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Abstract- In this paper, we have considered an in-host viral model with humoral immunity and Beddington-DeAngelis functional 
response. For this model, we constructed suitable Lyapunov functional and used LaSalle invariance, we obtained the global stability 

of three equilibriums which depend on two threshold parameters 0R  and 1R , that is, if 0 1R  , the infected-free equilibrium 0E  is 

globally asymptotically stable; if 1 01R R  , the infected equilibrium without B cells response 
*

1E  is globally asymptotically stable; 

and if 1 1R  , the infected equilibrium with B cells response 
*

2E  is globally asymptotically stable, too. Finally, numerical simulations 

are carried out to support our main results.  
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I. INTRODUCTION 

Over the past several years, the studies of mathematical models with humoral immunity have received much attention in [1, 
3, 13, 17, 22]. Virus dynamics is an important method for the research on proliferation of virus in the host of parasitic. It shows 
the parasitic process of the virus, reveals the law and predicts the trend of development via qualitative analysis. As a result, it 
can offer people the theoretical basis for decision-making on prevention and control. The adaptive immune response is 
intermediated by lymphocytes, that is to say, humoral and cellular immunity. The humoral immunity is more effective than the 
cell-intermediated immune in malaria infection. In [19], the author studied the global stability of in-host viral model with 
humoral model, which can be simply written as 
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 (1.1) 

where the parameter T  denotes the uninfected cells, I  denotes the infected cells, V  denotes virus, B  denotes the B cells.   

is the birth rate of uninfected cells and d  is the death rate of uninfected cells.   is the infection rate, N  is the average 

number of virus particles produced over the lifetime of a single infected cells, and   is the death rate of infected cells. And the 

virus dies at rate cV , g  and   are the birth rate and death rate of B cells respectively. 

In reality, since the incidence rates are probably not strictly linear in each variable over the entire range of V and T . In [8, 

9], Huang, Ma and Takeuchi have studied the viral model with Beddingtou-DeAngelis functional response and have studied the 
global properties of the model. Recently, it also has been realized that time delay should be taken into consideration [7, 14, 15]. 

Motivated by [7-9, 14, 15, 23], in this paper, we will incorporate the Beddingtou-DeAngelis functional response and 
distributed intracellular delays in model (1.1). So, we get this following model: 
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where the parameters , , , , , , ,d N c g    and the variables , , ,T I V B  are the same as defined in model (1.1), 
1, ,a b m  and 

2m are the positive constants. In this model, the cells which are infected at time t   begin producing virus at the time t , and 

  is distributed according to a probability 1( )f  . And 1m  is a constant death rate for infected which is not yet virus-producing 

cells. So the possibility of surviving from the time t   to the time t  is e m . In the same as the above explanation, the virus 

also has this similar situation. In (1.2), the delay kernel, if :    0, 0, , 1,2i    , and these two functions are piecewise 

continuous and also satisfy the following properties: 
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With initial conditions as follows: 
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where  4

1 2 3 4 0( ( ), ( ), ( ), ( )) ( ,0],C R           are continuous function mapping the interval  ,0  into 4

0R , and 

 4

0 1 2 3 4( , , , ) | 0, 1,2,3,4iR x x x x x i    . 

The purpose of this paper is to carry out a complete mathematical analysis of system (1.2) and investigate its global 

stability. Our paper is organized as follows: The equilibriums of system (1.2) and two threshold parameters 0R  and 1R  are 

given in Section 2. In Section 3, we used the suitable Lyapunov functional and LaSalle invariance principle to analyze the 

global stability of the three equilibriums. In Section 4, numerical simulations are carried out to support our analytical results. 

And the paper ends with a brief remark to conclude our work in Section 5. 

