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Abstract- In a blown powder metal deposition process, a multi-axis hybrid manufacturing system, including a material deposition 

and a material removal system with more than 3-aixs mobility, is highly desirable in the building complex parts. However, the multi-

axis planning process is quite complex. In order to address this issue, a parametric representation of STL-based layer geometry is 

presented in this paper for a multi-axis material deposition and removal process to build a fully functional part without support 

structures. This multi-axis process can build 3-D layers in which layer thickness is not uniform. By utilizing the advantage of five-

axis motion to build non-uniform 3-D layers, the ability to deposit material without support structures is increased. However, in 

some cases, the deposition process cannot produce the desired geometry of a 3-D layer, and thus the machining process is needed. 

The algorithms presented in this paper reconstruct the parametric curve from the STL format for the machining process to achieve 

the desired accuracy by interpolating more points between given points. 

Keywords- Process planning; Additive Manufacturing; Hybrid 

I. INTRODUCTION 

Manufacturers always look for ways to satisfy customer needs by providing products in the shortest time and at the lowest 

cost with best quality. Rapid prototyping (RP), a manufacturing process started in mid 80s, gives industry an approach to 

achieve that goal. The process quickly produces a part by depositing material layer by layer. The materials of most commercial 

systems are polymers, which result in an intermediate step between CAD models and final products. Recently some focus of 

researches has been on metal direct deposition systems to obtain fully functional parts. Traditional Additive Manufacturing 

(AM) processes that only include the material additive process sometimes cannot achieve the desired accuracy and surface 

finish, which are attributed to the difficulty of controlling the geometry in the material addition such as metal deposition. As 

shown in Fig. 1, a combination of the deposition process and the machining process is a solution to this problem. However, this 

introduces new problems in terms of data representation of the layers. Currently, the STL format is an industrial standard for 

AM systems. The layers generated from the slicing process consist of many segments. Most of the surface cutting algorithms 

are based on the parametric representation of the surface. Therefore, the reconstruction of curves and surfaces from discrete 

points is required for the hybrid processes. 
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Fig. 1 Process phases for integrated material deposition and removal 

For metal parts, it is difficult to find a suitable support material that can be easily separated from the building material in 

the post process. Also, the amount of time used in building many support structures is substantial in the overall building time. 

To resolve these issues, a five-axis process is proposed. The process can utilize the flexibility of the five-axis motion to greatly 

minimize the support structures. Due to the complexity of the part geometry, some parts cannot be built without support 

structures even if the process has five-axis capability. In order to keep the flexibility of the system, the building material is also 

used as the support material. The extra materials will be removed in a machining process. Each process needs a geometry 

model of the layer as shown in Fig. 2. By combining the deposition and machining processes, the resulting hybrid process 

provides more building capability and better accuracy and surface finish. The hybrid process can build some features that are 

difficult to build in the pure deposition processes. 

 

(a) Geometry model of a layer for 

deposition 

(b) Geometry model of a layer for 

machining 

 

Fig. 2 Geometry improvement in the deposition and machining hybrid system 

The parametric representation of the tool path becomes even more important to the multi-axis hybrid process. First, the 

overhang deposition in a multi-axis system needs parametric representation of curves. The overhang material between two 

adjacent layers prevents the deposition process from building a part without support structures. After a part is sliced into layers, 

for each layer, it can be divided into two types of area: normal deposition area and overhang area. In traditional AM processes, 

the overhang needs to support structure below, which prevents the overhang material from drooping or falling. With multi-axis 

motion, the orientation of the nozzle can be changed which increases the possibility of building a part without support structure.   

