
Implementing ECC with Java Standard Edition 7

V. Gayoso Martı́nez1 and L. Hernández Encinas2

1,2Information Security Institute (ISI), Spanish National Research Council (CSIC), Madrid, Spain
1victor.gayoso@iec.csic.es;2luis@iec.csic.es

Abstract- Elliptic Curve Cryptography is one of the best options for protecting sensitive information. The lastest version of the Java
platform includes a cryptographic provider, named SunEC, that implements some elliptic curve operations and protocols. However,
potential users of this provider are limited by the lack of information available.

In this work, we present an extensive review of the SunEC provider and, in addition to that, we offer to the reader the complete
code of three applications that will allow programmers to generate key pairs, perform key exchanges, and produce digital signatures
with elliptic curves in Java.

Keywords-Elliptic Curves; Information Security; Java; Public Key Cryptography

I. INTRODUCTION

The development of public key cryptography by Diffie and Hellman in 1976 [1] represented a major milestone in the history
of modern security, opening the door to new and revolutionary cryptosystems. In 1985, Miller [2] and Koblitz [3] independently
proposed a cryptosystem based on the ECDLP (Elliptic Curve Discrete Logarithm Problem). This field of cryptography is usually
known as ECC (Elliptic Curve Cryptography).

Almost in parallel, the technology sector witnessed the emergence of a promising programming language: Java. Before
the version known as J2SE (Java 2 Standard Edition) 5.0, thisprogramming language did not include specific classes for ECC.
Developers willing to use those algorithms were forced to use software from third parties that was not compatible with code from
other vendors. In J2SE 5.0 and the next version, Java SE 6, some classes and interfaces were included in order to facilitate the
implementation of ECC applications. However, it was still necessary to use third party cryptographic engines in order to access
all the power that ECC can provide to Java applications.

With the release of Java SE 7, Oracle Corporation provided a cryptographic engine, called SunEC, which supports ECC
functionality off the shelf. However, the existing documentation about this cryptographic provider is quite limited,and no
sample code is currently available, which makes it difficultto be used by novel programmers.

This contribution analyses the cryptographic features of SunEC, including aspects not available in the public documentation,
such as the complete list of elliptic curves supported by SunEC. In addition to that, we provide several code examples to demon-
strate the possibilities of ECC applications developed with Java. In order to facilitate the comprehension of the code,we have
included the console screenshots obtained when running theapplications.

The rest of this paper is organized as follows: Section II presents a brief mathematical introduction to elliptic curves. Section
III describes the most important characteristics of Java, including its security model. Section IV analyses the distinctive features
of SunEC. In Section V, we offer several code examples which implement three basic ECC operations: generating a key pair,
making a key exchange, and creating a digital signature. Finally, Section VI summarizes the most relevant conclusions about this
topic.

II. ELLIPTIC CURVE CRYPTOGRAPHY

A. Basic Definition

An elliptic curveE over the fieldF is a regular projective curve of genus 1 with at least one rational point [4, 5]. Every
elliptic curve admits a canonical equation called the general Weierstrass form. That equation in homogeneous coordinates is

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

- 134 -

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

DOI: 10.5963/IJCSAI0304002

with a1, a2, a3, a4, a6 ∈ F and∆ 6= 0, where∆ is the discriminant ofE and can be computed in the following way [6]:

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6,

d2 = a21 + 4a2,

d4 = 2a4 + a1a3,

d6 = a2
3
+ 4a6,

d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2

3 − a24.

The general Weirstrass equation is usually expressed in non-homogeneous form, where the relationship between both equa-
tions is given byf(x, y) = F (x, y, 1) andF (X,Y, Z) = f(X/Z, Y/Z) · Z3, which produces the following affine equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The general homogeneous Weierstrass equation defines a projective plane curve which has a special point, called the point at
infinity and denoted asO = [0 : 1 : 0]. In principle that curve does not have to be elliptic, as it could have singular points. Due
to that fact, the imposed condition∆ 6= 0 assures that the curve is regular, which is equivalent to stating that there are no curve
points where the first derivatives of the function are cancelled [7].

B. Elliptic Curves Over Finite Fields

The order of a finite fieldF is the number of elements of that field. If the order of a finite field isq, thenq = pm, wherep is
a prime number called the characteristic of the field, andm is a positive integer [7]. In general, ECC protocols use two types of
finite fieldsFq: Fp (prime fields) andF2m (binary fields).

