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Abstract-An intelligent approach is developed to discriminate a fault, stable swing and unstable swing for correct distance relay 

operation by using the S-transform and the probabilistic neural network (PNN). To illustrate the effectiveness of the proposed 

techniques, simulations were carried out on the IEEE 39 bus and a practical test system using the PSS/E and MATLAB software. 

Test results show that the PNN gives an overall classification accuracy of 97.33% in which it performs better than MLPNN in 

detecting and classifying unstable swing, stable swing, fault, fault clearance and post fault events. Such fast and accurate intelligent 

detection schemes are useful for preventing distance relay from tripping during power swing. 

Keywords- Unstable Swing; Stable Swing; S-transform; Probabilistic Neural Network (PNN); Multi Layer Perceptron Neural 

Network (MLPNN) 

I. INTRODUCTION 

Power systems are large interconnected nonlinear systems where system wide instabilities can occur when the system is 

subjected to sudden events as the loss or application of large blocks of load, line switching, generator disconnection and faults 

[1]. The ever increasing load demand and the deregulated power market recently pushed the power system to operate close to 

its stability limits which makes the system vulnerable to wide area instabilities or collapses, and finally cascading blackout that 

can affect millions of people and cause huge economic loss [2-3]. Cascading blackouts can be initiated due to many reasons 

and one of the prominent causes of such event is unintended operation of distance relays [4].  

Currently, distance protection with respect to transient instability is one of the critical issues in transmission systems. The 

conventional zone 3 distance protection relays on transmission lines may not be able to distinguish between voltage instability 

and short circuit faults [5]. This situation can lead to undesired operation of relays and as a consequence, the system can be 

exposed to voltage collapse. 

Power swings or oscillations occur following a system disturbance such as load change or fault clearance. Power swing has 

been identified as one of major causes that bring a power system to a major blackout as reported in [6-7]. When a power swing 

occurs, the measured impedance can enter the relay stripping zone to initiate tripping signals of associated breakers [8]. A 

change appears in the relative phase angle between two groups of generators and as a consequence, the measured voltage, 

current, apparent impedance, active power, reactive power and angle vary due to oscillations during power swing [9]. From the 

aforementioned electrical quantities, many techniques have been developed to prevent relay tripping during a power swing [10-

14]. 

Apostolov et al. [15] has introduced a superimposed component which is proven to be a very formidable tool for power 

swing detection. A major advantage of the superimposed component based on faulted phase selection method is that it does not 

require any settings and is not significantly affected by the magnitude of the pre-fault load current. It also works very well 

under evolving fault conditions. However, the technique seems to be computationally inefficient as the computation process 

requires three phase sinusoidal currents to differentiate a fault and a power swing. 

Jiao et al. [11] has used a combination of the swing center‟s voltage waveform and synthetic negative sequence vector to 

differentiate between a fault and a power swing. The technique seems to be rigorous in discriminating power swing and high 

fault resistance for protection purposes. However, it requires demanding computation of derivative operation for the swing 

center‟s voltage waveform. There is also a time delay of about 30-40 ms before a fault and a swing can be identified and hence 

the method is relatively slow as compared to the technique proposed by Jonsson & Dalder [10]. Su et al. [12] has developed a 

technique based on Vcos which activated a power swing detector in about 30-50 ms. The technique, however, requires  

further testing  in large power systems before it can be deployed to a relay. Xiangning et al. [13] used the derivatives of real 

and reactive powers to develop an unblocking scheme for distance protection during symmetrical faults in power systems.  The 

unblocking scheme sends the trip signals after 30 ms in the event of a fault. This technique is considered complicated and 

computationally inefficient because it requires instantaneous product of voltage, current and angle to obtain the real and 

reactive powers. A more advanced technique using adaptive neuro fuzzy system has been developed to block the relay trip 

signals during power swings [14]. However, the technique has not been validated on the zone 3 relay operation setting 
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considering that this zone is the most vulnerable zone during power swings. In addition, the relay response time is greater than 

40 ms which is very slow as compared to other techniques developed in [10], [12-13]. A very fast and reliable swing detector 

has been proposed by Afzali and Esmaeilian [16] and Mahamedi and Zhu [17]. However, both techniques were not able to 

distinguish the stable and unstable swing. 