II. BACKGROUND AND TERMINOLOGIES 

This section introduces some background and terminologies used in this paper. To utilize the freedom of the multi-axis 

motion, a method is generated for building the overhang material in a thin wall as shown in Fig. 3(a), (b). Let 
i
tS  be the top 

surface of the ith layer and 
i
bS  be the bottom surface, the overlap area 

i
nS  for layer iL  consists of the point set 

{p|p
1i

tS 
i
bS }. The overhang area 

i
oS  can be expressed as 

 
i
n

i
b

i
o SSS  . (1) 

When the overlap area is to be built, the nozzle should be oriented in the slicing direction tn


, i.e., the surface normal of the 

top layer as shown in Fig. 3(a). When the overhang area is to be built, the nozzle should be oriented in the tangent direction of 

the side boundary surface of the layer, ln


 as shown in Fig. 3(b). Let overlapC  be the boundary curve of the overlap area. If the 

tool path is generated in offsetting 
overlapC , the overhang can be built up from the side of the layer along this tool path. Because 

only uniform layer thickness can be achieved in the current deposition process, the distance between two offset contours is 
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constant. However, offsetting the linear segments of the contour directly cannot obtain the uniform offset distance as shown in 

Fig. 4(a). Parametric representation of curves makes the offsetting work much easier as shown in Fig. 4(b). 
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Fig. 3 Typical steps in thin wall deposition 
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Fig. 4 Contour offset 

B-spline frequently refers to a spline curve parametrized by spline functions that are expressed as linear combinations of B-

splines. The B-Spline representation of the contour is also suitable for tracking control. In the Laser Aided Manufacturing 

Process (LAMP) at Missouri S&T, the laser is raster scanned to fill all the layers and to build the parts layer by layer. With this 

type of process, there is a trade-off between productivity, in terms of build time, and part quality, in terms of surface accuracy, 

for a given laser power. To increase accuracy, a smaller laser spot is preferred, while productivity demands a larger laser spot 

to scan more area per unit time. To resolve this dilemma, Wu and Beaman [1-4] developed an optimal tracking control method 

for boundary scanning in Selective Laser Sintering (SLS). Chen discussed the required conditions for Wu’s method in [5]. 

Furthermore, due to the change of building direction, the layer thickness is not uniform anymore as shown in Fig. 5(a) (b), but 

the slice is still planar. However, currently the laser deposition process can only build the layer with uniform thickness because 

it requires precise control of combination of powder feed-rate, laser power, and nozzle motion speed to achieve a non-uniform 

layer. The non-uniform layer is built in the following way as shown in Fig. 6(a)(b). First, the uniform layer is built in the 

deposition process. Then, the machining process makes the layer to the final geometry by removing the extra material. With 

the aid of the machining process, five-axis LAMP can produce a highly accurate part geometry and surface finish. However, 

most of surface machining algorithms [6-10] require that the surface be represented in parametric surface form. Currently 

NURBS is one of the most popular parametric surface representation forms because of its many great properties. To improve 

the accuracy and surface finish of the side boundary surface of a layer, the B-Spline representation is required for the 

machining process. 
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(b) Variable layer thickness  

Fig. 5 Non-uniform thickness layer 
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Fig. 6 Two phases of non-uniform layer building 

In summary, parametric spline representation is the ideal form for both deposition process and machining process. It has 

been adopted for the process planning of the hybrid multi-axis LAMP system. 

III. NURBS CURVE FITTING FOR SLICED POINTS GENERATED FROM STL 

STL (STereoLithography) is a file format native to the stereolithography CAD software created by 3D systems. STL is also 

a common interchange data format for Layered Manufacturing. Although several algorithms [11-13] have been developed to 

directly obtain the slices from the CSG (Constructive Solid Geometry) or B-Rep (Boundary-Representation) CAD model, 

these algorithms have some limitations. For example, Guduri et al.’s work [11] on slicing CSG representations is very 

complicated and slow, thus reduces the flexibility of the AM process planning. Since the slice from an STL model consists of 

many discrete points, a method to reconstruct the curve based on these points is needed.  This problem is called curve fitting 

[14]. There are two types of fitting, interpolation and approximation. In interpolation, a curve which satisfies the given data 

precisely, i.e., the curve passes through the given points and assumes the given derivatives at the prescribed points, is constructed. 

