International Journal of Computer Science and Artificia Intelligence Dec. 2013, Val. 3 Iss. 4, PP. 134-142

Implementing ECC with Java Standard Edition 7

V. Gayoso Martinezand L. Hernandez Encinas

L2 Information Security Institute (ISI), Spanish NationalsRarch Council (CSIC), Madrid, Spain
Lvictor.gayoso@iec.csic.eduis@iec.csic.es

Abstract- Elliptic Curve Cryptography is one of the best options for protecting sensitive information. The lastest version of tle Java
platform includes a cryptographic provider, named SunEC, hat implements some elliptic curve operations and protocsl. However,
potential users of this provider are limited by the lack of information available.

In this work, we present an extensive review of the SUnEC prader and, in addition to that, we offer to the reader the compkte
code of three applications that will allow programmers to gaerate key pairs, perform key exchanges, and produce digitsignatures
with elliptic curves in Java.

Keywords-Elliptic Curves; I nformation Security; Java; Public Key Cryptography

[. INTRODUCTION

The development of public key cryptography by Diffie and Helh in 1976 [1] represented a major milestone in the history
of modern security, opening the door to new and revolutipoayptosystems. In 1985, Miller [2] and Koblitz [3] indepantly
proposed a cryptosystem based on the ECDLP (Elliptic CuiserBte Logarithm Problem). This field of cryptography isaity
known as ECC (Elliptic Curve Cryptography).

Almost in parallel, the technology sector witnessed thergerece of a promising programming language: Java. Before
the version known as J2SE (Java 2 Standard Edition) 5.0ptbiramming language did not include specific classes faZ.EC
Developers willing to use those algorithms were forced ®agaftware from third parties that was not compatible witecfrom
other vendors. In J2SE 5.0 and the next version, Java SE & slaisses and interfaces were included in order to faeilitss
implementation of ECC applications. However, it was sttassary to use third party cryptographic engines in oolactess
all the power that ECC can provide to Java applications.

With the release of Java SE 7, Oracle Corporation provideg/pt@graphic engine, called SunEC, which supports ECC
functionality off the shelf. However, the existing docurtedion about this cryptographic provider is quite limitexhd no
sample code is currently available, which makes it diffitollbe used by novel programmers.

This contribution analyses the cryptographic featuresumfEsC, including aspects not available in the public documatém,
such as the complete list of elliptic curves supported byEgLirin addition to that, we provide several code examplegtoah-
strate the possibilities of ECC applications developethdéva. In order to facilitate the comprehension of the cadehave
included the console screenshots obtained when runnirgpihiecations.

The rest of this paper is organized as follows: Section Ispngs a brief mathematical introduction to elliptic curv@sction
[l describes the most important characteristics of Jawauding its security model. Section IV analyses the ditiue features
of SUnEC. In Section V, we offer several code examples whighlément three basic ECC operations: generating a key pair,
making a key exchange, and creating a digital signaturalllgjrSection VI summarizes the most relevant conclusidrasitithis
topic.

II. ELLIPTIC CURVE CRYPTOGRAPHY

A. Basic Definition

An elliptic curve E over the fieldF is a regular projective curve of genus 1 with at least onemati point [4, 5]. Every
elliptic curve admits a canonical equation called the gaindkierstrass form. That equation in homogeneous codeting

Y2Z 4+ a1 XYZ+asYZ? = X3+ as X% Z + as X Z? + ag Z°,

- 134 -
DOI: 10.5963/1JCSAI0304002

International Journal of Computer Science and Artificia Intelligence Dec. 2013, Vol. 3 1ss. 4, PP. 134-142

with ay, as, a3, a4, a6 € F andA # 0, whereA is the discriminant off and can be computed in the following way [6]:

A = —d2ds — 8d3 — 27d2 + 9dadads,

d2 = a% + 40/2)
dy = 2a4 + ayas,
de = a3 + 4ag,

dg = a%aﬁ + dasag — arazas + a2a§ — ai.

