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Abstract-The Short-Term Hydrothermal Scheduling – STHS problem is addressed in this paper. In this problem, hydro and thermal 

plants must be coordinated in order to supply the demand at a minimum cost and comply with a set of constraints, concerning the 

system and the plants themselves, in the short-term planning horizon (from one day to one week). Given the nonlinearities associated 

with the problem, the large number of decision variables and constraints coupled in time periods, the STHS problem results in a 

complex mathematical programming problem. The Lagrangian Relaxation – LR method is the most widespread procedure for 

solving this problem. This work presents two strategies to solve STHS, which are based on different decomposition schemes of the 

primal problem. These strategies make it possible to define, for large-scale problems, the most appropriate decomposition scheme, 

which is particularly important for power systems with high proportion of hydraulic generation. The studies were accomplished 

using a reduced system composed of five reservoirs, 22 hydro and two thermal units of the Brazilian Hydrothermal Power System. 

Keywords- Hydrothermal Systems; Short-Term Scheduling; Lagrangian Relaxation 

I. INTRODUCTION 

The operation planning of hydrothermal systems is a very complex task. A possible approach to deal with this complexity 

involves the decomposition of the global task into long, medium and short-term scheduling problems [1, 2], which are 

modelled considering suitable aspects for their time horizons. In general, uncertainties are modelled in detail in the long and 

medium-term problems, as well as system and generation constraints are precisely detailed in the short-term problem. 

Coordination among the problems can be done in different ways. Examples of the medium-term and short-term model 

coordination can be seen in [3-5]. 

In this paper, the Short-Term Hydrothermal Scheduling – STHS is addressed. This problem has been intensely researched 

for the last decades, and numerous methods have been proposed to deal with it. Due to the significant number of coupling 

constraints and decision variables, decomposition techniques appear as a natural alternative for solving this problem; 

particularly, the Lagrangian Relaxation – LR, which is one of the most efficient strategies [6-8]. In [9] we used LR to solve the 

hydro unit commitment problem by using a reduced configuration of the Brazilian Hydrothermal System. However, in this 

previous work we took into consideration only the hydro system. This work is an extension of [9], so that thermal units and 

demand constraints are also modeled in the short-term horizon. In our model, we relate the amount of hydropower generation 

to nonlinear tailrace levels, and also, take into account hydraulic losses, turbine-generator efficiencies, as well, the multiple 

states related with forbidden zones. Our formulation also includes several constraints associated to the reservoirs operation, 

and it is suitable for a system with several plants in cascade. 

By means of LR, the original STHS problem is split into a sequence of smaller and easy-to-solve subproblems, coordinated 

by a dual master program. The advantage of our approach is to obtain four separate subproblems: thermal, hydro, hydrothermal 

and hydraulic. The first two subproblems take into account the unit constraints (thermal and hydro unit commitment, 

respectively). The hydrothermal subproblem takes into account the demand and reserve requirements, as well as the 

transmission system limits. Finally, all of the reservoir constraints are modeled into the hydraulic subproblem. Each 

subproblem is solved with a specific mathematical programming technique. 

In order to deal better with the combinatorial aspect introduced by the forbidden zones in the hydro unit commitment 

subproblem, we derive two different decomposition strategies. The first strategy relies on a complete enumeration of all 

possible 0-1 non-forbidden zones of the units, carried out for each hydro plant and time stage. In general, the hydro plants 

possess identical units, with a single forbidden zone. Therefore, a good strategy consists of carrying out an exhaustive 

enumeration of possible combinations. On the other hand, in those hydro plants with a large number of generating units and/or 

forbidden zones, an exhaustive enumeration becomes an inefficient procedure. Therefore, it is important to build another dual 

problem that can handle the combinatorial nature in a more efficient way. 

This paper is organized as follows. The hydrothermal configuration and the STHS formulation are presented in Section 2. 

Section 3 details the proposed decomposition strategy and we report its computational results in Section 4. Finally, in Section 5, 

the main conclusions of this article are presented. 
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II. MODELING AND PROBLEM FORMULATION 

The hydrothermal configuration used in this work is shown in Fig. 1. 
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Fig. 1 Hydrothermal system 

The system installed capacity is 8,474 MW. The main data referring the thermal plants are presented in Table 1. 