Fig. 7(a) shows a curve interpolating five points and the first derivative vectors at the endpoints. In approximation, curves and 

surfaces which do not necessarily satisfy the given data precisely, but only approximately, are constructed. Fig. 7(b) shows a curve 

approximating a set of m+1 points. However, for the curve fitting of sliced points, the interpolation approach is needed. 
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Fig. 7 Two types of curve interpolation 
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A. Curve Interpolation 

Interpolation is a method of constructing new data points within the range of a discrete set of known data points. Most 

fitting algorithms fall into one of two categories: global or local. With a global algorithm, a system of equations or an 

optimization problem is set up and solved. The global algorithm is sensitive to perturbation in data items. Local algorithms are 

more geometric in nature, constructing the curve or surface segment-wise, using only local data for each step. A perturbation in 

a data item only changes the curve or surface locally. Usually these algorithms are computationally less expensive than global 

methods. They can also deal with cusps, straight-line segments, and other local data anomalies better. Therefore, the local 

interpolation algorithms are used in our curve fitting. 

After slicing the STL model,   nkQk ,,0,  , for contour are given. Local curve interpolation is adapted. Local curve 

interpolation is a method which constructs n polynomial or rational curve segments,   1,,0,)(  niuCi  , such that Qi and 

Qi+1 are the endpoints of Ci(u), and the neighboring segments are joined with prescribed continuity. In the framework of 

NURBS, polynomial or rational Bézier curves are used to construct the segments, then obtain a NURBS curve by selecting a 

suitable knot vector. Cubics easily handle three-dimensional data and inflection points without special treatment. Therefore, 

cubic Bézier curves are used to join the segments. 

Obtaining the Bézier segments, Ci(u), requires computation of the inner Bézier control points, two points for cubics. These 

control points lie on the lines which are tangent to the curve at the Qk; thus, tangent vectors Tk at each Qk need to be computed. 

Since the sliced points from the STL model do not have the Tk information, they must be computed as part of the fitting 

algorithm. A number of methods exist; Boehm et al [15] gives a survey of various methods. Let 

 1 kkk QQq  (2) 

 1)1(  kkkkk

k

k
k qqV

V

V
T   (3) 

where k  is a coefficient representing the weight of kq  and 1kq  on the vector kV .  Based on a five-point method to obtain 

kT  [16-18], k  is given by 

 2,,2
211

1










nk

qqqq

qq

kkkk

kk

k   (4) 

It has the advantage that three collinear points, Qk-1, Qk, Qk+1, yield a Tk which is parallel to the line segment. The 

denominator of Eq. (4) vanishes if Qk-2, Qk-1, Qk are linear and Qk, Qk+1, Qk+2 are collinear. This implies either a corner at Qk or 

a straight line segment from Qk-2 to Qk+2. Although in these cases k can be defined in a number of ways; the definition below 

is chosen, 

 k=1, which implies Vk=qk+1; this produces a corner at Qk if one is implied by the data 

 k=1/2, which implies Vk=1/2(qk+qk+1); this smoothes out a corner at Qk if one is implied by the data 

Let P0 and P3 be two endpoints for a cubic curve segment, and T0 and T3 be the corresponding tangent directions with unit 

length. It is possible to construct a cubic Bézier curve, C(u), u[0,1], with these endpoints and tangent, to satisfy 

 )1()
2

1
()0( CCC   (5) 

where C’ is the first derive of the curve C(u). 

The end derivatives of a Bézier curve can be obtained from 

 )()1()()0( 101 
nn QQnCQQnC  (6) 

where n is the number of the points used for interpolation. 