The general Weirstrass equation is usually expressed ifhnorogeneous form, where the relationship between bota-equ
tions is given byf (z,y) = F(x,y,1) andF(X,Y, Z) = f(X/Z,Y/Z) - Z3, which produces the following affine equation:

E: y2+a1xy+a3y:x3 +a2z2+a4x+a6.

The general homogeneous Weierstrass equation definesatprejplane curve which has a special point, called thetoin
infinity and denoted a® = [0 : 1 : 0]. In principle that curve does not have to be elliptic, as itlddave singular points. Due
to that fact, the imposed conditiak # 0 assures that the curve is regular, which is equivalent tongtthat there are no curve
points where the first derivatives of the function are cdeddl7].

B. Elliptic Curves Over Finite Fields

The order of a finite field is the number of elements of that field. If the order of a finiédfis ¢, thenqg = p™, wherep is
a prime number called the characteristic of the field, anid a positive integer [7]. In general, ECC protocols use tyyes of
finite fieldslF,: F,, (prime fields) and,~ (binary fields).

In prime fields, the elements &%, are{0,1,2,...,p — 1}, and the operations are always performed mogygj.

In comparison, in finite fields of typB.= the elements are represented as bit strings of lemgtkf f(x) is an irreducible
polynomial of degreen with coefficients inF2, then the fieldFy can be interpreted as the set of polynomials with coeffisient
in IF5 of degree less than the degreefdt) [8].

Depending on the characteristic of the finite filthat defines the elliptic curve, instead of the general VB&iass equation
two alternate forms, known as the short Weierstrass equati@n be used.

o If F =T, wherep > 3 is a prime number, the equation defining the (non-superkngeiliptic curve becomes
y? =2+ az +0b. (1)
e If F = TFym, wherem is an integer number, then the equation of the (non-supgrkn) elliptic curve is
2+ xy = 2> +ax® 4+ b. (2)

C. Elliptic Curve Parameters

For elliptic curves defined over prime fields, the set of patars that must be used in relation to a specific elliptic eusv
P= (p,a,b,G,n, h), where:

¢ pis the prime number that specifies the fi&lgl
e g andb are the elements d, that define the curv& given by (1).

e G = (z¢,yc) is the generator of a cyclic subgroup of the curve.

n is the prime number that indicates the ordeGof

h is the cofactor, computed &&F /n.

In comparison, if the curve is defined over a binary field, #igo$ parameters i®= (m, f(z), a,b, G,n, h), where:

m is the positive integer that specifies the fi&lg. .

f(z) is an irreducible polynomial of degree.

a andb are the elements d@f,~ that define the curv& given by (2).

G, n, andh have the same meaning as in the previous case.

-135-
DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificia Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

D. ECC Standards

Some basic applications in security are key exchangeafigjgnatures, and data encryption. For each of those apiplits,
there are numerous standards, some of which are implemertteEECC.

The best known ECC schemes and protocols are ECDH (ElliptiweDiffie Hellman), a key agreement protocol [3, 2];
ECDSA (Elliptic Curve Digital Signature Algorithm), equalent to the DSA algorithm [9]; and ECIES (Elliptic Curveégrated
Encryption Scheme), the most extended ECC encryption sehaefined in ANSI X9.63 [10], IEEE 1363a[11], ISO/IEC 18033-
2[12], and SECG SEC 1 [13].

E. Compared Security

The ECDLP is considered to be more difficult to solve than i@ (Integer Factorization Problem) and the DLP (Discrete
Logarithm Problem), which are used in other well-known togystems such as RSA and ElGamal [3, 14]. This is the reason
why the key length in ECC is significantly smaller than the lexngth in other cryptosystems.

Table | provides a comparison between RSA and ECC key lengttisdata taken from [7] and [15]. The security level must
be interpreted as the cryptographic strength provided lyyrareetric encryption algorithm using a keyohits. In RSA the key
length is the bit length of the modulus, while in ECC it is thember of bits needed to represent the prime numpl@r prime
fields) or it is the valuen (in binary fields).