TABLE 1 THERMAL PLANT DATA 

Plant 
ptmin 

[MW] 

ptmax 

[MW] 

i 

[MW/h] 

RTi 

[MW] 

ct1i 

[R$/MW2] 

ct2i 

[R$/MW] 

T1 0 800 50 40 0.07 0.03 

T2 0 800 50 40 0.04 10 

Table 1 shows generation limits, ramp data, plant spinning reserve and production costs coefficients, respectively. In this 

paper, minimum uptime and downtime constraints were not modeled [10], although the proposed decomposition strategy can 

treat this aspect in an efficient way.  

The hydro configuration is illustrated in Fig. 2. 
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Fig. 2 Hydro system configuration 

Fig. 2 shows the maximum installed capacity in each plant, water travel time, in hours, among reservoirs (in brackets), and 

still, generating units number of each plant (in parentheses). Table 2 shows other reservoirs operation data (volume, maximum 

turbined discharge and spillage, as well as the reserve requirement for each plant). The minimum turbined outflow and spillage 

values are zero. 

TABLE 2 HYDRO PLANT DATA 

Plant 
vmin/max  

[hm3] 

Q
r
max  

[m3/s] 

sr
max  

[m3/s] 

RHr 

[MW] 

Non-Forbidden Zones 

[MW] 

H1 1,974/5,779 1,376 2,752 77.82 [290-419] 

H2 2,562/2,950 1,268 2,536 60.18 [180-315] 

H3 2,662/6,775 1,576 3,152 68.56 [210-355] 

H4 1,014/1,124 1,784 3,568 53.52 
 [120-182] (4) 

 [120-175] (2) 

H5 3,473/3,573 2,100 4,200 57.10 [205-310] 

Table 2 also shows the non-forbidden zones for each unit. All plants have identical units, except H4 that possesses two 

different groups of units
1

. As aforementioned, this work represents the hydro plant in a detailed way and, in this case, the 

output of the unit j depends on turbined outflow (qj), the net head (hj) and efficiency (j): 

                                                 
1

One group possesses two identical units and the other possesses four identical units. 



Journal of Algorithms and Optimization  Oct. 2013, Vol. 1 Iss. 1, PP. 13-24 

- 15 - 

 jjjj qhph 31081,9   (1) 

The net head [11] is given by: 

 
2)( jjj qkQtrlfblh   (2) 

In (2) fbl represents the forebay level of reservoir, which is considered as a fixed value. However, the tailrace level trl(.) 

varies significantly in the short-term horizon. For our system, trl (.) is represented by a fourth order polynomial
2

, as shown in 

Table 3. Still regarding (2), kjqj
2
 represents the penstock losses, where kj is a constant in s

2
/m

5
. 

TABLE 3 TAILRACE FUNCTION AND HYDRAULIC LOSSES CONSTANT 

Plant b0(x103) 

[m] 

b1(x10-4)  

[s/m2] 

b2(x10-7)  

[s2/m5] 

b3(x10-12) 

[s3/m8] 

b4(x10-19)  

[s4/m11] 

kj(x10-6) 

[s2/m5] 

H1 0.602 11.060 4.209 -83.110 47.610 22.290 

H2 0.490 0.608 2.925 -23.200 4.565 18.300 

H3 0.394 21.110 -0.792 2.352 -271.4 10.776 

H4 0.322 22.810 -1.403 3.842 -536.3 36.156  
71.270 

H5 0.258 6.208 -0.172 0.228 0.122 3.628 

The unit efficiency, depending on hlj and qj, is usually represented by hill diagrams. We estimate the efficiency by 

interpolation; see [12, 13], using a polynomial function 

  (3) 

where 0j,...,5j are the coefficients that should be estimated previously. Therefore, based in (1), (2) and (3), we have phj=f (q
7
, 

Q
12

). 

Finalizing the data presentation, all the interchange limits are equal to 3000 MW. The demand data, initial and final 

reservoirs volumes, and incremental inflow are shown in the results section. 

