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Abstract-The upstream flow near the exit of a channel for steady-
state moderately inertial jet emerging from the channel is 
examined theoretically in this study. Poiseuille flow conditions 
are assumed to prevail far upstream from the exit. The problem 
is reduced to an eigenvalue problem governing the departure 
from Poiseuille flow. This is shown to be on the order of the 
inverse Reynolds number. The study complements Tillett’s 
asymptotic analysis on free surface jet flow, focusing on the flow 
upstream from the channel exit particularly the region near the 
wall. Numerical calculations based on FLUENT are used for 
comparison, which illustrate the difficulty of conventional 
numerical methodologies to accurately capture the flow near the 
singularity, and the need for the current local asymptotic analysis. 

Keywords-Free-surface Jet; Moderate Reynolds Number; Exit 
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I. INTRODUCTION 
Liquid laminar jets have been extensively studied 

previously in the literature. However, the focus has mainly 
been on the jet flow downstream from exit. In addition, in 
most studies of Newtonian jets, due to the convective 
nonlinearities, limited studies can be found which take inertial 
effect into account. For high inertial jet flow, Tillett [1] used 
the method of matched asymptotic expansions for a planar 
steady free surface jet as displayed schematically in Fig. 1. 
The figure depicts the entire jet domain (Fig. 1a) and the 
domain of computation using dimensionless notations (Fig. 
1b).  

 

 
Fig. 1 Schematic illustration of the flow configuration: (a) the channel and jet 

regions are shown, using dimensional notations; (b) computation domain 
including the boundary layer heights using dimensionless notations  

When the fluid exits the channel, the vanishing of the wall 
shear stress causes a boundary layer to develop adjacent to the 
wall and free surface, the inner layer. The flow in this thin 
layer and the jet contraction affect the core of the jet. Unlike 
the inner layer, this core layer extends over both the upstream 
and downstream regions. In each layer, different physical 
mechanisms dominate the flow, with corresponding 
characteristic length scales. In particular, the boundary and 
inner layers are shear dominated and the flow is of the 
boundary layer type. In the core layer, both shear and 
elongation are in balance as a result of the predominance of 
the Poiseuille character of the flow and the influence of the 
contracting jet. Nevertheless, the core layer remains 
predominantly of inviscid rotational nature given its relative 
remoteness from the free surface and the channel walls. 

Tillett developed a classical matched asymptotic analysis 
to find the flow at small distances downstream of the jet. In 
this case, a boundary layer flow is sought in the inner layer 
near the free surface, which is matched to the core solution. 
Similarly to all boundary layer analyses, where the solution is 
not valid within a small distance from inception such as very 
near the leading edge and stagnation point, Tillett’s analysis 
precludes the flow at the channel exit. However, the distance 
in question is small, on the order of the (local) boundary layer 
thickness. Consequently, the boundary layer approach turns 
out to be successful in capturing the flow nature near inception 
and jet profile. Miyake et al. [2] carried out a similar analysis 
to Tillett’s on a vertical jet of inviscid fluid taking gravity into 
account. Philippe and Dumargue [3] also applied a similar 
analysis to Tillett’s for viscous axisymmetric vertical jets, 
emphasizing the interplay between gravity and inertia, and 
their influences on the free surface shape and the velocity 
profile. Poiseuille conditions were assumed at the duct exit. A 
local similarity transformation was carried out by Wilson [4] 
for the axisymmetric viscous-gravity jet for the boundary-
layer type flow close to the free surface. More recently, Saffari 
and Khayat [5] extended Tillett’s analysis to include 
viscoelastic effects. For a recent perspective on asymptotic 
analyses, their applications and historic development, the 
reader is referred to the book by Sobey [6] on interactive 
boundary layer and triple-deck theory. In this regard, a triple-
deck approach is not exactly applicable for the current 
problem given the absence of an inviscid (external) layer. A 
treatment of closer relevance to the current problem would be 
that of Smith [7-9] on the flow in a tube with (axisymmetric) 
constriction. Smith realized that a similar model to the triple-
deck formulation, based on an inviscid rotational core flow 
region together with viscous boundary layer type region near 
the wall, could be applied to the flow in the vicinity of the 
constriction. In particular, in contrast to the flow over a mild 
constriction, there is upstream influence for the flow over a 
severe constriction [9] (more discussion will follow shortly).  

http://www.engineeringvillage.com/controller/servlet/Controller?CID=expertSearchCitationFormat&searchWord1=%7bMiyake%2C+Y.%7d+WN+AU&database=8195&yearselect=yearrange&searchtype=Expert&sort=yr�
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The current paper examines closely the flow near the wall 
inside the channel, and the entire upstream flow region from 
the channel exit, which was not analyzed by Tillett [1]. In fact, 
the upstream flow solution near the wall was not required in 
Tillett’s analysis. Only the flow in the core region (far from 
the wall) was required in order to determine the flow and the 
free surface shape of the jet outside the channel. Recall that 
Tillett’s analysis requires the matching of the flow between 
the inner and core layers outside the channel, and the 
matching of the core flow outside the channel to the core flow 
inside the channel. Therefore, Tillett did not need to match the 
inner flow near the jet free surface since a similarity solution 
was sought with the flow near the wall upstream from the 
channel exit. Consequently, Tillett did not obtain the entire 
flow upstream from the exit.  