As it can be observed, the ratio between the key length in R8RAECC clearly increases, which means that ECC is not
only best adapted for devices with limited resources sudche@smart cards, but it is also a good option for desktop anegse
applications where higher security levels are needed.

TABLE | KEY LENGTH COMPARISON MEASURED IN BITS BETWEEN RSA AID ECC

Security| RSAkey | ECC key| Ratio

level length length

80 1024 160-223 | 4.6:6.4
112 2048 224-255| 8.0:9.1
128 3072 256-283| 10.8:12.0
192 7680 384-511| 15.0:20.0
256 15360 | 512-571| 26.9:30.0

1. JAVA

The Java programming language was originated in 1990 wheara &t Sun Microsystems was working in the design and
development of software for small electronic devices.

Despite their efforts, the projects where Java was injtiafiplied to did not succeed. As a second opportunity, Suitddc
to use Java in the emerging market of Internet browsing. Tafter the first official version of Java was launched in 1986,
popularity started to increase.

Currently there are more than 9 million Java developers aochrding to [16], the figure of Java enabled devices (mainly
personal computers, mobile phones, and smart cards) isemnaahin the thousands of millions. Between November 2006 and
May 2007, Sun Microsystems released most of the Java compoueder the GNUGNU'’s Not Unix) GPL (General Public
Licens¢ model through the OpenJDK project [17], so virtually ak thieces of the Java language are currently free open source
software. On January 2010, Oracle Corporation compleddhuisition of Sun Microsystems [18], so at this momenttha
technology is managed by Oracle.

To avoid misunderstandings with the nomenclature, we gelelow the complete list of Java versions up to the moment of
writing this contribution:

e JDK 1.0 (1996) was the initial version. The name JDK (Javadbmyment Kit) refers to the software development package.

e JDK 1.1 (1997) restructured the GUI (Graphic User Interfawedel and introduced the RMI (Remote Method Invocation)
concept.

e J2SE 1.2 (1998) modified the name to J2SE (Java 2 StandardrBdiv distinguish this version from J2EE (Java 2
Enterprise Edition). In this release, the Swing graphic f@&plication Programming Interface) was integrated in¢bee
of the distribution.

e J2SE 1.3 (2000) included a new virtual machine called Hot.Spo

-136 -

DOI: 10.5963/1JCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 1ss. 4, PP. 134-142

e J2SE 1.4 (2002) was the first release of the Java platform gegilay the JCP (Java Community Process) as the project
JSR (Java Specification Request) 59. From a programmergfoirgw, its main novelty was the inclusion of an integrated
security model which allowed third-party cryptographitensions.

e J2SE 5.0 (2004) represented the change from the numbetiegecl.X to X.0.
e Java SE 6 (2006) modified once more the platform’s name, f@®fdo Java SE, and removed the final “.0".
e Java SE 7 (2011) presented changes in the Java languagegdoommseveral JSR projects.

In addition to the Standard and Enterprise editions, desidar personal computers and servers, Java can be usedhalso i
Android devices and smart cards.

In Java, security is built around two elements: the JCA (Jawgtography Architecture) and the JCE (Java Cryptography
Extension). While the JCA deals with digital signatures aressage digests, the JCE manages the key agreement, enmgrypt
key generation and message authentication algorithms.

Algorithm independence is achieved by means of specifictographic engines that implement the security functidpali
Before J2SE 5.0, the JCA/JCE architecture did not incluéeifip classes for ECC. Developers willing to use ECC alhaoni
were forced to acquire software from third parties that, mshtases, was not compatible with software from other viendo
J2SE 5.0 and Java SE 6, some classes and interfaces wedeithaiworder to facilitate a standard ECC support. Howetreas
still necessary to use third party engines in order to acaksise power that ECC can provide to Java applications.

With the release of Java SE 7 the situation changed agaue Birthat version Oracle included a new cryptographic emgin
called SunEC [19]. Using key lengths from 112 to 571 bits, BDrallows to generate key pairs, complete key agreement
exchanges, and produce digital signatures.