Based on the described data, the optimization model is formulated by: 

 

(4) 

s.t.: 
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(14) 

                                                 
2

trl(Q)=b0+b1Q+b2Q
2+b3Q

3+b4Q
4. 

 2 2

0 1 2 3 4 5      j j j j j j j j j j j j j= + q + h + h q + q + h

 224
2

1 2

1 1

min ( )


 

  
tnT

i it i it

t i

f c pt c pt

 

( )

, 1 , - , -( ) .
mr mr

r

r t rt rt rt m t m t rt

m R

v v c Q s Q s c y

 max max

rt r rt r0 s s 0 Q Q

 min max

r rt rv v v  
, 1

LP

r T rv v

 

1

rtJ

rt jrt

j

Q q = 0

 
min 7 12 max

1 1

( , )

 

 

  
jr jr

jkrt jkrt jrt jrt rt jkrt jkrt

k k

ph z ph q Q ph z

   max

jrt jrt0 q q

 {0,1}jkrtz
 

1

1
jr

jkrt

k

z    

  min max

it it itpt pt pt

 
1  it i,t - ipt pt

 1 1

5
7 12

2

1 1

2 3

12 13

( , ) 12 23

13 23



 

  

  

  


rt

t t t t

JR

jrt jrt rt t t t

r j

t t t t

pt INT INT L

ph q Q INT INT L

pt INT INT L



Journal of Algorithms and Optimization  Oct. 2013, Vol. 1 Iss. 1, PP. 13-24 

- 16 - 

 

 

(15) 

 
 

(16) 

  (17) 

Where: 

T total stages, [h]; 

t stage index, so that t=1, T; 

R number of reservoirs in the system; 

r index of the reservoirs in the system, so that r=1, R; 

vrt volume of reservoir r at the beginning of stage t [hm
3
]; 

c conversion factor of water discharge units [m
3
/s] into stored water units [hm

3
]. For unit consistency, it should be noted 

that time periods of 1 hour are considered; 

srt spillage of reservoir r during stage t [m
3
/s]; 

+
(r) 

set of reservoirs immediately upstream of reservoir r; 

mr time of water travel between reservoir m and r [h]; 

yrt incremental inflow of reservoir r during stage t [m
3
/s]; 

Qrt plant turbined outflow in reservoir r during stage t [m
3
/s]; 

Jrt total of hydro units available of reservoir r, during stage t; 

qjrt turbined outflow of unit j of reservoir r during stage t [m
3
/s]; 

vr
min,max  

minimum (maximum) volume of reservoir r [hm
3
]; 

vr
LP

 volume of reservoir r at the end of the study horizon [hm
3
]; 

jr  total non-forbidden  zones of unit j and reservoir r; 

k index of the operating zones of the units, so that k=1, jr; 

phjrt (.) power output of unit j, reservoir r and stage t [MW]; 

phjkrt
min,max

  minimum (maximum) power of unit j, reservoir r and stage t, operating in zone k [MW]; 

zjkrt   binary variable that indicates if unit j of reservoir r is operating (zjkrt = 1) or not (zjkrt = 0) in zone k during stage t; 

ptit  power output of thermal unit i, during stage t [MW]; 

c1i, c2i operating costs of quadratic function of thermal production ptit; 

ptit
min,max

  minimum (maximum) power of unit i and stage t [MW]; 

Δi  ramp rate maximum of the thermal unit i [MW]; 

RHrt hydro plant reserve during stage t [MW]; 

RTit thermal unit reserve during stage t [MW]; 

INT12t power interchange among the bus 1 and 2, during stage t [MW]; 

INT13t power interchange among the bus 1 and 3, during stage t [MW]; 

INT23t power interchange among the bus 2 and 3, during stage t [MW]; 

B index of bus in the system, b=1, 3; 

Lbt hourly power demand of bus b [MW]. 

The objective function (1) seeks to minimize thermal generation cost over the planning horizon. In this work, the horizon is 

one day and the time step is one hour. The coordination with the medium term model is obtained by means of stored volumes 

targets (7). 

The problem constraints can be classified in different subsets, each one characterized by a specific type coupling, as 

detailed ahead. This classification is fundamental for comprehension of the decomposition strategies proposed in the work. 

