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Abstract- An integrated, formal high-Level synthesis (HLS) framework is used in this work for hardware implementation of cellular 

neural networks, which are used in real time image processing. The Custom Coprocessors Compilation (CCC) HLS behavioral 

synthesiser generates correct-by-construction register transfer – level (RTL) VHDL hardware models of computation-intensive 

applications. Thus, time-consuming RTL and gate-level simulations are avoided and verification time is cut down to a fraction of the 

usual time that takes to achieve the same goal with traditional approaches. Such applications include image processing with cellular 

neural networks (CNNs). The synthesizer utilizes formal compiler-compiler and logic programming techniques, to transform 

algorithmic ADA into RTL VHDL or Verilog which are directly implementable into hardware using any available RTL synthesizer. 

The CNNs were rapidly coded, compiled and verified along with all the necessary testbenches in GNU ADA. The applications 

targeted here are edge-detection, halftoning and morphological processing, which are used to evaluate the CCC HLS framework. 

The contribution of this work is hardware implementation of CNNs using the CCC HLS tools to formally, and rapidly develop, 

verify and prototype advanced image processing applications.  

Keywords- Formal Methods; High-Level Synthesis; VHDL; ADA; High-Level Verification; Image Morphological Processing; 

Cellular Neural Networks 

I. INTRODUCTION 

Developments in device integration technology helped to realise extremely complex systems into a single integrated circuit 

(IC) or a small set of ICs that are used in multimedia and consumer devices, medical and scientific data processing, embedded 

systems, telecommunications, industrial and vehicle electronics and control, banking, aerospace, avionics, naval and transport 

infrastructure, with more target areas emerging every year. Industry and academia invested in research for rapid and automated 

methodologies in order to allow the development of these complex computing systems on time [1]. The set of the investigated 

methodologies was dominated by high-level synthesis (HLS) and electronic system-level (ESL) design, which borrowed 

technology from software compilers and established E-CAD systems and combined those with new optimizing transformation 

techniques in order to improve the delivered synthesis results.  

The basic HLS optimizations are scheduling, allocation and binding. While obeying in precedence constraints, scheduling 

attempts to parallelise as many as possible operations into the same control step (state). Allocation determines the kind and 

number computation, storage, and interconnection units that will implement the operations, variables, and data transfers of the 

source code, respectively. Finally, variables, constants, operations and data transfers are mapped onto registers, wires, 

functional units and interconnections (wires and multiplexers), respectively by binding.  

This work contributes with a rapid, automated and formal approach to deliver hardware implementations which customised 

to the specific computational requirements of image processing algorithms. These algorithms are implemented in hardware 

with Cellular Neural Networks (CNNs). Image processing applications of CNNs include: half-toning, edge and corner 

detection, connected element detection and morphological processing such as erosion, dilation and hole filling [2]. Because 

edges are the boundary between various image objects, edge-detection is one of the most important tasks in element detection. 

Low-level pixel is used for higher-level tasks such as segmentation, object recognition and registration, therefore they utilise 

edge-detection for these image processing tasks.  

Our HLS framework is called Custom Coprocessor Compilation (CCC) framework
1
. CCC automatically transforms 

arbitrary, high-level, behavioral program code (with complex control flow) into provably-correct hardware implementations. 

The generated hardware includes all the necessary addressing, communication with local or external memories. In this way, 

CCC drastically reduces the specification, design, verification, implementation and prototyping cycles by orders of magnitude. 

The CCC tool consists of the frontend compiler, the intermediate format and the backend compiler. The Intermediate Predicate 

Format (IPF)
2
 is coded with logic predicate clauses which are loaded into the backend compiler. The backend compiler is 

based on the logic resolution of Horn clauses to implement an inference engine with logic rules and deduction [3]. 

                                                 
1 This hardware synthesis method is patented with patent number: 1005308, 5/10/2006, from the Greek Industrial Property Organization. 
2 The Intermediate Predicate Format is patented with patent number: 1006354, 15/4/2009, from the Greek Industrial Property Organization. 
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Section II outlines existing work. The CCC method is explained in Section III. Section IV discusses modelling, verification 

and experimental results and Section V draws conclusions and suggests future extensions of this work.  