 In the present study, the interplay between inertia and 
viscous effects upstream from the channel exit is investigated 
for moderately inertial jet flow. The formulation and solution 
procedure follow those of the channel entry flow [10-12]. In 
order to match the solution with Tillett’s core solution outside 
the channel, the flow field inside the channel is taken as 
superposition of the Poiseuille flow and the deviation from it, 
similarly to the approach adopted for entry flow. For further 
validation of the current formulation, and to highlight the 
difficulty associated with fully computational methodologies, 
the predicted flow field is compared with the one based on the 
computational fluid dynamics software Fluent. Finally, the 
present approach can be generalized to tackle other laminar 
high-Reynolds number flow processes of important practical 
interest near channel or pipe exits, such as wall jet or coating 
flows [13], extrusion and related processes [14], fiber spinning 
[15] and film casting [16].  

II. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 
The fluid examined in this study is assumed to be 

incompressible of density ρ and kinematic viscosity ν. The 
flow of the jet emerging from the channel is schematically 
depicted in Fig.1 in the (X, Z) plane. The X-axis is taken 
along the lower edge of the channel and the Z axis is chosen in 
the transverse direction across the exit (X = 0). It is assumed 
that near the exit inside the channel, the boundary layer starts 
to develop at X = XP at which point deviation from Poiseuille 
behavior begins. Following Tillett [1], non-dimensional 
variables are introduced by measuring lengths with respect to 
the channel width, b, stream function with respect to Ab2, 
where Ab is the mean velocity, and pressure with respect to 
ρA2b2. The Reynolds number is given in this case as Re = 
Ab2/ν. The inverse Reynolds number will be the small 
parameter in the problem. Accordingly, the non-dimensional 
conservation of momentum equations for the laminar steady 
flow take the following form

( )1
z xz x zz x xxz zzzp Re−ψ ψ −ψ ψ = − + ψ +ψ

 
,
 

(2.1a)

( )1
z xx x xz z xxx xzzp Re−−ψ ψ +ψ ψ = − − ψ +ψ . (2.1b)

 Given the flow symmetry, the problem is examined over 
the range 0 ≤ z ≤ 1

2
; the flow for 1

2
≤ z ≤ 1 can be obtained 

similarly. Inside the channel, the following conditions must be 
satisfied, namely, the conditions of symmetry, adherence and 
no penetration at the wall, the far upstream fully developed 
flow, and the matching with Tillett’s profile at the exit that 
read respectively: 

( ) ( )z xx, z 0 x, z 0 0ψ = = ψ = = ,   (2.2b) 

 
( ) 0x , z (z)ψ → −∞ = ψ ,    (2.2c) 

 (x 0, z) (x 0, z)Tψ = = ψ = ,   (2.2d) 

where 2 3
0

2(z) z z
3

ψ = −  is the stream function for 

Poiseuille flow, and 

n

A x1 n(x 0,z) (z) Re e V (z)T 0 n
nn 1

∞
β−ψ ≤ = ψ +

β
=
∑ , 

  

(2.3e) 

is the stream function from Tillett’s solution, written here in 
terms of the inverse Reynolds number. Note that Tillett’s 
solution is valid in the core region far from the wall. Here An 
and nβ  are constants, and Vn are orthogonal functions of z 
[1]. Incidentally, these constants have been recalculated and 
found to be in disagreement with Tillett’s values. For this 
reason, the corrected (current) values are reported in TableⅠ
for reference. 

TABLE Ⅰ VALUES OF An AND βn FOR THE FIRST EIGHT MODES 

n βn An 

1 5.179 8.11 

2 11.941 5.37 

3 18.396 4.82 

4 24.772 4.58 

5 31.114 4.45 

6 37.439 4.36 

7 43.753 4.30 

8 50.061 4.25 

At the channel exit, x = 0, the shear stress undergoes a step 
change from a non-zero value at the lower wall, z = 0, to zero 
at the free surface, z = ζ(x). The effect of this drop diffuses 
upstream inside the channel (x < 0) over a distance XP where 
fully developed Poiseuille flow is recovered, and downstream 
(x > 0) over a distance x∞  at which point the flow is entirely 
of the boundary layer type. The solution for x > 0 was entirely 
worked out by Tillett [1], and will only be referred to when 
needed, for reference or completeness. The flow is supposed 
to have the basic Poiseuille profile (2.2c) to lowest order and 
is modified when the fluid leaves the channel in the form of 
the jet.  