Eqs. (5) and (6) imply that  

 332001
3

1

3

1
TPPTPP    (7) 
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For each Bézier curve segment, Ck(u), between each pair, Qk, Qk+1, being the first and last points, denote the Bézier control 

points by  

 13,2,1,0, ,,,  kkkkkk QPPPQP  (8) 

Suitable locations must be determined for Pk,1 and Pk,2 along Tk and Tk+1, respectively. It is possible to obtain a C
1
 

continuous cubic and achieve a good approximation to a uniform parameterization. The method is due to Renner [17]. True 

uniform parameterization means constant speed over the entire parameter range. A curve with equal speed at each Qk and at the 

midpoint of each Bézier segment is constructed. Set 00 u . The two control points and 1ku  are computed as follows: 

 Use Eq. (4) to compute  and Eq. (7) to compute Pk,1 and Pk,2; 

 Set 

 0,1,1 3 kkkk PPuu   (9) 

This algorithm yields n Bézier segments, each having speed equal to 1 at their end and midpoints with respect to their 

parameter ranges,  1, kk uu . Thus, a C
1
 continuous cubic B-Spline curve interpolating the Qk is defined by the control points 

 nnnn QPPPPPPPQ ,,,,,,,,, 2,11,12,22,11,12,01,00   (10) 

and the knots 
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B. Interpolation for Accuracy Improvement 

After the STL model is sliced, the point set   nkQk ,,0,  , for contour is given. Because the curve passes through all 

the given points and assumes the given derivatives at the prescribed points, the density of the given points increases the 

interpolation accuracy. Therefore, if an algorithm can increase the density of the given points, the desired interpolation 

accuracy can be achieved. The density of the given points can be represented by the maximum distance between two adjacent 

points, kQ  and 1kQ . Let D be the maximum distance between kQ  and 1kQ . In general, it is very difficult to increase the 

density of the input points to any desired small value . Fortunately, the STL model has a property to make the point density 

increase possible. As discussed previously, the STL model consists of many triangles. After the STL model is cut by the slicing 

plane, the contour that consists of several segments is obtained.  These segments are on the boundary surface of the part. 

Therefore, an interpolation is conducted between any two adjacent points, kQ  and 1kQ  between which the distance is larger 

than . The interpolation adds n new points to the point set. n is given 

 1)( 


D
floorn  (12) 

where floor(x) is defined as the maximum integer that satisfies xxfloor )( . The n new points are given by, 

 niQQ
n

i
QQ kkk

i
k ,,1)( 1    (13) 

IV. RULED SIDE SURFACE CONSTRUCTION FOR LAYERS 

A multi-axis adaptive slicing algorithm has been applied in multi-axis LAMP system [19]. This adaptive slicing not only 

adaptively varies the layer thickness but also the slicing direction. As shown in Fig. 8 the cusp height C represents the slicing 

error and is given by, 

 
 cossin2

2C
Serror   (14) 

where   is the angle between the surface normal and the building direction, C is the cusp height. 
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Fig. 8 Error triangle between sliced layers and original part geometry 

Therefore, the maximum allowed cusp height maxC  in the slicing determines the accuracy of the slicing result. After the 

contour of the slice is obtained, the zero or first order approximation can be applied to construct the side surface of two 

adjacent slices. The difference between these two approximations affects how accurate the layers approximate the original 

geometry. Substantial research work has been carried out in the area of first order approximation of model geometry. The term, 

twisted profile layers, is used in [20] to describe ruled slices. Layers with sloping side surfaces are also used in [21] for the 

manufacturing of large objects. In geometry, a surface S is ruled (also called a scroll) if through every point of S there is a 

straight line that lies on S. Ruled layers are also used for the CAM-LEM process [22] and the Shapemaker II process [23]. The 

difference between the 2.5-D slices and the ruled slices is shown schematically in Fig. 9. The processes that can produce ruled 

slices have at least four degrees of freedom (translation in the x, y plane and additional rotations , ). These processes could 

be CNC milling, laser cutting and more. 
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height zi+1 

Error 

Contour at 

height zi+1 

Error 

(a) Vertical surface  (b) Ruled surface 

Contour at 

height zi 

Contour at 
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Fig. 9 Difference between zero order and first order approximation 