II. EXISTING WORK AND BACKGROUND LITERATURE 

A. Existing Work in High-Level Synthesis 

An early HLS approach in [4] transforms algorithmic Digital System Specification Language code into hardware. Systems 

are accelerated in [1] with the use of Field-Programmable Gate Array (FPGA)-based accelerators. Proprietary input formats, 

used for particular application targets (e.g. DSP) are analysed in [5], [6] and [7]. HLS scheduling algorithms are reviewed in 

[4], [8]-[10].  

Intermediate translation formats, are reported in [11]–[14]. Interfaces are synthesised and embedded in the core hardware 

functions, and protocol conversion circuitry is generated for connecting multiple modules with various communication 

protocols, with the host environment in [15]. A small subset of ANSI C code is optimised, into hardware implementations in 

[16]. CCC accepts all of the standard programming constructs (e.g. for, while, do loops, nested loops and if-then-else blocks, 

etc.) and the quality of the produced hardware implementations is superior to that of the available HLS tools. 

Data-flow descriptions are optimised in [17] using Taylor Expansion Diagrams. The power consumption of memory 

elements is reduced, with the use of dual power supply voltages [18]. System C models are synthesized into hardware using the 

System Co Designer tool [19]. Optimal hardware co-processors are formally and automatically generated in this work, from 

custom specifications in ADA code. 

Compiler-generators are used to automatically create large parts of the CCC synthesizer from formal grammar definitions 

[11], [13]. The advantage of the CCC framework is that it accepts arbitrary code with complex control flow, and with 

hierarchical subroutines calling other subroutines. Moreover, all of the required hardware-to-hardware and system-to-hardware 

interfaces and communication protocols (e.g. with main memory) are automatically generated by the CCC.  

B. Cellular Neural Networks 

CNNs were introduced by Chua and Yang [20], [21]. In order to process large data in real time, matrices of simple, locally 

coupled, nonlinear, and dynamic cells are utilised. This architecture originated from the Cellular Automata and the Hopfield 

neural network structures, which are convenient for hardware implementation. Using these structures, image processing and 

partial differential equation solving, time-consuming tasks can be executed. CNNs can process information in continuous-time, 

and they are interconnected locally, which makes them suitable to implement in VLSI hardware (a fully connected CNN 

implements a typical Hopfield network). In this work, the hardware image processing algorithms are modelled with fully 

connected CNNs coded in ADA behavioral programs.  

A two-dimensional CNN array with M rows and N columns, features cell dynamics, given by the following equations: 
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where xij(t) is the cell state, uij is the static input, yij(t) is the cell output, Iij is a constant bias and aij, bij are weighting 

coefficients. Assuming 8-neighbor connectivity (Sij), the coefficients forming the two 3 × 3 templates are: feedback template 

A and control template B (see Fig. 5). Exploring appropriate templates and bias (a string of 19 real numbers called a CNN gene) 

for each application is an active research activity [22], [23]. The dynamic functions of a CNN are fully defined by the initial 

state xij(0), static input uij. In [24], there is a report and analysis of a big library of templates.  

C. Classification and Development Techniques for CNNs 

It is widely accepted that the capabilities of CNNs can be fully exploited using hardware implementations of them. A 

sample of this argument is discussed in this work. Because hardware is becoming cheaper, parallel and fast processing is the 

dominant reason for custom hardware implementation of CNNs. The contribution of this work is the formal and rapid 

modelling and prototyping of CNNs, targeting any FPGA and ASIC (Application-Specific Integrated Circuit) technologies, 

because the generated VHDL or Verilog RTL models are provably-correct and technology/tool vendor - independent. 