Following Tillett’s argument [1], when the fluid detaches 
itself from the wall of the channel, a situation similar to the 
flow near the leading edge of a plate, the abrupt vanishing of 
the wall shear stress causes a boundary layer to form in a 
region near the free surface downstream as well as along the 
channel wall upstream (see Fig.1). The boundary layer regions 
reflect the deviation of the flow near the wall and free surface 
from the asymptotic core flow. Note that the core flow is not 
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exactly Poiseuille since “the parabolic velocity profile adjusts 
itself close to the exit so as to satisfy the condition of zero 
traction at the free surface.” At infinite Reynolds number, or 
in the inviscid limit, the stress free condition at the free 
surface cannot be imposed since there is no viscous 
mechanism for the stress singularity to diffuse. In this limit, 
Poiseuille flow remains unaltered as the fluid exits the channel, 
with the jet remaining straight; no contraction or expansion 
occurs. Since no uniqueness theorem exists in the inviscid 
limit, it is assumed that the fully developed Poiseuille flow is 
everywhere the solution at infinite Rynolds number [1]. “With 
this assumption, the flow in the core of the jet, to lowest order, 
is not affected by the flow in the boundary layer region” near 
the free surface outside the channel and near the wall inside 
the channel, although the boundary layer is expected to induce 
perturbations to the basic Poiseuille flow, when higher order 
terms are included, both for the flow upstream and 
downstream from the channel exit. This assumption is similar 
to the one made by Smith [9] for the tube flow with severe 
constriction, where the flow field in the core region, to leading 
order, satisfies the inviscid equations of motion.  

III. PROBLEM FORMULATION AND SOLUTION PROCEDURE 
 As mentioned earlier, the present study focuses on the 

flow upstream of the channel exit, particularly near the wall. A 
uniformly valid flow is now obtained for x < 0, which is 
considered to be a superposition of the Poiseuille flow and the 
deviation from it at high Reynolds number. 

A. The Departure from Poiseuille Flow 
 Based on condition (2.3), the corresponding stream 

function and pressure may be expressed as 

( ) ( ) ( )1
0 ˆx, z z Re x, z−ψ = ψ + ψ ,  (3.1a) 

( ) ( )1 ˆp x, z Re p x, z ,−=    (3.1b) 

It is observed that, terms of lower order, involving aRe−

where 0 < a < 1, are not required. This is a direct consequence 
of the need to match the current solution (3.1) with Tillett’s at 
the channel exit. The basic character of the flow, given here 
by (3.1), is similar to the laminar flow in a channel or a tube 
with constriction [7-9] at high Reynolds number. Particularly, 
for fine and mild constrictions, the fully developed (Poiseuille) 
profile is the flow to leading order. Smith examined the flow 
for fine, moderate [7, 9] and severe [9] constrictions. The 
severity of the constriction is reflected in the characteristic 
slope of the obstacle, which is of O (Re-1/3) and O (Re-1/6) 
for fine and moderate constrictions, respectively. Here Re is 
Smith’s Reynolds number based on the tube diameter and the 
maximum velocity. In these situations, there occurs virtually 
no nonlinear upstream influence of the obstacle, and, similarly 
to (3.1), the core flow is just an inviscid rotational 
perturbation of the basic Poiseuille flow.  

In contrast, in a severe constriction, where the obstacle 
slope is of O (1), there is significant upstream influence on the 
core flow. Note that the flow field expansion takes the same 
form regardless of the constriction level of severity. Thus, 
Smith’s expansion for the flow with any constriction is the 
same as the current expansion (3.1). In general, Smith gives 
the core flow as  

( ) ( ) ( )M M
0 0 0 1 1 1, u, p , u , p Re , u , p o Re− −ψ = ψ + ψ + , 

where M > 0 and ( )0 0 0, u , pψ  satisfy the inviscid equations 
of motion. However, in contrast to (3.1), for a severe 
constriction, Smith’s leading order terms in stream function 
and pressure do not exactly correspond to fully developed 
flow, but still satisfy the inviscid equations of motion. Smith 
found that the viscous separation ahead of the constriction 

occurs in a viscous wall zone, whose thickness is ( )1 / 3
O Re

−  

for the balance of inertial and viscous forces.  