More specifically, the SunEC provider implements the ECDW &greement protocol and the ECDSA digital signature
procedure. Whilst the SunEC implementation of the ECDHaarotproduces a shared value which is the first coordinateeof t
elliptic curve point computed as the product as one usebiipkey and the other user’s private key, the ECDSA impletaton
allows to use the following hash functions: SHA-1, SHA-2561A-384, and SHA-512.

IV.ELLIPTIC CURVES IN THE SunEC PROVIDER

Tables Il and Ill show the Java identifiers of the elliptic\ees implemented in SUnEC over prime and binary fields, respec
tively. These curves were defined in the first versions of SEBEG 2 [20] and ANSI X9.62 [21], and in the second version of
NIST FIPS 186 [22].

TABLE Il ELLIPTIC CURVES OVERTF, IN SunEC

| SECGSEC2[ANSIX9.62 | NIST FIPS 186-2|

secpllzrl
secpll2r2
secpl28rl
secpl28r2
secpl60kl
secpl60rl
secpl60r2
secpl92kl
secpl92rl | X9.62 prime192vl NIST P-192
X9.62 prime192v2
X9.62 prime192v3

secp224kl
secp224rl NIST P-224
X9.62 prime239v1
X9.62 prime239v2
X9.62 prime239v3
secp256k1
secp256rl | X9.62 prime256vl NIST P-256
secp384rl NIST P-384
secp521rl NIST P-521

-137 -
DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificia Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

TABLE Il ELLIPTIC CURVES OVERF2m IN SUnEC
| SECG SEC 2| ANSI X9.62 | NIST FIPS 186-2|

sect113rl
sect113r2
sectl31rl
sectl31r2
sect163k1l NIST K-163
sectl63rl
sectl163r2 NIST B-163
X9.62 c2tnb191vl]l
X9.62 c2tnb191v2
X9.62 c2tnb191v3
sect193rl
sect193r2
sect233k1 NIST K-233
sect233rl NIST B-233
sect239k1
X9.62 c2tnb239v1]l
X9.62 c2tnb239v2
X9.62 c2tnb239v3
sect283k1 NIST K-283
sect283rl NIST B-283
X9.62 c2tnb359v]]
sect409k1 NIST K-409
sect409rl NIST B-409
X9.62 c2tnb431r1
sect571k1 NIST K-571
sectb71rl NIST B-571

The identifiers, which are part of the classn. security. ec. SUNECEnt ri es, have been distributed along Tables Il
and lll so that the identifiers located in the same row reprigtbee same curve. Therefore, if a cell is empty, that measistiie
elliptic curve referred to by that row is not defined in thenstard in question.

The meaning of the elements used as part of the identifierbedound in their parent specifications. As a summary, the
identifiers are composed of a string that informs about tligiral specification and the type of elliptic curve (e.g. sesect,
X9.62 prime, X9.62 c2tnb, NIST P, NIST B, and NIST K), follod/ey the size in bits of the finite field and, depending on the
standard, a string that allows to differentiate betweernesiwhere the rest of the parameters used by the same spéemnifitave
the same value.

It is important to note that the curves published in the 20&Sion of the X9.62 standard [23] do not match those included
the 1998 edition [21], since as described in [23], some wikmdreated as they ceased to be considered secure. AddItiptie
2005 edition changed the identifiers of the remaining cufgas the ansix9p192r1 curve of the 2005 edition is the pt#2e1
curve of the 1998 edition).

Similarly, the second version of SECG SEC 2 [24] removed softige curves defined in the first version [20] due to security
reasons. SECG is planning to revise the specification everyéars in order to ensure the integrity of the curves agams
attacks, which means that the next version will probablydiaiphed in 2015.