Existing systems are implemented with a wide range of neural network techniques. A classification in [25] includes neuro-

chips or neuro-computers, and general and special purpose architectures, categorised by the number of neurons, the neuron 

state (digital/analog), the bit precision, the number of synapses, the weights, the activation (probabilistic/deterministic), 

learning (on chip / off chip), speed (learning/processing), ability to cascade, the implementation technology, the number and 

type of I/Os, and the clock and data transfer speed [26]. A snapshot of this classification is shown in Fig. 1.  
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Fig. 1 Categories of Neural Network hardware 

Analog, digital or hybrid ASICs can be used to implement neural nets. Analog CNNs became popular, when a combination 

of analog spatial/temporal dynamics and logic architecture was invented, namely the CNNUM [27] architecture. This leads to 

the emergence of a number of analogic processors. A fully programmable 128x128 array processor, designed in Seville [28] 

and implemented by STMicroelectronics in Catania [29], is the most advanced analog CNN chip. The previous generation 

(64x64) chip, is known as ACE4k. This chip was used in the ALLADIN network [30], in a combination with a DSP processor, 

and implementation of the first high performance, industrial quality, visual computer, which used 4096 parallel cell processors, 

with a processing rate of up to 10000 frames/second (64x64 images) [31].  

FPGAs can be used instead of ASICs to implement popular neural networks [32]. FPGAs can implement “soft” circuitry, 

for data processing without the overhead of a microprocessor and operating system. Neural networks are also highly scalable, 

and therefore they can be widely used in ever upgrading FPGA system implementations. FPGAs can also be totally 

reconfigured on line by software download or via the internet to apply extensions, bug fixes, new releases or total change of 

functionality throughout the development and lifetime of the product. This constitutes an advantage and contribution of this 

work, since rapid re-development and re-configurability are necessary for such devices, so as to support new standards and 

applications. Popular and widely-available CAD tools are used to configure FPGAs. Designs are modelled with Hardware 

description languages (HDLs) like VHDL, Verilog or ABEL. In [33] FPGA implementation of a CNN using Handel-C, is 

discussed. The ADA programming language is used here, a highly-reliable high-level language, to code hardware accelerators. 

In this way, executable formal specifications are used, since ADA is used for safety-critical and high-reliability applications.  

III. MODELING AND IMPLEMENTATION WITH THE CCC TOOLS 

The HLS CCC development flow is outlined in Fig. 2. The behavioral ADA model of the design is first modelled and 

verified in pure algorithmic ADA code. The frontend compiler translates this model into the IPF (Intermediate Predicate 

Format) database, using traditional but formal compiler techniques. Compiler-generator from formal grammar is used, so the 

translation is correct-by-construction. IPF captures the information of the ADA programs in a number of Prolog clauses (facts). 

The backend compiler is a logic inference engine that optimizes the IPF clauses [3] into synthesizable RTL hardware models. 

The generated VHDL/Verilog capture the finite state machine (FSM) and the data path of the hardware. Thus, the CCC 

hardware compilation generates provably-correct implementations. 

 

Fig. 2 The CCC, automated & formal, hardware synthesis flow 

The formal, logic programming rules that implement the backend compiler inference engine look like the predicate clause: 

 A0 ← A1 ^ … ^ An (where n ≥ 0) (form 1) 

where ← is the logical implication symbol (A ← B means that if B applies then A applies), and A0 , …., An are atomic 

formulas  (logic facts) of the form:  
 predicate_symbol(Var_1,…, Var_N) (form 2) 

where the positional parameters Var_1,…, Var_N of the above predicate_symbol 错误!未找到引用源。 are either variable 

names (in the case of the backend compiler logic rules), or constants (in the case of the IPF table statements). Predicate form 2 

is an example of the IPF facts. IPF includes these logic facts, grouped in the IPF tables. Each IPF table contains a list of 

frontend compiler 

High-level 
programs 

Parsing, and analysis 

IPF  
database 

IPF optimization 

backend compiler  

IPF loading 

RTL hardware 
implementations 

HLS optimizations 
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homogeneous facts, e.g. all prog_stmt facts for a given subprogram are grouped together in the program statements table for a 

certain ADA module.  

The combination of frontend and backend compilers formally transforms the input ADA subroutines in an equivalent 

number (using a 1-to-1 compilation) of provably-correct hardware description language (HDL) modules. This is achieved with 

the optimising transformation predicates of the backend inference engine. In this way, rapid and formal hardware prototyping 

is achieved on our CNN image processing architectures.  