 Upon eliminating the pressure, substituting (3.1) and 
neglecting terms of higher order than 1/Re, equations (2.1) 
lead to the following equation for the deviation in stream 
function, namely 

( )( )2
xzz xxx x xxxx xxzz zzzz

ˆ2 Re z z 2 2− ψ + ψ + ψ = ψ + ψ + ψ      (3.2) 

The solution of (3.2) is sought in the form: 

( ) xn
n n

n 1

ˆ x, z B e U (z)
∞

α

=

ψ = ∑ , where the shape functions 

Un(z) and corresponding eigenvalues αn (here assumed to be 
real and positive) satisfy the following problems: 

( )( )2 '' 2 4 2 '' iv
n n n n n n n n n n2 Re z z U U 2U U 2 U Uα − + α + = α + α + 

    
(3.3a) 

Un(0) = Un′(0) = Un(1) = Un′(1) = 0.                      (3.3b) 

The coefficients Bn will be determined by applying 
condition (2.3d). The solution of problem (3.3) can be sought 
using methodologies used for entry flow [10-12]. However, 
the following procedure is suggested and used in the current 
study, which seems to be more convenient. 

B. Solution of the Eigenvalue Problem 
 The solution of problem (3.3) is carried out using two 

methods, one to conveniently seek an accurate estimate and 
number of the eigenvalues, and the other to determine 
accurately both eigenvalues and corresponding eigenfunctions. 
The first method consists of expanding Un(z) in terms of 
Chandrasekhar functions [17]. In this case, if (3.3a) is 
rewritten as ( )n nL U , Re, 0α = , where L is the corresponding 
linear operator, then the solution, which satisfies conditions 

(3.3b), is sought in the form ( )n ni i
i 1

U z(y) U S (y)
∞

=

= ∑  Here, y ∈ 

[-1/2, 1/2] and Si(z)  are the odd Chandrasekhar functions 
given by [17] 

i i
i

i i

sinh( y) sin( y)
S (y)

sinh( / 2) sin( / 2)
µ µ

= −
µ µ

,  (3.4) 

where the constants µi are the roots of 

i itanh( / 2) tan( / 2) 0µ − µ = . The constant coefficients Uni are 
determined upon carrying out a Galerkin projection of (3.3a), 
leading to the following system of algebraic equations: 

 
ni i n j

i 1
L U S (y), Re, S (y) 0

∞

=

α =
 
  
 
∑ ,  (3.5) 
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where the brackets denote integration over the interval [-1/2, 
1/2]. In turn equation (3.5) yields the following relation for the 

eigenvalues nα : 

( ) ( )2 3 2
n ij n ij n n ij n ij ij2 Re C1 C2 4 Re 2 C3 C4 0α + α + α − α δ − α − =   ,    (3.6) 

where  

( )
( )

2
ij i j

2
ij i j

ij i j

4
ij i j i ij

C1 0.25 y C ''(y)C (y)

C2 0.25 y C (y)C (y)

C3 C ''(y)C (y)

C4 C ''''(y)C (y)

= −

= −

=

= = λ δ    (3.7)
 

Once the eigenvalues are determined (approximately) from 
(3.6), they are used as initial guess for the solution of (3.3). 
The solution of the two-point boundary-value problem is 
sought using MATLAB.

 

C. Eigenvalues and Convergence 
 The influence of the Reynolds number is illustrated for 

the first three eigenvalues in Fig. 2. 

 

Fig. 2 Dependence of the first three eigenvalues on the Reynolds number 

All eigenvalues appear to exhibit a singularity at some 
small Reynolds number, which is larger for the higher modes. 
Typically, the eigenvalue decreases rapidly in the moderately 
low Reynolds number range and levels off in the large Re 
range. The rate of decrease diminishes for the higher modes. 
This behaviour is reminiscent of the one encountered for entry 
flow [12]. 

 The influence of the number of modes, M, is illustrated in 
Fig. 3, where the departures in steam function (Fig. 3a) and 
streamwise velocity component (Fig. 3b) are plotted against 
height at x = - 0.1 for Re = 500. Convergence is rather rapid 
but not necessarily monotonic. The oscillatory convergence is 
depicted from the inset in Fig. 3b where 
û(x 0.1, z 0.5)= − =  is plotted against M. Convergence is 
essentially attained for M > 4. Thus, only a relatively small 
number of modes will be needed. Convergence is expected to 
be even faster the further the flow is from the exit. 