A horizontal layer (in the x, y plane) with a vertical outer surface can be regarded as a zero order approximation in the 

vertical slicing direction (z) of a part of the original model geometry. The usual procedure to reconstruct such a layer is to slice 

the model and to extrude the slice into the slicing direction to give the slice a certain thickness. In general, this will result in an 

error everywhere around the contour. This error depends on the local curvature and the inclination relative to the slicing 

direction. Let P be a point on the surface,  is the angle that the surface normal makes to the horizontal,  is the radius of 

curvature at P,  is the allowed cusp height and d is the thickness of the layer. The formula for circular approximation depends 

on whether positive/negative tolerance is desired, if the curvature is positive/negative, and also if the point P lies in the 

upper/lower semicircle of the circle of curvature. The formula is derived into two categories [24] 

 Negative Tolerance 

 
222 2sinsin   d  (15) 

P in upper semicircle, (the sign depends on >0 or <0) 

 
222 2sinsin   d  (16) 

P in lower semicircle, (the sign depends on >0 or <0) 

 Positive Tolerance 

 
222 2sinsin   d  (17) 
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P in upper semicircle, (the sign depends on >0 or <0) 

 
222 2sinsin   d  (18) 

P in lower semicircle, (the sign depends on >0 or <0) 

The first order approximation is based on constructing the ruled surface between successive contours using geometrical and 

topological information from the original geometry. A ruled surface is generated by a family of straight lines. An expression 

based on joining corresponding points on two space curves )(0 urr   and )(1 urr   is given by 

 )()()1(),( 10 uvrurvvurr   (19) 

The curves )(0 urr   and )(1 urr   are known as directrices, and the rulings are called generators. An advantage of ruled 

slicing is that, because the edges of the adjacent slices meet, C
0
 continuity in the slicing direction is guaranteed, eliminating the 

staircase effect as present in the 2.5-D approach. An improved surface finish is the result. Another advantage is the reduction in 

the number of layers. For ruled slicing an expression for the error and thus for the allowed layer thickness can be derived as [25] 

 
22cos  d  (20) 

V. BRANCHING AND MATCHING PROBLEM IN CONSTRUCTION OF RULED SURFACE 

To form a ruled surface, two successive contours that are connected by the surface must be found. This is difficult because 

of the branching and the correspondence problem as shown in Fig. 10. In the branching problem the number of contours is 

different between two successive slices. In the correspondence problem the number of contours per slice is the same but larger 

than one for two successive slices, and it is unknown which pair of contours should be connected from one slice to the other. 

 

(a) Branching 

(b) Correspondence 
 

Fig. 10 Branching and correspondence 
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Fig. 11 Side surface construction for diverging case and merging case 

The branches can be identified when the multi-axis adaptive slicing algorithm is applied [19]. However, it is necessary to 

find a reasonable method to construct the surface at the branching point. There are two cases in branching: diverging and 

merging. As shown in Fig. 11(a), in the diverging case the surface for the joint is generated in sweeping the slice 
2
1S  in the 

branch 2 along the negative normal direction until it reaches the last slice 
1
lastS  in the branch 1. As shown in Fig. 11(b), in the 
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merging case, the surface for the joint is generated in sweeping the slice 
1
lastS  in the branch 2 along the positive normal 

direction until it reaches the last slice 
3
1S  in the branch 1. However, if the sweeping of the two slices intersect, the wrong surface 

will be constructed. In this case, a new slice in the parent branch that the other branches diverge from or merge to is generated 

between the slices in child branches and the slice in the parent branch is shown in Fig. 12 so that no intersection will occur. 
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Fig. 12 Interpolation between slices in different branches 

The matching can be accomplished using either matching in parameter space [25] or matching in geometric space so that 

the correct starting points on the successive contours can be found. The method in [26] cannot be used for the STL model 

because it is based on B-Rep surface topology information. A method based on facets topology information, which is similar to 

the contour matching algorithm in [27] is developed. The matching algorithm has two steps: direct adjacent test, indirect 

adjacent test. 

A. Direct Adjacency Test 

In the direct test, each segment of the contour on the lower slice is searched for any facet that is also a member of a contour 

on the above adjacent slice. If such a facet exists, then the two segments in question are best matching. A pair of two adjacent 

endpoints among these four can be used as the start points respectively for )(0 ur  and )(1 ur  in Eq. (18) to form the ruled 

surface as shown in Fig. 13.  