A. Reservoirs Constraints (CHH) 

This subset is given by the constraints (5) – (7), which correspond to the reservoirs operation limits (stream-flow balance, 

spillage, turbined outflow and storage). Notice that these constraints are coupled in time and space. In a compact notation, we 

can define CHH=CHH (Q, s, v), where Q, s and v are vectors associated with the variables showed in (5) – (7). 
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B. Hydro Unit Constraints (CHU) 

This subset includes the constraints that involve the penstock water balance in each reservoir (8), non-forbidden zones (9), 

unit turbined outflow limits (10) and integer variables (11). Except (8), the constraints only possess variables referring to the 

hydro units and are characterized as nonlinear mixed-integer constraints. In compact notation we can define CHU=CHU (z, q, 

Q), where z and q are vectors associated with the variables previously showed. 

C. Thermal Plant Constraints (CT) 

This subset includes the power limit constraints (12) and ramp constraints (13). In compact formulation, we define CT=CT 

(pt), where pt is the vector with all thermal generation variables. 

D. Hydrothermal Constraints (CHT) 

This subset includes the demand supply requirements per bus (14), the power interchange limits (15), and hydro (16) and 

thermal (17) reserve constraints. We define CHT=CHT (pt, q, Q, INT), where, INT represents the vector with all power 

interchange variables. 

E. Compact Notation 

The optimization problem, in compact notation, has the following structure: 

 
(18) 

s.t.:  

III. DUAL DECOMPOSITIONS 

The classical application form of LR relaxes coupling constraints, such as demand and reserve requirements. The reason is 

that these constraints couple all generators at every time stage. Nevertheless, even using this type of decomposition, the hydro 

subproblem is still very complex because it is time and space linked. An efficient approach to deal with this difficulty consists 

in combining LR with Variable Splitting – LRVS method [6-8], where the decomposition is achieved by duplicating some 

variables. 

A. First Decomposition – Dual Problem I 

In STHS Problem (18), the subset CHT (.) is coupled with CT (.), CHU (.) and CHH (.), due to the demand supply requirements. 

Initially, the objective is to uncouple hydro and thermal plant variables. In this sense, we include in (18) the artificial variables, 

pta and PHa, in the following way: 

 
(19) s.t.:  

 

 

Observe that the variables pta and PHa are used in CHT (.), replacing pt and 
1

(.)
rtJ

jrt

j=

ph , respectively. Now, we can note 

that the variables of CHT (.) are not coupled with CT (.), CHU (.) and CHH (.). The subset CT (.) also is not coupled with other 

subsets. However, the variable Q still couples the subsets CHH (.) and CHU (.). In the sense, to break this coupling, the artificial 

variables Qa are replaced in the stream-flow balance equations in CHH. Thus, the Problem (19) is rewritten as follows: 

224
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1 2

1 1

min ( )
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  
tnT

i it i it

t i

f c pt c pt

 

(20) 
s.t.: HH HU T HTC ( ) C ( ) C ( ) C ( )  Qa,s,v z,q,Q pt pta,PHa,INT

 

 

7 12

1

; ( , )

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


rtJ

it it rt jrt jrt rt

j

rt rt

pta pt PHa ph q Q

Qa Q
 

As a result, at this moment, the coupling is given only by the artificial constraints. To break this coupling, it is necessary to 

relax these constraints using Lagrange multipliers λpt, λPH e λQ: 
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224 5
7 12

I

1 1 1 1

max min ( ) ( ( , )) ( )
 

   

  
           

  
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t rt

it rt rt

n JT R

pt it it PH rt jrt jrt rt Q rt rt

t i r j

 f pta pt PHa ph q Q Qa Q

 

s.t.: HH HU T HTC ( ) C ( ) C ( ) C ( )  Qa,s,v z,q,Q pt pta,PHa,INT
 

(21) 

The dual problem above could be separated in smaller subproblems, with distinct mathematical characteristics, as will be 

showed in the sequence. 

1)  Thermal Subproblem: 

The first subproblem is denominated as Thermal Subproblem (θT), which contains only thermal constraints, as seen 

previously in the set CT (pt). 