      

(x = -0.1, z) 

      
𝐮𝐮� (x = -0.1, z) 

Fig. 3 Behaviour of ˆ (x 0.1, z)ψ = −  (a) and û(x 0.1, z)= − (b) for 
different number of modes, M, and Re = 500. Inset in (b) shows  

û(x 0.1, z 0.5)= − =  vs. the number of modes 

 
Fig. 4 Distribution of the streamwise velocity component along the centerline 
for Re = 100 and 500 based on the current (solid lines) and Tillett’s (dashed 

lines) formulation 

Further validation is carried out upon comparison with 
Tillett’s core solution. As mentioned earlier, Tillett’s solution 
remains valid in the core region far from the wall, and should 
agree with the solution based on the current formulation in the 
core region. Indeed, Fig. 4 illustrates this agreement between 
the current formulation and Tillett’s solution. The figure 
displays the dependence of u(x, z = 0.5) on x along the 
centerline for Re = 100 and Re = 500. Clearly, regardless of 
the Reynolds number, agreement is generally very close. 
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There is essentially no deviation between the two formulations 
for Re > 300. 

IV. INFLUENCE OF INERTIA ON THE FLOW FIELD 
 The influence of inertia on the flow field, including the 

velocity, pressure, and stress is considered in this section. The 
boundary layer structure near the wall inside the channel and 
the free surface outside the channel will be examined in the 
next section. Fig. 5 displays the distributions of the 
streamwise (Fig. 5a) and depthwise (Fig. 5b) velocity 
components, as well as the pressure (Fig. 5c) across the 
channel at different positions. In this case, Re = 100. Note that 
Rep(x, z) is plotted in Fig.5c. The streamwise velocity profiles 
in Fig.5a retain essentially their parabolic character for any 
position; no change in concavity is detected. Closer agreement 
with Poiseuille flow is of course predicted as Re increases (not 
shown).  

Upon approaching the channel exit the flow exhibits some 
flattening, which nevertheless remains far from plug flow 
condition. There is little qualitative change along the channel. 
Generally, the profiles tend to intersect at a common height 
( z 0.2  in this case), with the flow being slower (faster) 
above (below) this point. Additional insight is inferred from 
the departure profiles from Poiseuille flow as depicted from 
the inset in Fig.5a. The departure velocity exhibits a maximum 
below the intersection. Although the maximum strengthens 
with x closer to zero, the height location of the maximum 
appears to be independent of x. As expected, the depthwise 
velocity profiles exhibit a maximum of increasing strength 
upon deviation from the fully developed, or w(x → - ∞, z) = 0, 
limit. The maximum strengthens near the channel exit with 
additional modulation, which is somewhat more apparent 
from the pressure profiles. These profiles in Fig. 5c display 
the most significant qualitative change with x. In this case, 
there is a change in concavity and deviation from monotonic 
behavior as the exit is approached. Note that the pressure at 
the plate (z = 0) is equal to the Poiseuille level, p(x, z = 0) = - 
4x/Re, which becomes itself equal to zero at the channel exit 
(x = 0). The maximum deviation from the Poiseuille limit in 
pressure occurs at the centerline (z = 0.5), which is expected 
given the symmetric contraction of the jet. However, the 
pressure profiles exhibit a local weaker minimum as the fluid 
approaches the channel exit, and eventually more pronounced 
modulation at x = 0. 

The overall influence of inertia is assessed upon examining 
the flow properties along the centerline (z = 0.5) and the wall 
(z = 0). Fig. 6 displays the streamwise velocity component 
along the centerline (Fig. 6a) and the magnitude of the shear 
stress, w (x)τ , at the wall (Fig.6(b) for different levels of 
inertia. The pressure distribution along the centerline remains 
essentially the same as Tillett’s [1] and will not be shown here. 
Note that Poiseuille flow corresponds to the lim
( )u x , z 0.5 0.5→ −∞ = = , w (x ) 2τ → −∞ =  and 

( )p x , z 0.5 4x / Re→ −∞ = = − . The deviation from 
Poiseuille flow grows monotonically with x to continue to 
increase outside the channel. In fact, the velocity decreases 
slightly from the Poiseuille level inside the channel, reflecting 
the flattening of the velocity profile reported in Fig. 5a as the 
exit is approached. The velocity continues to decrease faster 
(essentially linearly) with x outside the channel, while the 
pressure decays to zero (not shown). The wall shear stress 

increases as the fluid approaches the exit, again as a result in 
velocity flattening and the adherence of the fluid to the wall. 
This is reminiscent of the behavior observed by Gottlieb and 
Bird for shear thinning fluids [18]. 