Pang et al. [18] has introduced the use of wavelet transform (WT) to detect the power swing occurrence in power system. 

The method extracts the travelling waves from transient signals induced by faults and calculates the energy of high frequency 

components extracted using wavelet transform. An approach which is based on Fast Fourier Transform (FFT) for power swing 

detecting scheme is presented by Mahamedi [19]. This technique is based on the detection of frequency component of the three-

phase active power. It is demonstrated that during power swings the frequency of the three-phase active power is equal to slip 

frequency, whereas after symmetrical fault inception time the frequency of the three-phase active power equals to 50Hz. 

Nonetheless, both techniques have never been tested for unstable swing condition. 

From the literature, the existing techniques are considerably slow and could trigger false relay operation during fast power 

swing and fault clearance operation at the adjacent line. Hence, it is important to develop a fast and rigorous approach for 

detecting a fault, fault clearance operation of a circuit breaker at an adjacent line, stable power swing and unstable to prevent 

undesirable distance relay operation. Due to the promising performance of AI techniques in various power system applications, 

these techniques are employed for more accurate and selective operation of distance relays. To address the need for fast 

detection of unstable swings so as to improve the reliability of distance relay operation, a new scheme for detecting a fault, 

stable swing and unstable swing at transmission lines is proposed by using the S-transform and PNN. Here, the PNN is used 

because it is considered as an effective tool for solving many classification problems.   

II. INTELLIGENT TECHNIQUES FOR PREVENTING DISTANCE RELAY  OPERATION DURING POWER SWING  

The S-transform which is an advanced signal processing technique and artificial neural network techniques such as the 

PNN and the multi-layer perceptron neural network (MLPNN) are applied for detecting stable swing, unstable swing and fault 

in distance relay operation. The background theories of the MLPNN, PNN and SVM are first presented and then followed by 

its implementation in the distance relay operation. 

A. Multilayer Perceptron Neural Network and Probabilistic Neural Network 

The MLPNN is a feedforward neural network with one or more hidden layers [20]. A typical configuration of the network 

consists of an input layer, one or more hidden layers and an output layer. An MLPNN with one hidden layer is shown in Fig. 1. 
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Fig. 1 Topological structure of MLPNN 
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Fig. 2 The topological structure of PNN 



Journal of Pattern Recognition and Intelligent Systems  Aug. 2013, Vol. 1 Iss. 2, PP. 44-52 

 - 46 - 

The input layer accepts the input signals and redistributes these signals to all the neurons in the hidden layer. In order to 

determine the output of the neurons, a net weighted output is computed and passed through an activation function. 

The probabilistic neural network (PNN) is a kind of radial basis network suitable for solving classification problems [21]. It 

uses kernel-based approximation to form an estimate of the probability density functions of classes in a classification task [22]. 

The PNN architecture is composed of many interconnected processing units or neurons organized in successive layers. The 

topological structure of PNN which comprises of four layers with one input layer, two hidden layers and one output layer is 

shown in Fig. 2. 

B. Classification of Three Phase Fault, Stable and Unstable Swings Using  

To address the need for fast detection of  unstable swings so as to improve the reliability of  distance relay operation, a new 

scheme for detecting a fault, stable swing and unstable swing at transmission lines is proposed by using the S-transform and 

artificial neural networks. The S-transform is used to extract features of signals obtained during a fault, stable swing and 

unstable swing whereas artificial neural networks based on MLPNN and PNN are used to classify either a fault, stable swing or 

unstable swing for correct distance relay operation as shown in Fig. 3. During a stable swing, it is compulsory to block the 

tripping signals, while for unstable swing the tripping signals have to be triggered to the associated breaker for isolation 

purposes.  
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Fig. 3 Automated detection of three phase fault, stable and unstable swings using the S-transform, MLPNN and PNN 

