drug is different for different drug schedules. From our analytical 

as well as numerical observation we can conclude that the percentage of drug therapy is inversely proportional to the weight 

factor P  and Q . Thus in a nutshell, we can conclude that the effect of optimal treatment schedule corresponding to different 

combination of HAART and IL-2 on the basis of immune response in HIV infection in presence of negative feedback effects 

provides a better improvement of an infected individual rather than using only HAART. 

V. CONCLUSIONS 

It should be mentioned here that the uninfected T cell and also the CTL response concurrently decrease for increasing value 

of the feedback factor m . Moreover, in the present paper, it has been shown that as m attains a much higher value, it exerts a 

significant effect on host-virus interaction and km becomes negligibly small. This effect of m on k was not observed in our 

previous model [12]. Furthermore, it has been proved that when m ≥ 4, the host immune system totally collapses to act against 

viral replication. Thus, we have established the effect of negative feedback control on immunological restriction of the disease, 

when the disease can no longer be controlled, which remained unexplored in our previous work. 

The virus producing cell inhibits the production of uninfected T cell and weakens CTL responses which cause 

destabilization and impairment of immune system inspite of drug dose. If 1<0R , number of secondary infected cells 

approaches zero as time proceeds to infinity because less than one new cell will be infected by a primary infected cell for 

which the system attains disease free equilibrium or E  becomes locally asymptotically stable and if 1>0R , stability of 

E  is lost. If rate of infection and feedback factor are high, CTL cannot act properly against the disease and simultaneously 

immune system is impaired as time progresses. When the negative feedback control factor is equal to or less than 3, best 

possible cost-effective therapeutic outcome can thus be achieved at an optimal treatment schedule consisting of combination of 

two control variables of HAART and IL-2. 
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