 

 

      

Fig. 5 Profiles of the streamwise (a), depthwise (b) velocity components, and 
the pressure (c) across the channel at different positions for Re = 100 Inset in 

(a) shows the profiles of the departure û(x,z)  from Poiseuille flow 
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x 

 
x 

Fig. 6 Variation of (a) centerline velocity and (b) the wall shear stress with 
position at different Reynolds numbers 

While the pressure distribution (see Tillett’s Fig. 3) 
suggests that Poiseuille conditions are essentially recovered 
for x < - 0.5, independently of the Reynolds number, the 
velocity and wall shear stress distributions reflect a strong 
dependence on inertia of the point of recovery of fully 
developed flow depending on which flow variable criterion is 
used. Although Fig. 6a and 6b appear to suggest that both the 
centerline velocity and wall shear stress lead to the same 
position, x = xP, where Poiseuille flow is practically recovered, 
this is not the case given the difference in scale ranges 
between the two figures. Fig. 7 displays the dependence of xP 
on Re, which suggests, as expected, that Poiseuille conditions 
are recovered further upstream from the channel exit as inertia 
decreases. However, the position of the recovery point 
depends on the criterion used to determine it. Fig. 7 displays 
the dependence of xP on Re based on the centerline velocity 
and pressure as well as the wall shear stress. The centerline 
velocity criterion tends to overestimate xP while the wall 
shear stress criterion tends to underestimate it. The centerline 
pressure criterion gives a level in between. 

 

Fig. 7 Influence of inertia on the position where the flow departs from 
Poiseuille behaviour based on the centerline velocity, the wall shear stress and 

centerline pressure 

V. BOUNDARY LAYER STRUCTURE 
 In this section, the boundary layer thickness will be 

examined based on dimensional arguments and calculations. 
Both the boundary layer near the wall inside the channel and 
near the free surface of the jet outside the channel will be 
examined. It is helpful to first estimate the boundary layer 
thickness, δ(x), using dimensional arguments. Suitable 
reference length and velocity are required in each region. 
Generally, the boundary layer thickness may be expressed in 
terms of a dimensionless transverse diffusion time, t, as 

( )1/ 2
1

Re
δ  and the velocity may be expressed in terms of the 

corresponding axial convection length as ( ) x
u x, z

t
 , where 

x refers to the distance from an appropriately defined origin (x 
= 0 outside the channel and x =  xP inside the channel). 

Eliminating t, leads to ( ) ( )1 / 2
x

x
u Re

δ 

. The velocity based 

on the current formulation and Tillett’s core solution will be 
used to determine the dependence of δ(x) for x < 0 and x > 0, 
respectively, on the Reynolds number and position. 

A. Boundary Layer Inside the Channel 
For the flow inside the channel, a suitable choice for u is 

the velocity based on Tillett’s core solution (2.3), which yields  

n

A x1 'nu (x 0, z) u (z) Re e V (z)T 0 n
nn 1

∞
β−≤ = +

β
=
∑

 

(5.1) 

The reference velocity will be taken at the centerline, or

n

A x1 'nu (x, 0.5) 0.5 Re e V (0.5)T n
nn 1

∞
β−= +

β
=
∑ .This yields in 

turn the following estimates for the boundary layer thickness: 

.  (5.2) 

As expected, the boundary layer thickness grows with 
position and diminishes with inertia. Expression (5.2) is based 
on the fact that the viscous force arising from the elongational 
terms in the momentum balance equation, or the velocity 
gradients in the x direction, is negligible, and is expected to 

break down when 
u u

x z

∂ ∂

∂ ∂


, or when Px xδ − . For the 

current problem, this happens when 1
Px x Re−−  . This 

relation will turn out to be in agreement with numerical 
predictions (see next). Recall that xP is a function of the 
Reynolds number. In particular, ( )Px Re 0→ ∞ = .  

For a more accurate estimate of δ, consider first the 
variation of the velocity profiles with respect to height. Fig.8 
displays typically the velocity profiles in the (x, z) plane 
inside the channel. Here Re = 100. The velocity profiles based 
on Tillett’s core solution (5.1) are also included (dashed lines). 
The figure indicates that the core solution tends to 
overestimate the velocity level near the wall because of the 
slip. The boundary layer height coincides with the level at 
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which the two velocity profiles begin to merge, as 
demonstrated in the figure. 

 
x 

Fig. 8 Streamwise velocity profiles based on current formulation (solid lines) 
and Tillett’s core solution (dashed lines) at different upstream positions for Re 

= 100 

The influence of inertia on the boundary layer thickness is 
illustrated in Fig. 9.  

 

Fig.  9 Influence of inertia on the boundary layer thickness inside the channel 

The figure also reflects the dependence of xP (edge of 
boundary layer) on Re, in agreement with the curve in Fig. 7 
based on the wall shear stress criterion. The dependence of the 
boundary layer thickness on position and Reynolds number is 
in agreement with relation (5.2). However, as mentioned 
earlier, this behaviour is not sustained all the way to the 
channel exit. Instead, the boundary layer thickness follows a 
more rapid growth closer to the exit. The point of transition is 

also in agreement with the above estimate of 1
Px x Re

−
−  . 

