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Abstract-Overhanging slabs of bridges are the most sensitive part of the bridge deck, because they have to tolerate high moments and 

shear forces acting on the cantilever part. So, the behaviors of bridges with overhanging slabs under concentrated loads are 

complicated. Several load mechanisms can develop depending on the loading and the geometry of the structure. The overhanging 

slabs of spine beam bridges can be treated as infinite or semi-infinite cantilevers. In this paper, cantilever slabs of varying or 

constant thickness, with or without edge reinforcement are analyzed under the action of an arbitrary placed point load. The 

structural actions of spine beam bridges are composed of interacting between the longitudinal behavior and transverse behavior. 

Therefore, solutions were obtained by means of Fourier Integrals for the deflection, rotation, moment and shear values along the 

longitudinal and transverse sections of the cantilever. The numerical calculation was done in MATLAB program. Also, a Finite 

Element analysis was performed using ANSYS to exhibit the accuracy of the numerical solution.  

Keywords- Exact Solution; Overhanging Slabs of Bridges; Arbitrary Concentrated Load 

I. INTRODUCTION 

It is customary these days to resort to available general purpose structural analysis programs based on the finite element 

method for the solution to plate problems. While acknowledging the obvious use and versatility of such programs, an attempt 

was made in the present work to extend the known analytical solutions for plates under concentrated loads to a reasonable level 

of complication such as is to be found in typical concrete bridge cantilever slabs, most of which are of tapering thickness and 

edge reinforced. In this respect, the earlier works of Jaramillo (1950) [1], Reismann and Cheng [2] and Sawko and Mils (1971) 

[3] deserve especial mention.  Jaramillo’s solution (1950) is an exact solution to constant thickness slab without edge beam in 

terms of improper integrals for the deflections and moments due to a transverse concentrated load. His formulation and the 

computation in his solution are difficult to understood and have several limitations in its use. Based on a similar approach, Lee 

(1965) [4] studied the effective width considering force boundary conditions between slab and beam. He considered resultant 

axial forces and bending moment developed in the slab and beam due to interactive forces. Reismann and Cheng’s solution 

(1970) [2] is for the analysis of a cantilever plate strip of finite width and infinite length with constant thickness slab and an 

edge beam. Their analysis is close to Jaramillo’s solution but the computation is too difficult for general use. In particular, the 

paper of Sawko and Mills [3] has served as a starting point for the present investigation. The importance of assessing the 

transverse moments at the root of the cantilever so as to determine both the maximum depth of the cantilever deck and the 

quantity of transverse prestressing steel has recently been evaluated in the paper by Thoman et al. [5]. Lu [6] performed a 

series of nine tests on reduced scale cantilevers. The tested cantilevers had a relatively small thickness of h = 50 mm to 60 mm. 

Nevertheless, the behavior of cantilevers under concentrated loads was well represented. The predominant failure mode was 

shear. The flexural transverse reinforcement varied from 0.15% to 1.0%. The cantilevers were tested under one or two 

concentrated loads introduced by means of square loading pads with a side length of 76 mm. One of them was tested under one 

concentrated load applied near the free edge. The bending reinforcement ratio was low (0.15%). This cantilever underwent 

significant ductile deformation before failing in shear. The failure seems to have propagated from the shear cracks in 

longitudinal direction. Another Cantilever, with an edge beam, was tested under a single concentrated load near the free edge. 

The failure mode was punching shear, but the punching shear crack did not cross the edge beam. The edge beam had a width of 

60 mm and an overall depth of 150 mm. This cantilever illustrated well the behavior of cantilevers without edge beam 

subjected to concentrated loads. Therefore, the distribution of the transverse bending moment and shear force along the 

overhanging slab due to a concentrated point load has not been tackled. In this study, exact solution for varying thickness 

overhanging slab in two case of linear and parabolic with an edge beam was presented. Also, some experimental work was 

done related to loading on the cantilevers. Some of these works are mentioned here.  

II. THEORETICAL BACKGROUND 

The plate was considered infinitely long in the longitudinal direction and of constant width in the transverse direction (Fig. 

1). It was clamped along one of its parallel edges, but as a special case a support rotation can be incorporated. The thickness of 
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the plate could be made to vary linearly in the transverse direction, and optionally an edge beam existed to reinforce the free 

edge.  

 

Fig. 1 Overhanging slabs of bridges 

A concentrated load acted at an arbitrary point on the slab or the edge beam (Fig. 2). Assuming that the two opposite edges 

of the cantilever slab at infinity were simply supported, Levy’s method was applicable. An exact solution to the problem for a 

cantilever of uniform thickness and an almost exact solution for the linearly varying thickness case can be obtained in terms of 

improper Fourier Integrals. 