An optimised operation scheduler called Parallel-Abstract Resource – Constrained parallelizing scheduler (PARCS) is one 

of the major optimising transformations of the backend compiler. The basic steps of the PARCS algorithm which is coded in 

Prolog, are listed as pseudo-code in 错误!未找到引用源。. The code shows that both complex datapath and control flow 

operations can be processed by the PARCS.  

 

Fig. 3 The PARCS scheduler pseudo code 

PARCS attempts to parallelise as many operations as possible in the same FSM control state, while checking to satisfy data 

and control flow dependencies. Large data structures can be optionally located on the shared memory using a set of memory 

options stating their position, size and interface ports. In this case, all of the necessary communication protocols and addressing 

functions are generated automatically and co-optimized with the rest of the module’s operations. Thus, overall performance is 

improved. A part of the edge-detection ADA program which models the CNN core is shown in Fig. 4. 

 

Fig. 4 The core of CNN edge-detection algorithm in ADA 

This code part underlines the expressive power of our ADA approach. If contains three level nested for loops and complex 

conditional operations, emphasizing the CCC capability to model both dataflow and control flow – intensive designs. The CCC 

transformation of this algorithm took in less than 5 minutes. Modeling and verification of this algorithm took less than a couple 

of hours using the GNU ADA development tools.   

IV. ALGORITHM VERIFICATION AND EXPERIMENTS 

We modelled the CNN tasks in ADA. These tasks process the grey-scale or binary images (initial state and input) and they 

read the task-specific templates (A, B and Bias). The matrices for edge detection are shown in Fig. 5. We use the .ppm 

(portable pixel maps) format to accept color images. Fig. 6 shows the edge detection results after ten iterations on “Lena”. 

 

1. Begin with the initial schedule (including the custom and special external memory operations) 
2. Set current PARCS state to 1 

3. Get the 1st initial schedule state and make the 1st the current state 

4. Get the next initial schedule state 
5. Find out whether the next state’s operations have any dependencies with the current state 

6. If no dependencies, then absorb the next state’s operations into the current PARCS state; If there are dependencies then conclude the so 

far absorbed operations into the current PARCS state, store the current PARCS state, PARCS state <- PARCS state + 1 
7. Make next PARCS state the current state; store the new state’s operations into the (new) current PARCS state 

8. If next initial schedule state = conditional then call the conditional (true/false branch) processing predicates, else continue 

9. If there are more states to process then go to Step 4, otherwise conclude the so far operations of the current PARCS state and terminate 

1.       --Euler and convolution main loop 

2.       Tmax := 10; 

3.       FOR T IN 1..Tmax LOOP 
4.          FOR J IN 0..HEIGHT-1 LOOP 

5.             FOR I IN 1..WIDTH LOOP 

6.                Cnn_Convolute(I,J,A,B,Y,U,Sa,Sb); 
7.                --reshape by rows 

8.                X(J*WIDTH+I) := Sa+Sb+Bias; 

9.                Temp := X(J*WIDTH+I); 
10.                Y(J*WIDTH+I) := Cnn_Pwl(Temp); 

11.             END LOOP; 

12.          END LOOP; 

13.       END LOOP; 
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Fig. 5 Edge detection, CNN template matrices  

 
 

                                                   (a) Original “Lena” image                                                               (b) Edge detection output after 10 iterations 

Fig. 6 CNN edge detection 

By modifying the templates and the initial state of CNNs, we can upgrade their processing on the input data. Fig. 7 shows 

the result of halftoning and Fig. 8 shows the CNN result of image morphology-related tasks such as dilation and erosion. Fig. 

6(a) is the same input image which is passed onto the CNN algorithms for processing. Template B (Fig. 5) is used for the 

structuring element of morphological image processing tasks. Dilation followed by erosion is also called image closing, while 

the reverse order is called image opening. Our opening algorithms smooth image contours, break narrow isthmuses and 

eliminate thin protrusions. Our closing algorithms narrow smooth sections of contours, merge narrow breaks and long thin 

gulfs, eliminate small holes, and fill gaps in contours [34]. All of these tasks were modelled and verified in ADA, in a way that 

it is indicated in Fig. 4. Then the CCC HLS toolset was used to automatically convert these tasks into synthesizable and 

simulatable RTL VHDL implementations. For the sake of evaluating the HLS tool, RTL simulations were executed. Up to here! 
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Fig. 7 CNN halftoning 

 
(a) dilation                                                                          (b) erosion 

Fig. 8 CNN image closing 

Fig. 8 shows the result images after dilation and erosion, which were produced in this order (closing) by successive CNN 

operations on the edge image. 