II. THE EXISTENCE OF EQUILIBRIUM 

In this section, we will discuss the equilibrium and get the basic reproduction number 0R  and the immune response 

reproduction ratio 1R . 
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When 0 1R  , we can obtain the only one infected equilibrium without B cells response 1 1 1 1( , , ,0),E T I V     where 
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Finally, we discuss the infected equilibrium with B cells response *
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so *

2 0B   if and only if *
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where 1R  called the immune response reproduction ratio, when 1 1R  , *
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III. THE GLOBAL STABILITY OF EQUILIBRIUM 

In this section, we discuss the global stability of each equilibrium by means of using suitable Lyapunov functional and 

LaSalle invariance principle for system (1.2).  
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where  1 min ,n d  . So
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Theorem 3.2 For system (1.2), if the basic reproduction ratio 
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asymptotically stable.  
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The derivative of 0 ( )V t  along positive solutions of system (1.2) is as follows  

 
   

   
1

2

01 0

1 1 2 1 20

0

1
0

10

2

1 2

d ( ) 1 d 1 d 1 d d
(1 )

d d d d d1

1 1
            (1 )( ) ( )e d ( )

1 11

1
              ( ) e ( )d

m

m

V t T T I V q B

t T t F t NF F t NgF F taT

V t T tT VT
dT f I t

T aT bV F aT t bV taT

N f I t
NF F





 
   

 

  














    


  
       

        

 



0
1 2

( ),
q

cV qBV gBV B
NgF F

 
    

  

 (3.1) 

On substituting 0dT    into (3.1), we can derive that 

1 2

2

01 0 0

0 0 0

1 2

1 1 1 20 0

1 2 1 2

d ( ) ( ) 1 1

d 1 1(1 ) 1 1

( ) ( )
             ( ) e d ( )e ( )d

1 ( ) ( )

              ,

m m

V t d T T TVT
V

t aT bV aT bVT aT aT aT

V t T t
f I f I t

F aT t bV t F F F

c q
V B

NF F NgF F

 



    
    

 



 

  

 

 


   

     

 
   

   

 

   

 1 2

1

02

1 2

1 1 20 0

1

1 1 1 20

d ( ) ( ) ( ) ( ) ( )
( )e d ( )e ( ) ( ) d

d 1 ( ) ( ) 1 ( ) ( )

( ) ( )
             ( )e d

1 1 ( ) ( )

m m

m

V t V t T t V t T t
f f I t I t

t F aT t bV t aT t bV t F F

VT V t T t
f I

aT bV F aT t bV t F F F

 



   
    

 

     
 

 

 

 





  
     

      

 
   

     

 

 2

2

0

( )e ( )d .
m

f I t
  






 

So we can get  



International Journal of Life Science and Medical Research  Oct. 2013, Vol. 3 Iss. 5, PP. 200-209 

- 204 - 

DOI: 10.5963/LSMR0305003 

0 01 02

2

20 0

1 2 1 2 1 20 0

d ( ) d ( ) d ( )

d d d

( ) (1 )
          = ( ) .

1 (1 )(1 ) 1

V t V t V t

t t t

d T T TaT V c bc q
V B

aT bV NF F NF F aT bV NgF FT aT aT

  

 

 

 
    

    

 

Noting that 0

1 2 00

, ,
( )1

T c

d a NF F d a RaT

  



 
 

   
 it follows that 

 

2

20 0

0 1 2 1 20

d ( ) ( ) (1 ) 1
(1 ) ,

d (1 ) ( ) (1 )(1 )

V t d T T aT V bc q
V B

t aT bV d a R NF F aT bV NgF FT aT

 



  
     

     
 (3.2) 

If 0 1R  , it follows from (3.2) that 0

d
( ) 0

d
V t

t
 . And we can clearly obtain that 0

d
( ) 0

d
V t

t
  if and only if 

*

0( , , , ) ( ,0,0,0)T I V B T . By LaSalle invariance principle, the infection-free equilibrium 0E  is globally asymptotically stable.  

Theorem 3.3 For system (1.2), if the basic reproduction ratio 0R  and the immune response reproductive ratio 1R  satisfy 

1 01R R  , the infected equilibrium without B cells response *

1E  is globally asymptotically stable. 

Proof. Let ( ( ), ( ), ( ), ( ))T t I t V t B t  be any positive solution of system (1.2). We construct Lyapunov functional 
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By calculating the derivative of 1( )V t  along positive solutions of system (1.2), it follows that 
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So we can get  
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1 1 1( , , , ) ( , , ,0)T I V B T I V . By LaSalle invariance principle, we can 

obtain that *

1E  is globally asymptotically stable. 