 

Fig. 2 Edge reinforced, infinitely long cantilever plate under arbitrarily placed point load 

The plate was divided into two strips, AB  and ,BC  one from 0x  to ,ux   and the other from ux   to ax   (or 

0x  to ux  ), respectively, as shown in Fig. 2. Therefore, the plate governing equation became homogeneous, and the 

concentrated load was considered as part of the boundary conditions. A support rotation was given to the cantilever root 

assuming that at the support there were continuous springs all having a given rotational stiffness ,k  and a beam was 

monolithically attached to the opposite parallel free edge. The thickness of the plate was assumed to vary linearly in the 

transverse direction, resulting in a flexural rigidity D  which is a function of .x  

According to the small deflection plate theory for varying thickness in the transverse direction, the deflections of the 

middle plane of the plate were characterized by the following plate governing equation: 
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The bending moments, twisting moments and shear forces were related to the deflections by means of the following known 

equations: 
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Formulation of the Problem  

The plate flexural rigidity variation was taken as exponential in order to render Eq. (1) amenable to solution. The following 

expression closely approximates a uniform taper, i.e. the thickness variation is not sudden: 

 cx

x eDD 1  (5) 

where 1D  is the flexural rigidity of the plate along the cantilever root, 
caeDD 12   is the flexural rigidity of the plate along 

the boundary between the beam and the plate, and 
cx

x eDD 1  is the flexural rigidity of the plate at any arbitrary point. Also, 
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Substituting Eq. (5) into Eq. (1) for an edge loaded plate gives 
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In the case of infinite strips with arbitrary boundary conditions on the two parallel edges, the method of M. Levy can be 

used by assuming that the two edges at infinity are simply supported. Expressing the deflection w  in terms of an Improper 

Fourier Integral in the y  direction, 
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Substituting Eq. (7) into Eq. (6) gives 
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Simplification leads to the following result: 
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The above equation is a linear homogeneous differential equation of fourth order with constant coefficients. Its solution 

may be written in the form of hyperbolic functions 
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and 4321 ,,, CCCC  are the constants to be determined from the boundary conditions. 

Substituting Eq. (10) into Eq. (7) gives: 
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for the deflection equations for the strips AB  and BC  respectively. 

Substitution of the plate boundary conditions proceeds as follows: 

Along the clamped edge, ,0x   
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and along the boundary between the beam and the plate, 0x , 
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Fig. 3 depicts the boundary conditions given in Eqs. (15) and (16). 

In Fig. 3(a), the plate shear at any point of the edge equals the beam shear at the corresponding point, therefore 
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In Fig. 3(b), the plate bending moment at any point of the edge equals the twisting moment for the beam at the 

corresponding point, therefore tx MM  , where tM  is found from Fig. 3 (c) to be given by:  
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Since continuity conditions must be satisfied for the two boundaries, 
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Fig. 3 Edge beam plate boundary conditions a) Shear condition b) Moment condition c) Torsion applied to beam 

Although the integral in the above expression is not convergent, it is possible to give the integral a meaning in the sense of 

distributions, and according to the theory of distributions, all subsequent computations are still valid. 

Solving Eqs. (13)-(20), the unknown coefficients ,,,, 4321 CCCC  


4321 ,,, CCCC  are determined. The rotation, moment 

and shear equations for the two strips of the plate are: 
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III. NUMERICAL SOLUTION 

The unknown coefficients 


43214321 ,,,,,,, CCCCCCCC  in the deflection, rotation, moment and shear equations are 

functions of  and can be calculated from the boundary condition equations, i.e. Eqs. (13)-(20), for a specific   value during 

the numerical integration process for each interval, where  changes value from zero to infinity. A numerical integration 

procedure was followed for the evaluation of these integrals in view of the fact that they are not expressible in terms of 

elementary functions. Since the calculation of the unknown coefficients requires the solution of a set of simultaneous algebraic 

equations, an elimination method was also used. A MATLAB code was prepared to provide efficient solutions for any given 

plate geometry and load position. In order to compare results for non-prismatic slabs, cantilever plate examples analyzed by 

Sawko and Mills [3], as shown in Fig. 4, and Thoman, Redfield and Hollenbook [5], as shown in Fig. 5, were solved and the 

results are given in Table 1. For the plate in Fig. 4, the poission ratio is 0.25 and results for 
P

M x  are compared. For the 

cantilever plate in Fig. 5, the modulus of elasticity is 27580 MPa, Poisson ratio is 0.15, and P is 397.2 kN. 

 

Fig. 4 Cross section of the cantilever plate analyzed by Sawko and Mills [3] 

 

Fig. 5 Cross section of the cantilever plate analyzed by Thoman, Redfield and Hollenbeck [5] 
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IV. FINITE ELEMENT WORK 

These examples wew analyzed using the finite element method and compared with the exact approaches. The finite 

element analysis was carried out using ANSYS software. The quadrilateral elements by eight nodes having three degrees of 

freedom at each node (translations in the nodal x, y, and z directions) were used. The model test results for two different cases 

of linear and parabolic thicknesses were used as a basis for comparison with the theoretical results. The finite element solution 

to the problem was verified with the exact solution for Poisson’s ratio of 0.25 for the linear case and 0.15 for the parabolic case. 