C.  S-Transform as Feature Extraction Approach 

As for the detection of an unstable swing, a fast tripping action needs to be triggered at transfer line to the associated 

breaker for isolation purposes. S-transform is a time-frequency representation known for its local spectral phase properties. A 

key feature of the S-transform is its accurate time-frequency (amplitude and phase) domain by employing a moving and 

scalable localizing Gaussian window [23]. The basis function for the S-transform is the Gaussian modulated cosine wave 

whose width varies inversely with frequency.  

The S-transform of a discrete time series is given by  

 0n,
NT

nm
H

NT

n
,kTS ee

mk2-
n

m21Nm

0m

2

22








 








 




  (1) 

where,  

k, m, n =0,1,...., N -1  

T: sampling interval 

N: total of sampling point 

Equation (1) can be further simplified as 
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where,  

22e  and 
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Proper selection of input features is an important step before implementing the PNN and MLPNN. The input features of the 

MLPNN and PNN are selected by considering the derivative of bus voltage, the bus voltage and bus active power processed by 

the S-transform. The mathematical formulation of the input features is described accordingly.  

The first feature, F1, is given by, 
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where 
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The second feature, 2F , is derived from the S-transform and is given by, 
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The third feature, 3F , which is also derived from the S-transform is given by, 
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where, 

busV : bus voltage 

The fourth feature, 4F , is given by,   
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where,  

busP : active power at a selected bus 

The input features are usually normalized in the range of 0 to 1 for ANN application. The input features (F1, F2 and F3) 

and (F1, F2 and F4) are plotted in three dimensions as shown in Figs. 4 and 5, respectively. The plots show that the features 

can characterize the various events which are grouped into different feature coordinates. The output features of PNN and 

MLPNN have been determined on the basis of the events which might affect the relay operation during fault, stable swing and 

unstable swing.  

 

Fig. 4 Plots of input features F1, F2 and F3 

As for the output features, the developed PNN classifies fault, stable swing, unstable swing, fault clearance and post fault  

by representing the events as „1‟ for fault, „2‟ for stable swing, „3‟ for unstable swing, „4‟ for fault clearance and „5‟ for post 

fault. As for MPLNN, the output features consists of [1 0 0 0 0] which denotes a fault, [0 1 0 0 0] as unstable swing, [0 0 1 0 0] 

as stable swing, [0 0 0 1 0] as fault clearance and [0 0 0 0 1] as post fault. The MLPNN outputs are not in crisp value of 0 or 1, 
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but rather in the range of 0 to 1. Hence, for classification purpose, a decision rule is used so that if the MLPNN output is less 

than 0.9 or greater than 0.1, it is considered as a misclassified output.  

 

Fig. 5 Plots of input features F1, F2 and F4 

III. RESULTS OF ANN FOR CLASSIFYING THREE PHASE FAULT, STABLE AND UNSTABLE SWINGS 

Power swing simulations were carried out to generate training data. A fault with duration 350 ms is triggered at different 

locations of the test systems in order to create different cases of stable and unstable swings. Figs. 6 and 7 show the examples of 

the time domain simulations illustrating cases of stable and unstable swings 

 

Fig. 6 Time domain simulation illustrating a stable swing 

 

Fig. 7 Time domain simulation illustrating an unstable swing 
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For the PNN and MLPNN implementation, 60 training data sets consisting of five particular events have been generated, 

while 75 different data sets have been used for testing purpose. The results obtained from the PNN and MLPNN for detecting 

and classifying stable swing, unstable swing, fault, fault clearance and post fault for distance relay operation are presented.  

The fault clearance and post fault have to be considered as the PNN and MLPNN outputs because the features in both 

situations can be misclassified as a fault or unstable swing if no specific outputs are assigned. The performance of both 

MLPNN and PNN in predicting the detection time of unstable swing has been evaluated by comparing it with the detection 

times obtained from simulations. 