Given that [24] is the most recent standard dealing withtibyisc, and that the curves of [9] are a subset of those defimed i
[24], we recommend to use the following curves when develpCC applications with Java.

e Curves oveff, e Curves ovelfom
— 192 bits: secp192k1 and secpl192r1. — 163 bits: sect163k1, sect163rl, and sect163r2.
— 224 bits: secp224k1 and secp224r1. — 233 bits: sect233k1 and sect233r1.
— 256 bits: secp256k1 and secp256r1. — 239 bits: sect239Kk1.
— 384 bits: secp384r1. — 283 bits: sect283k1 and sect283r1.
— 521 bits: secp521r1. — 409 bits: sect409k1 and sect409r1.

— 571 bits: sect571k1 and sect571r1.

-138 -
DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificia Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

V. CODE EXAMPLES
In this section we will show three examples of Java applicetiusing the SunEC cryptographic engine.

A. Key Pair Generation

The code shown in Listing A. generates a key pair using thpl®trl curve. Additionally, it displays on the screen the
content of the public and private keys.

1 |inport java.security.x;

2 |inport java.security.spec.*;

3

4 |public class ECCKeyGeneration {

5 public static void main(String[] args) throws Exception {
6 KeyPai r Gener at or kpg;

7 kpg = KeyPair Generator. getlnstance("EC', "SunEC');
8 ECGenPar anet er Spec ecsp;

9 ecsp = new ECGenPar anet er Spec("secpl92r1");

10 kpg.initialize(ecsp);

11

12 KeyPair kp = kpg. genKeyPair();

13 PrivateKey privKey = kp.getPrivate();

14 Publ i cKey pubKey = kp. getPublic();

15

16 Systemout. println(privKey.toString());

17 System out. printl n(pubKey.toString());

18

19

Listing 1 ECC key generation example code

Figure 1 shows the output produced when executing the prog@CKeyGeneration.

Bl C\Windows\system3Z\cmd exe o] o5

public
public

Fig. 1 ECC key generation example output

B. Key Agreement

The code displayed in Listing B. allows two users, U and V,dmplete the ECDH key agreement protocol. The private keys
of those users argandv, respectively, while their public keys are denoted/as: v - G andV = v- G, respectively. The SuneC
implementation of the ECDH protocol produces a shared vahieh is the first coordinate of the elliptic curve point combgd
asu-V=u-v-G=v-u-G=v-U.

1 |inport java.math. Bi gl nteger;

2 |inport java.security.x;

3 [inmport java.security.spec.*;

4 |inport javax.crypto. KeyAgreenent;

5

6 |public class ECCKeyAgreenent

7

8 public static void main(String[] args) throws Exception
9 {

10 KeyPai r Gener at or kpg;

11 kpg = KeyPair Generator. getlnstance("EC', "SunEC');
12 ECGenPar anet er Spec ecsp;

13

14 ecsp = new ECGenPar anet er Spec("secpl92k1");

15 kpg.initialize(ecsp);

16

17 KeyPai r kpU = kpg. genKeyPair();

-139 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 1ss. 4, PP. 134-142

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PrivateKey privKeyU = kpU. getPrivate();

Publ i cKey pubKeyU = kpU. get Public();
Systemout.println("User U " + privKeyU toString());
Systemout.println("User U " + pubKeyU toString());

KeyPair kpV = kpg. genKeyPair();

PrivateKey privKeyV = kpV. getPrivate();

Publ i cKey pubKeyV = kpV. get Public();
Systemout.println("User V. " + privKeyV.toString());
Systemout.println("User V: " + pubKeyV.toString());

KeyAgreenent ecdhU = KeyAgreenent. getl nstance("ECDH');
ecdhU.init(privKeyU);
ecdhU. doPhase(pubKeyV, t rue);

KeyAgreenent ecdhV = KeyAgreenent. getlnstance("ECDH');
ecdhV.init(privKeyV);
ecdhV. doPhase(pubKeyU, t r ue);

Systemout. println("Secret conputed by U 0x" + (new Biglnteger(1l, ecdhU. generateSecret())
.toString(16)).toUpperCase());

Systemout. println("Secret conputed by V. 0x" + (new Biglnteger(1l, ecdhV.generateSecret())
.toString(16)).toUpperCase());

Listing 2 ECC key agreement example code

The output of the application called ECCKeyAgreement ipldiged in Figure 2.