The modulus of elasticity was 4000 ksi (27580 MPa) in both cases. 

V. RESULTS AND DISCUSSION  

Only limited results are available in the literature for nonprismatic edge-reinforced cantilever bridge slabs. Good agreement 

was observed between the analytical results of Sawko and Mills [3] and the proposed method, as shown in Table 1. Agreement 

between the finite element results of Thoman et al. [4] and the proposed method, as shown in the Table 1, while adequate for 

the moment values, was less than acceptable for the tip deflection. The discrepancy may be explained by the manner in which 

the exact solution program the tapering thickness of a cantilever slab. The program uses only the tip and root thickness and 

passes a smooth curve that approaches a linear taper. However, the slab modeled by Thoman et al. [4] varies parabolically in 

thickness from 228.6 mm at the tip to 533.4 mm at the root. Figs. 6 to 9 compare the results of moment distribution along the 

overhang length at different concentrated load positions between Finite Element, exact solution, and two more methods. In 

addition, contours of moment distribution as well as vertical displacement are shown in Figs. 10 to 12. 

 

Fig. 6 Distribution of moment along the overhang length for 00.1
a

u
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Fig. 7 Distribution of moment along the overhang length for 75.0
a

u
 

 

Fig. 8 Distribution of moment along the overhang length for 5.0
a

u
 



Journal of Civil Engineering and Science                                                                                   Mar. 2014, Vol. 3 Iss. 1, PP. 1-13 

- 9 - 

 

Fig. 9 Distribution of moment along the overhang length for 25.0
a

u
 

 
(a) u/a =1 
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(b) u/a = 0.75 

 
(c) u/a = 0.5 

 
(d) u/a = 0.25 

Fig. 10 Contours of moment distribution along the overhang length with linear thickness 
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Fig. 11 Contours of moment distribution along the overhang length with parabolic thickness 

 
Fig. 12 Contours of vertical displacement along the overhang length with parabolic thickness 

For parabolic case the results of the proposed exact solution were compared with those of finite element solution and 

Thoman as shown in Table 1. 

TABLE 1 MOMENT DISTRIBUTION ALONG THE PARABOLIC OVERHANG  

 

00.0
a

x  

 

 

00.1
a

x  

a
y

 

 

-Mx (Kips.ft/ft) 

 

Thoman et 

al. 

-Mx (Kips.ft/ft) 

 

Exact Solution 

-Mx (Kips.ft/ft) 

 

Finite Element 

inw  

 

Thoman et al. 

inw  

 

Exact 

Solution 

-Mx (Kips.ft/ft) 

 

Finite Element 

 

0.00 

54 56.3 56.35 0.63 0.54 0.52 

 

0.25 

48 50.4 50.48 Not available 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Not available 

0.44 0.43 

 

0.50 

34 36.9 37 0.31 0.30 

 

0.75 

21 23.5 23.58 0.20 0.19 

 

1.00 

12 13.7 13.73 0.12 0.10 

 

1.25 

6.5 7.5 7.6 0.07 0.069 

 

1.50 

3.5 4.0 4.4 0.04 0.02 
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1.75 

 2.1 2.6 0.03 0.026 

 

2.00 

1.0 1.5 0.01 0.096 

VI. CONCLUSIONS 

In this research, an analytical solution for overhanging bridge slabs under arbitrary concentrated load position was 

developed in a form especially convenient for application due to its simplicity. This analytical solution is applicable for 

cantilever slabs of varying or constant thickness, with or without edge reinforcement. At the end, the results of the analytical 

solution were compared and verified with the numerical results using ANSYS software, equivalent slab technique and 

experimental findings by Thoman. Good agreement was observed among the three different approaches. 

Notation  

a  Cantilever width 

Plate flexural rigidity  







 2

3

112 
Et  

E  Young’s modulus 

EI  Beam flexural rigidity 

GJ  Beam torsional rigidity 

k  Spring rotational stiffness 

1k  Stiffness ratio of beam flexural rigidity to plate flexural rigidity  
D

EI  

2k  Stiffness ratio of beam torsional rigidity to plate flexural rigidity  
D

GJ  

3k  Stiffness ratio of spring rotational stiffness to plate flexural rigidity  
D

k  

yx MM ,  Bending moments per unit length 

xyM  Twisting moment per unit length 

P  Arbitrarily placed concentrated load 

q  Load intensity 

yx QQ ,  Shear forces per unit length  

t  Plate thickness 

u  Distance of the point load from the clamped edge 

u  Distance of the point load from the free edge 

xV  Reaction function of the plate per unit length 

w  Deflection of the plate 

x  Coordinate along the plate width from the clamped edge 

x  Coordinate along the plate width from the free edge 

y  Coordinate along the clamped edge 

z  Coordinate perpendicular to the xy plane 

  Poisson’s ratio 

  Rotation 
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