Theorem 3.4 For system (1.2), if the basic reproduction ratio 1 1R  , then the infected equilibrium with B cells response 

*

2E  is globally asymptotically stable; 
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We calculate the derivative of 2 ( )V t  along positive solutions of system (1.2), and it follows that 
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Noting that * * *

2 2 2, ,T I V  and 
*

2B  are positive, we obtain that 2d ( )
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2 2 2 2( , , , ) ( , , , ).T I V B T I V B  By LaSalle invariance principle *

2E  is globally asymptotically stable. 

IV. SIMULATION 

In order to support our analytical results of this paper, we use Matlab software to carry out some numerical simulations. 

Example 4.1. For system (1.2), we choose the following set of biologically feasible parameter values 

1, 0.01, 0.05,d     1 20.0001, 0.005, 30.4, 2, 15, 4.2, 0.4, 0.5, 0.8, 1,a b N c q m m g u          1.15   and 

1 2( ) ( ) ( ),f f u       we have 
0 0.2345 1R    and the disease-free equilibrium 0 0( ,0,0,0) (100,0,0,0)E E

d


  is globally 

asymptotically stable. Its phase diagram is illustrated in Fig. 1. Numerical calculations show that the equilibrium 0E  is 
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globally asymptotically stable, and the disease will be controlled. 
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Fig. 1 Equilibrium 0E  is stable 

Example 4.2. For system (1.2), we select the following set of biologically feasible parameter values 2, 0.01,d    

1 20.1, 0.0001, 6, 0.2, 2, 3.2, 4.2, 0.4, 0.5, 5, 1,a b N c q m m g u            1.15   and 1 2( ) ( ) ( ),f f u       

by calculation, we can obtain 0 4.3774 1R    and 1 0.9390 1R   , and the infected equilibrium without B cells response 

* * * * *

1 1 1 1 1( , , ,0) (103.4423,3.0478,0.2144,0)E T I V E  is globally asymptotically stable. Its phase diagram is illustrated in Fig. 2. 

Numerical calculations show that the equilibrium 1E is globally asymptotically stable; there exists the disease without B cells 

response. That is to say, the diseases without B cells response ultimately tend to be stable as time increases. 
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Fig. 2 Equilibrium *

1E  is stable 

Example 4.3. For system (1.2), we take the following set of biologically feasible parameter values 2, 0.01, 0.1,d      

1 20.001, 3, 0.2, 2, 1.5, 4.2, 0.4, 0.5, 5, 1,a b N c q m m g u          1.15   and 1 2( ) ( ) ( ),f f u       at present, 

1 4.25 1,R    and the infected equilibrium with B cells response 
* * * * * *

2 2 2 2 2 2( , , , ) (91.6494,3.4201,E T I V B E 0.2000, 0.5593)  is 
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globally asymptotically stable. Its phase diagram is illustrated in Fig. 3. Numerical calculations show that the equilibrium *

2E  

is globally asymptotically stable; there exists the disease with B cells response. That is to say, the diseases with B cells 

response ultimately tend to be stable as time increases. 
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Fig. 3 Equilibrium *

2E  is stable 

V. CONCLUSIONS 

Recently, in order to characterize the relationship between humoral immune response and virus load, many authors studied 

on this type of models for the humoral immunity [1-6, 10, 13, 16-18, 20-24]. Especially consider the more general epidemic 

and virus dynamic models with nonlinear functional response in [11, 12]. Our paper presents a study of in-host viral model 

with humoral immunity and Beddington-DeAngelis functional response. In this model, we investigated the global stability of 

the infection-free equilibrium, the infected equilibrium without B cells response and the infected equilibrium with B cells 

response of system (1.2) by using the Layapunov-Lasalle invariance principle. Through the above analysis, we obtained that if 

0 1R  , the infection-free equilibrium is globally asymptotically stable; On the other hand, if 1 01R R  , the infected 

equilibrium without B cells response *

1E  is globally asymptotically stable; At last, we obtained that if 1 1R  , the infected 

equilibrium with B cells response *

2E  is globally asymptotically stable. From the discussion above, we can see that the 

intracellular delay plays a very important role in virus infection process, sufficiently large intracellular delay makes the virus 

development slower and the virus has been controlled and disappeared, it can not produce periodic oscillations and also there is 

no possibility of the existence of the Hopf bifurcations. 
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