Facet F 

Lower Slice 

Plane 

Upper Slice 

Plane Pi,j+1 Pi+1,j+1 

Pi,j Pi+1,j 

 

Fig. 13 Direct adjacency test 

B. Indirect Adjacency Test 

In cases where the direct adjacent test fails, a computationally more expensive indirect test is applied. A steepest gradient 

climb upward from each of the facets on the lower contours is performed in attempt to reach the upper contours as shown in 

Fig. 14. Once a segment on the upper contour is found, the start points can be determined similarly to the method used for the 

direct adjacency test.  

Upper Slice 

Plane 

Lower Slice 

Plane 

Pi,j+1 
Pi+1,j+1 

Pi,j 

Pi+1,j 

Start Facet FS 

End Facet FE 

 

Fig. 14 Indirect adjacency test 
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As the follow up work, the multi-axis slicing approach studied utilizes the skeleton-like shape to guide the slicing 

procedure [28-30]. This slicing procedure uses either a 3-D layer or a parallel layer, as needed. Following the slicing results, 

the deposition process fabricates a shape which is closer to the desired geometry. As the 3-D layer is a critical issue in multi-

axis slicing processes, directly fabricating 3-D layers plays an important role in advancing multi-axis laser metal deposition 

processes. An automated machining process planning has also been researched and implemented [31]. 

VI. EXAMPLES 

In Fig. 15 and Fig. 16, the reconstructed approximation models from slicing and interpolation from two modelsare shown. 

In the examples only side surfaces have been constructed. This is because the top and bottom surfaces of the layer are planar 

and the machining process for this surface is simple. Table 1 shows the part dimension and slicing parameters of the two 

examples. In Fig. 15 a rendering of the result for a simple shape is shown in comparison between the original model and the 

approximation result. 

 

Fig. 15 A pipe (left) and the approximation 

 

Fig. 16 A bearing and the approximation (right) 

TABLE 1 PART DIMENSION AND SLICING PARAMETERS OF THE TWO EXAMPLES 

 Boundary Box Dimension Maximum Allowable Cusp Height maxC  

Example1 L=11mm, W=46mm, H=46mm 0.04mm 

Example2 L=55mm, W=29mm, H=40mm 0.08mm 

In Fig. 16 the results for a more complex geometry are shown. This part consists of straight walls, a blind hole and four 

small cylinders. It can be easily seen that the branching and the correspondence between the adjacent contours are solved 

correctly. 

Fig. 17 shows the slicing result of a double-arc example, which demonstrates the usage of “3-D” layers. The slicing 

direction is kept changed to reflect the direction change in the centroidal axis. This matches the geometry shape in two curved 

branches. 
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(a) Decomposition result (b) Slicing result 

Fig. 17 Slicing result of the double-arc example 

A hinge example and its deposition result are shown in Figure 18. The part is decomposed into five subcomponents (1, 2, 3, 

4, 5) as shown in Figure 18(c). The slicing result is shown in Figure 18(d). The deposition starts from building the 

subcomponent 1 then the subcomponents 2, 3 are built after rotating the part 90º around X axis. The subcomponents 4, 5 are 

finished after rotating the part 180º around Y axis. 

     

(a) Solid model (b) Centroidal axis (c) Decomposition result (d) Slicing result (e) Deposition result after 
clean out 

Fig. 18 Hinge example 

VII. CONCLUSIONS 

The parametric representation of a curve as presented in this paper is very important to the automatic path planning process 

for the hybrid material deposition and removal without support structure. Successful utilization of different geometric 

representations by AM technologies requires the development of algorithms to extract and convert the geometric information 

correctly. NURBS can be used to represent these geometric features after they are recognized. The algorithms presented in this 

paper can reconstruct the parametric curve for layer contour and parametric surface for machining process to the desired 

accuracy by interpolating more points between given points. The accuracy of the model will be dependent on the accuracy of 

the STL file and the level of continuity as discussed in this paper. In general, the higher the accuracy, the larger the STL file 

size. 
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