BN C\Windowsisystem32\cmd.exe | = ‘ o x|

selopment>j CCKeyAgreement

un EC pri

selopments>

Fig. 2 ECC key agreement example output

C. Digital Signature

The code shown in Listing C. allows to generate the digitahature of the text “In teaching others we teach ourselvsisigu

the ECDSA scheme. In addition to that, the application eéd the resulting signature, simulating the action of #er who
receives both the text and the signature.

© O N O A WwN R

11
12
13
14
15
16
17

i nport java.nmath. Bi gl nteger;
import java.security.x;
i mport java.security.spec. *;

public class ECCSi gnature

public static void main(String[] args) throws Exception
{

KeyPai r Gener at or kpg;

kpg = KeyPair Generator. getlnstance("EC', "SunEC');

ECGenPar anet er Spec ecsp;
ecsp = new ECGenPar anet er Spec("sect 163k1");
kpg.initialize(ecsp);

KeyPair kp = kpg. genKeyPair();
PrivateKey privKey = kp.getPrivate();

- 140 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificia Intelligence Dec. 2013, Val. 3 Iss. 4, PP. 134-142

18 Publ i cKey pubKey = kp. getPublic();

19 Systemout. println(privKey.toString());

20 System out. println(pubKey.toString());

21

22 Si gnature ecdsa;

23 ecdsa = Signature. getlnstance("SHALwi t hECDSA", " SunEC') ;
24 ecdsa. i ni t Si gn(privKey);

25

26 String text = "In teaching others we teach oursel ves";
27 Systemout.println("Text: " + text);

28 byte[] baText = text.getBytes("UTF-8");

29

30 ecdsa. updat e(baText);

31 byte[] baSignature = ecdsa.sign();

32 Systemout. println("Signature: 0x" + (new Biglnteger(1, baSignature).toString(16)).toUpperCase());
33

34 Si gnat ure signature;

35 signature = Signature. getlnstance("SHALIw t hECDSA", "SunEC") ;
36 signature.initVerify(pubKey);

37 si gnat ur e. updat e(baText);

38 bool ean result = signature.verify(baSi gnature);

39 Systemout.printin("Valid: " + result);

40

41

Listing 3 ECC digital signature example code

Figure 3 shows the output produced when running the apfitatesented in Listing C..

BN C:\Windows\system32\cmd exe [

m»

c:\Development>

Fig. 3 ECC digital signature example output

VI. CONCLUSIONS

During the past years, Java has been one of the technolotfies fastest growth. Since its version Java SE 5.0, it isiptess
to use ECC implementations adapted to the JCA/JCE framewafikh the new SunEC cryptographic provider included by
Oracle in the Java SE 7 distribution, programmers are alidevwelop ECC applications easily without the need to mariaige t
party libraries.

However, there is scarce information about this cryptohi@provider. For example, the list of supported elliptic\ees
included in this document has been taken from the source cbdee of the SunEC classes, as they are not documented.
Another limiting factor is the lack of code samples that dseSunEC provider.

In this contribution, we have tried to facilitate the usa§&GC in Java by analysing the capabilities of the SunEC plavi
and offering three complete examples dealing with key ggtimr, key exchange, and digital signatures. With thatrimfztion,
we believe that any interested reader can start develogiwgiful ECC applications very quickly.

Although the issuing of the SunEC provider has facilitatéot ahe adoption of ECC by Java programmers, it must be noted
that there is still room for improvement. In this sense, ttial elliptic curves implemented by the provider shouldipdated
in accordance with the latest standards. In addition tq thabuld be highly desirable if Oracle implemented ECIE® tost
widely used ECC encryption procedure. With the implemeéoadf this encryption scheme, developers would have adcess
the three security primitives typically needed in secupityjects: key exchanges, digital signatures, and datgptian.