A. MLPNN Results 

The architecture of the MLPNN is such that it has 4 input neurons representing the 4 input features, two hidden layers with 

20 neurons and 80 neurons, respectively and 5 output neurons representing stable swing, unstable swing, stable swing, fault 

clearance and post fault conditions.  It uses the hyperbolic tangent transfer function and the back propagation algorithm in the 

neural network training. The mean squared error which is used as a goal for training the neural network is set at 0.0001. The 

performance goal was met at 156 epochs with a training time of 10 seconds.  

The MLPNN was tested with the 75 sets of testing data and it was found to give an overall accuracy of 93.33% with five 

misclassifications, among which, three misclassifications are recorded as fault clearance event while the remaining 

misclassifications are recorded as post fault event. The MLPNN sample testing results are shown in Table 1 in which the bold 

number in the table denotes the misclassification of events.  As shown in Table 1, the MLPNN outputs are not in crisp value of 

0 or 1, but rather in the range of 0 to 1. Hence, for classification purpose, a decision rule is used such that if the MLPNN output 

is less than 0.9 or greater than 0.1, it is considered as a misclassified output. 

TABLE I THE MLPNN TESTING RESULTS 

Data Actual MLPNN 

SS7 0 0 1 0 0 0.00087 0.00093 0.99825 0.00011 0.0013 

SS8 0 0 1 0 0 0.00084 0.00095 0.99836 0.00011 0.0013 

SS9 0 0 1 0 0 0.00091 0.00091 0.99804 0.00012 0.0014 

SS10 0 0 1 0 0 0.00101 0.00062 0.9927 0.00014 0.0085 

PF3 0 0 0 0 1 0.00155 0.00216 0.0005 0.00149 0.9978 

PF4 0 0 0 0 1 0.99409 0.004287 0.09097 0.81718 0.00167 

PF5 0 0 0 0 1 0.00073 0.00177 0.00046 0.00108 0.9994 

PF6 0 0 0 0 1 0.0004 0.00001 0.0016 0.00143 0.9945 

PF7 0 0 0 0 1 0.00105 0.00053 0.00016 0.00083 0.999 

PF14 0 0 0 0 1 0.98813 0.00262 0.00033 0.00707 0.0004 

PF15 0 0 0 0 1 0.00133 0.00005 0.00203 0.00355 0.9898 

FC1 0 0 0 1 0 0.00461 0.00484 0.00568 0.99063 0.0051 

FC2 0 0 0 1 0 0.00104 0.00105 0.00007 0.99878 0.0002 

FC3 0 0 0 1 0 0.00104 0.00105 0.00007 0.99878 0.0002 

FC4 0 0 0 1 0 0.00104 0.00105 0.00007 0.99878 0.0002 

FC9 0 0 0 1 0 0.03046 0.10289 0.23232 0.07734 0.35080 

FC10 0 0 0 1 0 0.85367 0.10915 0.00855 0.41258 0.25328 

FC11 0 0 0 1 0 0.0028375 0.12981 0.28221 0.49346 0.030006 

F6 1 0 0 0 0 0.99968 0.00015 0.00011 0.00044 0.0006 

F7 1 0 0 0 0 0.99967 0.00019 0.00024 0.00037 0.0008 

F8 1 0 0 0 0 0.99867 0.00081 0.00104 0.00021 0.0011 

F9 1 0 0 0 0 0.99965 0.00027 0.00034 0.00056 0.0006 

      Accuracy  93.33%   

B. PNN Results 

The developed PNN classifies fault, stable swing, unstable swing, fault clearance and post fault  by representing the events 

as „1‟ for fault, „2‟ for stable swing, „3‟ for unstable swing, „4‟ for fault clearance and „5‟ for post fault. Table 2 shows the 

sample of PNN testing results in which bold number in the table denotes the misclassification of event. It was found that PNN 

gives an overall accuracy of 97.33% with two misclassifications recorded as stable and unstable swings. Comparing the testing 

results of PNN and MLPNN, it can be concluded that the performance of PNN is better than MLPPN in classifying different 

types of power events during power oscillation phenomena. 
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TABLE II THE PNN TESTING RESULTS 