B. Boundary Layer Outside the Channel 
The boundary layer thickness near the free surface z = ζ(x), 

or what Tillett termed as the inner layer, is now examined for 
x > 0. For the flow outside the channel, a suitable choice for 
the reference velocity u is the velocity at the free surface, 
which, from Tillett’s equation (3.19), is given by 

( ) ( )1 / 3 1 / 3 2 / 3
u x 0, z 2.56 Re x O Re

− −
> = ζ = + . This yields in 

turn the following behaviour for the boundary layer thickness, 
namely 

( ) ( ) ( )
1 / 3

2 / 3x
x 0 O Re

Re

−
δ > +

   
(5.3) 

In comparison, the boundary layer thickness downstream 
from the channel exit for gravity driven free surface jet flow 

was shown by Wilson to grow like ( )1 / 4
x

Re
 [4]. Expressions 

(5.2) and (5.3) suggest that the boundary layer thickness inside 
the channel grows faster with distance and with the inverse of 
the Reynolds number than outside the channel. Also, the stress 
singularity at the exit tends to diffuse more rapidly 
downstream (over a shorter distance) for the more viscous 
fluid. In fact, the viscous relaxation length, x∞ , outside the 

channel, can be estimated upon setting ( )x∞δ  = 0.5, leading 

to x Re∞   for both pressure and gravity driven jets. For 

x x
∞

> , the boundary layer contaminates the entire jet width. 
Since boundary layer theory neglects viscous forces arising 
from the elongational terms in the momentum balance 
equation, or the velocity gradients in the x direction, Tillett’s 
inner layer approximation near the free surface is expected to 

break down when xδ  . This happens when 1/ 2x Re−  

and 1/ 3x Re−  for pressure and gravity driven jets, 
respectively.  

The boundary layer thickness is determined more 
accurately upon comparing Tillett’s composite flow to the 
flow in the outer region. The composite velocity is directly 
Tillett’s expression (6.3), and the velocity in the outer layer is 
determined from Tillett’s expression (4.1) for the stream 
function. Fig. 10 typically illustrates the velocity variation 
above the free surface of the jet outside the channel for the 
same Reynolds number as the profiles inside the channel in 
Fig. 8 (Re= 100).  

 

Fig. 10 Streamwise velocity profiles based on Tillett’s solution at different 
downstream positions for Re = 100 The figure shows the composite (solid 

lines) and core (dashed lines) solutions. The boundary (inner) layer and free 
surface heights are also shown 

The boundary layer height coincides with the level at 
which the composite and core velocity profiles begin to merge, 
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as demonstrated in the figure. The influence of inertia on the 
boundary layer thickness is illustrated in Fig. 11.  

 
x 

Fig. 11 Influence of inertia on the boundary layer thickness outside the 
channel. The free surface heights are also included. Profiles based on Tillett’s 

formulation 

The free surface profiles, based on Tillett’s results [1], are 
also included for reference. The boundary layer thickness 
typically grows with position x. Outside the channel, the inner 
layer thickness continues to grow with position as the jet 
contracts, eventually prevailing over the entire film width. 
This is clearly illustrated for Re = 100 (see again Fig. 10). 

VI. COMPARISON AGAINST COMPUTATIONAL METHODOLOGIES 
 The presence of the singularity does pose a serious hurdle 

when conventional numerical methods (using, for instance, 
finite difference or finite element discretization) are attempted. 
Although the singularity is not expected to be accurately 
captured by numerical methods, the issue to be addressed in 
this case is the extent to which the inaccuracy resulting from 
the presence of the singularity influences the rest of the 
computed flow field. The present problem offers an excellent 
opportunity to examine this issue. The flow of the jet 
emerging from the channel was determined using the 
computational software FLUENT. Comparison with the 
current high Reynolds number approach will be carried out for 
both inside and outside channel. The cases examined in this 
section all correspond to Re = 1000. This relatively high 
Reynolds number is chosen deliberately as it reflects a good 
accuracy of the current results inside the channel and Tillett’s 
results outside. Different mesh sizes are chosen in the Fluent 
calculations until reasonable convergence is achieved. Note, 
however, that too fine of a mesh size leads to excessive 
steepness near the singularity and not necessarily to more 
accurate results. Fig. 12 displays profiles of the centerline 
velocity based on the current formulation and numerical 
calculations.  