224
2

1 2

1 1

min ( )


 

 
    

 
 

t

it

nT

T i it i pt it

t i

ct pt ct pt

 (22) 

s.t.: TC ( )pt
 

Subproblem (22) is a Quadratic Programming – QP problem, coupled along time steps, but not along plants. Each QP is 

solved by the PLCBAS software [14]. 

2)  Hydrothermal Subproblem: 

This subproblem includes constraints with thermal and hydro plant variables: 

224 5

1 1 1

min
 

  

 
     

 
  

t

it rt

nT R

HT pt it PH rt

t i r

pta PHa

 (23) 

s.t.: HTC ( )pta,PHa,INT
 

Subproblem (23) is a standard Linear Programming – LP problem, coupled along plants, but not along time steps, which 

can be solved by any LP commercial software. The software used for the solution is the CPLEX 7.0 [15]. 

3)  Hydraulic Subproblem: 

This subproblem given is: 

24 5

1 1

min
 

 

 
   

 
  rt

T R

H Q rt

t r

Qa

 (24) 

s.t.: HHC ( )Qa,s,v
 

Subproblem (24) is also a LP problem, coupled in time and space, which can be efficiently solved by CPLEX. 

4)  Hydro Unit Commitment Subproblem: 

The last subproblem from this first decomposition has the following formulation: 

24 5
7 12

1 1 1

min ( , )
 

  

   
     

   
  

rt

rt rt

JT R

HUC PH jrt jrt rt Q rt

t r j

ph q Q Q

 

s.t.: HUC ( )z,q,Q
 

(25) 

Subproblem (25) is nonlinear and mixed-integer optimization problem uncoupled in time and hydro plants. Therefore, (25) 

can be solved by RT subproblems separated. 

The computational burden to solve each subproblem of (25) depends on the size of the state space, which is given by the 

total of generating units combinations that can be enumerated in each plant and time stage. 

Plants H1, H2, H3 and H5 possess identical units, with a single non-forbidden zone. In this case, the total of combinations, in 

each time stage, is Jrt+1. Plant H4 possesses two different groups (Group I, with two identical units and Group II, with four 

identical units), each unit possessing one non-forbidden zone. Thus, H4 has 15 unit combinations. 

Each combination is a configuration where the corresponding binary variables are fixed to one of the feasible values. Once 

the binary values are fixed, the problem becomes a nonlinear program, whose size is dependent on Jrt. The software used for 

Nonlinear Programming – NLP solution was developed by [9, 13], which used Sequential Quadratic Programming 
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methodology concepts [16, 17]. 

In this first decomposition – Dual I, we solve (25) by enumeration of non-forbidden zones combination at plant r and stage 

t. 

5)  Dual Problem I Schematic Representation: 

Fig. 3 illustrates the associated Dual Problem I subproblems. 
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Fig. 3 Dual problem I schematic diagram 

For update the Lagrange multipliers, this work uses the Bundle Method [18], through N1CV2 [19] academic use free 

software. 

B.  Second Decomposition –Dual Problem II 

Generally, hydro plants possess identical units and each unit has a single non-forbidden zone. In this case, the total 

combinations are given by Jrt+1 and an exhaustive enumeration can be a good strategy, according to previous section. 

Sometimes, however, there are power plants with many different types of units, and several non-forbidden zones. For these 

configurations, an enumeration procedure may become too expensive. We now introduce an alternative decomposition scheme. 

First of all, in the second decomposition strategy, the set CHUC (.) is divided into two smaller subsets: CAH1 (q, Q) and CAH2 

(q, Q, z). CAH1 (.) contains penstock balance constraints and CAH2 (.) contains non-forbidden zones and integer constraints: 

224
2

1 2

1 1

min ( )


 
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tnT

i it i it

t i

f c pt c pt

 (26) 

s.t.: HH AH1 AH2 T HTC ( ) C ( ) C ( ) C ( ) C ( )   Q,s,v q,Q q,Q,z pt pt,q,Q,INT
 

The strategy follows the same decomposition showed in Dual Problem I; however, the duplication of hydro generation 

variables is included in following way: 

224
2

1 2

1 1
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tn =T=

i it i it

t= i=

min f = c pt +c pt

 

(27) 
s.t.: HH AH1 AH2 T HTC ( ) C ( ) C ( ) C ( ) C ( )   Qa,s,v q,Q pha,z pt pta,PHa,INT

 

 
7 12

1

; ( , );

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rtJ

it it rt jrt jrt rt

j

pta pt PHa ph q Q

 

 
7 12; ( , ) rt rt jrt jrt jrt rtQa Q pha ph q Q

 

As seen above, we use pha to replace the hydro production function in the non-forbidden zones constraints which belongs 

to the CAH2 (.) set, therefore decoupling integer variables of nonlinear constraints. 