ADA testbenches were built to contain function calls to our CNN ADA task libraries (packages in ADA’s terminology). 

Thus, all these tasks were rapidly verified in ADA using fast compile-and-execute. The tests generated the test vectors for the 

golden model. The generated RTL (VHDL) was instantiated in VHDL testbenches that were simulated using the Modelsim 

simulator from Mentor Graphics, to verify the correctness of the CCC translation. Test vectors (initial state and input images) 

were fed into the CNN algorithm (Model Under Test or MUT) as shown in Fig. 9. RTL simulations were compared to the 

ADA Golden Model verification, to indicate verification pass or fail (Fig. 9). The CNN core ADA function was transformed to 

RTL using our HLS compiler, with experiments for massively parallel or conventional FSM + datapath architectures, and with 

the large arrays residing on target system main memory. The memory read/write ports and communication protocol command 

sequences, for the external shared memory, were also automatically generated and optimized. 

 

Fig. 9 High-level, system verification flow 

Using the PARCS optimizing scheduler, the image erosion, dilation and half-toning tasks were optimized from 63 (initial 

schedule) states down to 41 (optimized schedule) states, a reduction of almost 35%. PARCS reduced the edge-detection 

schedule from 105 (initial schedule) down to 74 states (optimized schedule), a reduction of about 30%. These statistics are 

shown graphically in Fig. 10. The compilation took less than 3 seconds on a conventional Intel Centrino laptop PC. 
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Fig. 10 Initial and optimized (by PARCS) schedule state statistics 

With the completion of ADA verification and CCC HLS synthesis, RTL synthesis was executed on the edge-detection 

implementation, and then the designs were implemented on a Xilinx Virtex-4 FPGA, with a number of commercial 

synthesizers. These experiments produced implementations featuring clock rates up to 104 MHz. The implementation used 2 

DSP48 FUs, 1144 FFs and 343 multiplexers for the FSM+datapath option vs 8 DSP48s, 1257 FFs and 250 multiplexers for the 

massively parallel option. 

V. CONCLUSION 

The contribution of this work is very significant since CNNs constitute generic, powerful, scalable and versatile image 

processors. Moreover, CNNs are suitable for ASIC/FPGA implementations. By rapidly transforming high-level CNN models 

into RTL implementations, we proved that the CCC HLS compiler contribution is invaluable; behavioral synthesis was 

automatic, of high-quality, very fast and the delivered results are correct-by-construction. All CNNs for edge-detection, 

halftoning, dilation and erosion, were modeled in ADA, transformed into VHDL with the CCC tools, and verified both in ADA 

and VHDL testbenches (to prove the principle of formal transformation). This rapid and formal nature of the CCC compilation, 

manifests the contribution of this work. The produced RTL code is generic and independent of any specific vendor or hardware 

template, therefore our synthesis flow can be connected to any existing design and product development flow. The method of 

this work reduced some months of development effort into a few hours. Because generic and common program constructs are 

accepted, it is possible to extend our modelling approach to other programming languages (such as ANSI-C). In any cases, the 

user is freed from complex hardware details such as control states, interfaces and hardware and architecture structures. 

Future work in this area includes: a more detailed extension to this framework and experimentation with other neural and 

non-neural image processing algorithms such as PCNN (Pulse-Coupled Neural Networks) or optical flow. Also, there is 

ongoing work for extending the frontends of the CCC framework with more input forms such as ANSI-C, UML, Matlab, etc. 

Moreover, the backend HDL writers will be extended to generate other formalisms such as Verilog HDL, and System-C. 

Ongoing work will soon deliver capabilities for IP support, multi-cycle and single-cycle custom arithmetic functions and 

hardware macro blocks, such as fast multipliers and floating point processing units. 
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