ACKNOWLEDGEMENTS

This work has been partially supported by Ministerio de Ciar Innovacion (Spain) under the grant TIN2011-22668.

- 141 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3Iss. 4, PP. 134-142

REFERENCES

[1] W. Diffie and M. E. Hellman. New directions in cryptographEEE Transactions on Information Theqr32:644—654,
1976.

[2] V. S. Miller. Use of elliptic curves in cryptographizecture Notes in Computer Scien@d8:417-426, 1986.

[3] N. Koblitz. Elliptic curve cryptosystemdvathematics of Computatiod8:203—209, 1987.

[4] N. Koblitz. Algebraic Aspects of Cryptograph@pringer-Verlag, New York, NY, USA, 1998.

[5] J. H. SilvermanThe Arithmetic of Elliptic CurvesSpringer-Verlag2™? ed., New York, NY, USA, 2009.

[6] A.J. MenezesElliptic Curve Public Key CryptosystemKluwer Academic Publishers, Boston, MA, USA, 1993.

[7] D. Hankerson, A. J. Menezes, and S. A. Vanstdaeide to Elliptic Curve CryptographySpringer-Verlag, New York, NY,
USA, 2004.

[8] E. Bach and J. ShallitAlgorithmic Number Theory. Volume I: Efficient Algorithriifie MIT Press, Cambridge, MA, USA,
1996.

[9] National Institute of Standards and Technolo8ygital Signature Standard (DSSNIST FIPS 186-3, 2009.

[10] American National Standards Instituteublic Key Cryptography for the Financial Services Indyskey Agreement and
Key Transport Using Elliptic Curve CryptographftNSI X9.63, 2001.

[11] Institute of Electrical and Electronics EngineeiStandard Specifications for Public Key Cryptography - Anmeeidtt 1:
Additional TechniquedEEE 1363a, 2004.

[12] International Organization for Standardization /elmtational Electrotechnical Commissiotnformation Technology —
Security Techniques — Encryption Algorithms — Part 2: AsgtimCiphers ISO/IEC 18033-2, 2006.

[13] Standards for Efficient Cryptography Grodpecommended Elliptic Curve Domain Paramet&ECG SEC 1 version 2.0,
20009.

[14] Bundesamt fur Sicherheit in der Informationstechniklliptic Curve Cryptography2009. htt p://ww. bsi . de/
literat/tr/tr03111/BSI- TR- 03111. pdf.

[15] National Institute of Standards and TechnoloBgcommendation for Key Management. Part 1: Gen&#T SP 800-57,
2007.

[16] Oracle CorpJava Technology2013.htt p: //j ava. conml en/ about .
[17] Oracle Corp.OpenJDK 2010.ht t p: / / openj dk. j ava. net .

[18] Oracle Corp.Oracle Completes Acquisition of SU2010. htt p: / / www. or acl e. coni us/ cor por at e/ pr ess/
044428.

[19] Oracle CorpThe SunEC ProvideR013.ht t p: / / docs. or acl e. cont j avase/ 7/ docs/t echnot es/ gui des/
security/ SunProvi ders. ht mM #SunEC.

[20] Standards for Efficient Cryptography Grodpecommended Elliptic Curve Domain Paramet&ECG SEC 2 version 1.0,
2000.

[21] American National Standards InstitutBublic Key Cryptography for the Financial Services Indysftfhe Elliptic Curve
Digital Signature Algorithm (ECDSAANSI X9.62, 1998.

[22] National Institute of Standards and TechnoloBygital Signature Standard (DSSINIST FIPS 186-2, 2000.

[23] American National Standards InstitutBublic Key Cryptography for the Financial Services Indysftfhe Elliptic Curve
Digital Signature Algorithm (ECDSAANSI X9.62, 2005.

[24] Standards for Efficient Cryptography Grodpecommended Elliptic Curve Domain Paramet&&CG SEC 2 version 2.0,
2010.

- 142 -
DOI: 10.5963/IJCSAI0304002