 
Fig. 12 Variation of centerline velocity with position for different mesh sizes 

based on the numerical result (Re = 1000) 

The figure clearly shows good rate of convergence from 
the four mesh sizes used. There is also close agreement with 
the current results. This agreement and rapid rate of 
convergence is expected for this part of the flow given its 
remoteness from the singularity. Indeed, the comparison is not 
so favourable for the flow near the singularity. This is 
particularly obvious from the wall shear stress profiles 
depicted from Fig. 13.  

 
x  

Fig. 13 Variation of skin friction with position for different mesh sizes based 
on the numerical result (Re = 1000) 

While the current formulation suggests that the wall shear 
stress increases monotonically with x (see Fig. 6b), the 
computed wall shear stress displays a maximum near x = 0, 
which intensifies with mesh refinement. Upstream from the 
exit, all curves converge but not to the level predicted by the 
current analysis except much further upstream where fully 
developed conditions prevail. Indeed, the computed profiles 
indicate that fully developed conditions are reached at a point 
closer to the exit (x = - 0.05) than the current formulation (x = 
- 0.6 from Fig. 6b). Fig. 13 clearly reflects the unreliability of 
the computational approach in the neighbourhood of the exit 
near the wall. This inaccuracy is further illustrated when the 
free surface profiles are examined. Fig. 14 displays the jet 
profiles based on Fluent and Tillett’s formulation.  

 
x  

Fig. 14 Variation of free surface profile with position for different mesh sizes 
based on the numerical result and Tillett’s (1968) solution 

In this case the discrepancy is significant. Convergence is 
once again attained with mesh refinement, but the error is on 
the order of 35% over the range of position shown in the 
figure. This discrepancy is mainly due to the singularity in 
height slope at x = 0, which cannot be captured by the 
computational approach. More importantly, the repercussion 
of this failure is felt everywhere downstream. In sum, while 
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the flow can be reasonably recovered using a computational 
approach, particularly inside the channel and far from the wall, 
a significant error is incurred for the flow outside the channel.  

VII. DISCUSSION AND CONCLUSION 
 The aim of the current paper is to complement the work 

of Tillett [1], and obtain a uniformly valid solution inside the 
channel, and examine closely the boundary layer structure 
near the wall upstream from the exit, and the extent to which 
this layer is influenced by the flow outside the channel. Inertia 
is assumed to remain relatively important, allowing the 
development of the flow field in terms of the inverse Reynolds 
number. The incoming flow is supposed to have the basic 
Poiseuille profile far upstream, and is modified when the fluid 
approaches and leaves the channel in the form of a free 
surface jet. When the fluid approaches the exit, the wall shear 
stress increases, which accompanied by the flattening of the 
velocity profile before the fluid detaches itself from the wall 
of the channel. This results in the drop of the wall shear stress 
at the channel exit, causing a boundary layer to form in a 
region near both the wall inside the channel and near the free 
surface outside. The boundary layer region inside the channel 
is predominantly of Poiseuille character, the departure being 
on the order of the inverse Reynolds number. However, a 
large velocity gradient is shown to develop at the wall, 
signaling some loss of viscous character as the velocity 
flattens. Outside the channel the almost parabolic velocity 
profile adjusts itself so as to satisfy the condition of zero 
traction at the free surface (assuming negligible surface 
tension effect). In the inviscid limit, the zero-traction 
condition does not hold, and the parabolic profile continues 
unchanged in the jet region. However, no uniqueness theorem 
exists for this inviscid problem, and it is conceivable that other 
solutions might exist. Nevertheless, and, similarly to Tillett [1], 
it is assumed in this paper that Poiseuille flow is everywhere 
the proper inviscid limit. With this assumption, the flow in the 
core of the jet is, to leading order, not affected by the flow in 
the boundary layer region near the free surface or the wall. 
The boundary layer induces perturbations to the basic 
Poiseuille flow, when higher-order terms are included, both 
for the flow upstream and downstream from the channel exit. 

 In this study, the flow in the region upstream from the 
exit is assumed to comprise a Poiseuille component and a 

departure from it of ( )1
O Re

− . The deviation flow field is then 
governed by an eigenvalue problem similar to entry flow [7-9]. 
The eigenvalues are first estimated using Chandrasekhar 
function, which is then accurately determined along with the 
eigenfunctions by solving the two-point boundary-value 
problem. In particular, the flow field adjacent to the channel 
wall is examined where a boundary layer forms over moderate 
distance upstream from the channel exit.  

 

 

 

 

 

 

 

The extent of this boundary layer diminishes with 
increasing Reynolds number. It is generally found that inertial 
effect is most significant close to the channel exit. Inspection 
of the flow at the centerline reveals that Poiseuille conditions 
for velocity and pressure are reached inside the channel at a 
distance about half width of the channel. Along the centerline, 
the pressure relaxes to zero level at a distance about one width 
of channel downstream from the channel exit whereas the 
streamwise velocity decreases with x (linearly for x > 0), 
suggesting the overall flattening of the velocity profile as a 
result of mass conservation.  
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