Relaxing the artificial constraints of (27) and using Lagrange multipliers λpt, λPH, λQ e λph, the following dual problem is 

obtained: 
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224 5
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(28) 

The Dual Problem II, θII, can also be decomposed in smaller subproblems. In this sense, the same subproblems of the Dual 

Problem I, θI, Thermal (θT), Hydrothermal (θHT) and Hydraulic (θH) are developed. However, two new subproblems 

(Continuous and Integer) appear in this new decomposition. 

1)  Continuous Subproblem: 

1

24 5

1 1 1

min ( ) ( , )
 
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rt
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JT R

AH PH ph jrt jrt rt Q rt
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ph q Q Q

 

s.t.: AH1C ( )q,Q
 

(29) 

This subproblem is very similar to the NLP problems associated to (25). However, the subproblem size is not variable. In 

(29) exist R×T nonlinear subproblems with an equality linear constraint and (Jrt+1) variables. 

2)  Integer Subproblem: 

This subproblem possesses only non-forbidden zones constraints. 

2

24 5

1 1 1

min
 

  

  
rt

jrt

JT R

AH ph jrt

t r j

pha

 

s.t.: AH2C ( )pha,z
 

(30) 

In (30), for each reservoir and stage t, there is Jrt mixed-integer linear problems, which can be solved independently. Each 

subproblem, each one possessing (1+Φjr) variables and box constraints in phajrt, has analytical solution: 

 If λphjrt > 0, phajrt = 0; 

 If λphjrt < 0, phajrt = phajr
max

 
3

; 

 If λphjrt = 0, phajrt can have any feasible value. 

3)  Dual Problem II Schematic Representation: 

Fig. 4 illustrates the Dual Problem II subproblems. 

MASTER PROBLEM
(Bundle Method)

HYDROTHERMAL 

SUBPROBLEM
(Linear Programming)

HIDRAULIC 

SUBPROBLEM  
(Linear 

Programming)

CONTINUOUS 

SUBPROBLEM
(NonLinear 

Programming)

THERMAL 

SUBPROBLEM
(Quadratic 

Programming )

Lagrange 
Multipliers

INTEGER 
SUBPROBLEM

(Analytical 
Solution)

Primal Solutions

 

Fig. 4 Dual problem II schematic diagram 

To obtain feasible primal solutions it is important to emphasize that, following the dual problems solution, it is necessary to 

make some adjustments. This LR algorithm phase is known as Primal Recovery – PR and, frequently is based on heuristics. 

This phase is not implemented in this work. Details on PR can be seen in [7, 8]. 

                                                 
3

Maximum value among the maximum limits of Φjr non-forbidden zones. 
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IV. COMPUTATIONAL TESTS 

This section aims to analyze the results obtained on dual problems I and II. The number of stages is 24 which refer to an 

hourly discretization in a one-day horizon. The computational tests were performed in a computer AMD Athlon XP 2400+ 

with 512 Mbytes of RAM memory with Windows 2000 Professional operating system. The programming language used was 

FORTRAN, using Compaq Visual FORTRAN Professional Edition 6.1.0 as compiler. 

The main data problem can be seen in the Section 2. The incremental inflows were considered null. Table 4 illustrates 

initial and final reservoirs storage. 

Fig. 5 illustrates demand curve for the horizon. 

TABLE 4 RESERVOIRS INITIAL AND FINAL STORAGES 

Plant 
Initial Storage 

[hm3] 

%Storage 

 max 

Final Storage 

[hm3] 

%Storage max 

H1 4,637.50 70 4,557.50 67.90 

H2 2,794.80 60 2,774.80 54.85 

H3 5,335.45 65 5,305.45 64.27 

H4 1,069.00 50 1,069.00 50.00 

H5 3,523.00 50 3,523.00 50.00 

 

Fig. 5 Hydrothermal system demand 

Table 5 illustrates computational results obtained from the dual problems. Notice that in the Dual I strategy, the dual 

function reaches a value higher than the Dual II strategy. 