Data Actual PNN Data Actual PNN Data Actual PNN 

SS1 2 2 PF11 5 5 F6 1 1 

SS2 2 2 PF12 5 5 F7 1 1 

SS3 2 2 PF13 5 5 F8 1 1 

SS4 2 2 PF14 5 5 F9 1 1 

SS5 2 2 PF15 5 5 F10 1 1 

SS6 2 2 FC1 4 4 F11 1 1 

SS7 2 2 FC2 4 4 F12 1 1 

SS8 2 2 FC3 4 4 F13 1 1 

SS9 2 2 FC4 4 4 F14 1 1 

SS10 2 2 FC5 4 4 F15 1 1 

SS11 2 2 FC6 4 4 US1 3 3 

SS12 2 2 FC7 4 4 US2 3 3 

SS13 2 2 FC8 4 4 US3 3 3 

SS14 2 1 FC9 4 4 US4 3 3 

SS15 2 2 FC10 4 4 US5 3 3 

PF1 5 5 FC11 4 4 US6 3 3 

PF2 5 5 FC12 4 4 US7 3 3 

PF3 5 5 FC13 4 4 US8 3 3 

PF4 5 5 FC14 4 4 US9 3 3 

PF5 5 5 FC15 4 4 US10 3 3 

PF6 5 5 F1 1 1 US11 3 3 

PF7 5 5 F2 1 1 US12 3 3 

PF8 5 5 F3 1 1 US13 3 3 

PF9 5 5 F4 1 1 US14 3 5 

Accuracy 97.33% 

C. Detection Time of Unstable Swing 

The comparison with the frequency deviation technique which has proposed by So et al., (2007) is conducted in order to 

ascertain the validity and advantages of the propose approaches. In this part, the PN has been chosen instead of MLPNNN due 

to the high accuracy as mentioned in earlier part of this paper. The frequency deviation is one of the reliable approaches to 

identify the unstable swing.  The results of the techniques have been presented at Table 3. From the result it can be observed 

that PNN approach is faster as compared to the existing technique. Moreover, the techniques are applicable at transmission 

network protection with less complexity as compared to frequency deviation which acquires the data from generator to be sent 

to the transmission.  

TABLE III THE PNN TESTING RESULTS RESULT DETECTING TIME OF UNSTABLE SWING 

Data 
PNN 

(second) 
/d 

Second) 

Data1 0.51 0.61 

Data2 0.28 0.45 

Data3 0.52 0.61 

Data4 0.54 0.61 

Data5 0.32 0.45 

Data6 0.59 0.61 

Data7 0.6 0.61 

Data8 0.62 0.61 

Data9 0.59 0.61 

Data10 0.32 0.5 

Data11 0.45 0.53 

Data12 0.45 0.5 

Data13 0.49 0.53 

Data14 0.34 0.53 

Data15 0.34 0.53 
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IV. CONCLUSIONS 

To automate the event detection and classification process, results of intelligent classification of three phase fault and 

voltage collapse using SVM for correct distance relay operation are presented. The test results showed that the SVM performs 

better than the PNN in detecting and classifying three phase fault and voltage collapse when compared with the actual 

simulation outputs. Such detection scheme is useful for preventing distance relay from tripping during voltage collapse. Finally, 

the results of using the proposed combined S-transform and PNN to detect and classify fault, stable swing, unstable swing, 

fault clearance and post fault are presented. The results showed that the PNN gives a better performance compared to the 

MLPNN in terms of accuracy. Apart from that, the PNN also proves to be faster on detecting unstable swing event as 

compared to the frequency detection technique which is proposed by So et. al.  
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