TABLE 5 DUAL PROBLEMS RESULTS 

 Dual I Dual II 

Initial multipliers -0.1 -0.1 

Dual function (1st iteration) -29,814.95 -29,814.95 

Dual function (convergence) 346,298.98 334,859.01 

Number of iterations 338 187 

Computational time (seconds) 185.7 70.89 

Regarding the computational performance, the difference between the two strategies is evident. Considering the 

computational burden the Dual II is approximately 2.5 times faster than Dual I. 

Fig. 6 depicts the dispatches of H1 and H4 plants, in percentile terms with relation to the maximum nominal values. 
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Fig. 6 Dual I and Dual II hydro generation 

Stippled line represents PHa generation for Hydrothermal Subproblem. The bang-bang behavior can be observed due to the 

linear modelling of this problem. The full line represents the generation from the nonlinear problems (PH): Hydro Unit 

Commitment Subproblem (Dual I) and Continuous Subproblem (Dual II). 

Fig. 7 illustrates T1 generation. The pta variable results from the Hydrothermal Subproblem, while pt comes from the 

Thermal Subproblem. Again the oscillations (pta) can be observed in linear problems while pt, of quadratic nature, such 

behavior is avoided by the ramp constraints. The pt behavior is similar in the two decomposition strategies. 

 

Fig. 7 Dual I and dual II thermal generation 

The number of units allocated in H1 and H4 is illustrated in Fig. 8. 

 

Fig. 8 Dual I and dual II hydro unit allocated 
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The Dual Problem I strategy presents more realistic solutions because it avoids units turns on/off which does not occur in 

the Dual II. Moreover, sometimes, in the Dual II, the problem solution determines the operation into forbidden zones, as it can 

be observed in Fig. 9. 

 

Fig. 9 Integer and continuous subproblems (Unit 1 of H5) 

Fig. 10 illustrates Lagrange multipliers associated to the T1 thermal plant and H1 hydro plant. As can be observed, Dual 

Problem II suggests being a good initial point for Dual I, in some time stages. 

 

Fig. 10 Lagrange multipliers (Dual I x Dual II) 

We conclude from our experiments, in terms of primal and dual solutions, that the Dual I decomposition is the best option. 

However, given the required enumerative process its computational performance is worse. Thus, the Dual I is not 

recommended to be used for hydro plants with complex configurations. In such cases, like Brazilian system, a combined 

strategy could be more suitable. 

V. CONCLUSIONS 

This work presents a solution strategy for the STHS problem, which uses LR and artificial variables technique, 

decomposing the original problem into smaller subproblems with distinct mathematical characteristics (Thermal, Hydrothermal, 

Hydraulic and Hydro Unit Commitment). In order to deal better with the combinatorial aspect introduced by the forbidden 

zones in the Hydro Unit Commitment subproblem, we proposed two different decomposition strategies. The first strategy 

relies on a complete enumeration of all possible 0-1 non-forbidden zones of the units, carried out for each hydro plant and time 

stage. And, the second strategy relies only on the enumeration of each hydro unit and time stage, because the Hydro Unit 

Commitment subproblem is separated into two other subproblems (Continuous and Integer).  

The strategies based on LR were evaluated with respect to primal and dual solutions. We conclude from our experiments, 

that the Dual I decomposition is the best option in terms of primal and dual solutions, but its computational performance is 

worse. Thus, for hydro plants with complex configurations, like Brazilian system, a combined strategy could be more suitable. 

The proposed strategies also make possible the inclusion of other constraints without modifying the solution structure. 

Therefore, the minimum up and downtime constraints for thermal and hydro units and the consideration of the electrical 

network would be modelled on the STHS problem. These constraints would be included at the proposed subsets of 

subproblems. 

The obtained results point out that the proposed strategy is promising for the application in bigger problems like the whole 

Brazilian power systems.  
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