In prime fields, the elements ofFp are{0, 1, 2, . . . , p− 1}, and the operations are always performed modulop [8].
In comparison, in finite fields of typeF2m the elements are represented as bit strings of lengthm. If f(x) is an irreducible

polynomial of degreem with coefficients inF2, then the fieldF2m can be interpreted as the set of polynomials with coefficients
in F2 of degree less than the degree off(x) [8].

Depending on the characteristic of the finite fieldF that defines the elliptic curve, instead of the general Weierstrass equation
two alternate forms, known as the short Weierstrass equations, can be used.

• If F = Fp, wherep > 3 is a prime number, the equation defining the (non-supersingular) elliptic curve becomes

y2 = x3 + ax+ b. (1)

• If F = F2m , wherem is an integer number, then the equation of the (non-supersingular) elliptic curve is

y2 + xy = x3 + ax2 + b. (2)

C. Elliptic Curve Parameters

For elliptic curves defined over prime fields, the set of parameters that must be used in relation to a specific elliptic curve is
P= (p, a, b, G, n, h), where:

• p is the prime number that specifies the fieldFp.

• a andb are the elements ofFp that define the curveE given by (1).

• G = (xG, yG) is the generator of a cyclic subgroup of the curve.

• n is the prime number that indicates the order ofG.

• h is the cofactor, computed as#E/n.

In comparison, if the curve is defined over a binary field, the set of parameters isP= (m, f(x), a, b, G, n, h), where:

• m is the positive integer that specifies the fieldF2m .

• f(x) is an irreducible polynomial of degreem.

• a andb are the elements ofF2m that define the curveE given by (2).

• G, n, andh have the same meaning as in the previous case.

- 135 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

D. ECC Standards

Some basic applications in security are key exchange, digital signatures, and data encryption. For each of those applications,
there are numerous standards, some of which are implementedwith ECC.

The best known ECC schemes and protocols are ECDH (Elliptic Curve Diffie Hellman), a key agreement protocol [3, 2];
ECDSA (Elliptic Curve Digital Signature Algorithm), equivalent to the DSA algorithm [9]; and ECIES (Elliptic Curve Integrated
Encryption Scheme), the most extended ECC encryption scheme, defined in ANSI X9.63 [10], IEEE 1363a [11], ISO/IEC 18033-
2 [12], and SECG SEC 1 [13].

E. Compared Security

The ECDLP is considered to be more difficult to solve than the IFP (Integer Factorization Problem) and the DLP (Discrete
Logarithm Problem), which are used in other well-known cryptosystems such as RSA and ElGamal [3, 14]. This is the reason
why the key length in ECC is significantly smaller than the keylength in other cryptosystems.

Table I provides a comparison between RSA and ECC key lengths, with data taken from [7] and [15]. The security level must
be interpreted as the cryptographic strength provided by a symmetric encryption algorithm using a key ofn bits. In RSA the key
length is the bit length of the modulus, while in ECC it is the number of bits needed to represent the prime numberp (in prime
fields) or it is the valuem (in binary fields).

As it can be observed, the ratio between the key length in RSA and ECC clearly increases, which means that ECC is not
only best adapted for devices with limited resources such asthe smart cards, but it is also a good option for desktop and server
applications where higher security levels are needed.

TABLE I KEY LENGTH COMPARISON MEASURED IN BITS BETWEEN RSA AND ECC

Security RSA key ECC key Ratio
level length length
80 1024 160-223 4.6:6.4
112 2048 224-255 8.0:9.1
128 3072 256-283 10.8:12.0
192 7680 384-511 15.0:20.0
256 15360 512-571 26.9:30.0

III. JAVA

The Java programming language was originated in 1990 when a team at Sun Microsystems was working in the design and
development of software for small electronic devices.

Despite their efforts, the projects where Java was initially applied to did not succeed. As a second opportunity, Sun decided
to use Java in the emerging market of Internet browsing. Then, after the first official version of Java was launched in 1996,its
popularity started to increase.

Currently there are more than 9 million Java developers and,according to [16], the figure of Java enabled devices (mainly
personal computers, mobile phones, and smart cards) is numbered in the thousands of millions. Between November 2006 and
May 2007, Sun Microsystems released most of the Java components under the GNU (GNU’s Not Unix!) GPL (General Public
License) model through the OpenJDK project [17], so virtually all the pieces of the Java language are currently free open source
software. On January 2010, Oracle Corporation completed the acquisition of Sun Microsystems [18], so at this moment theJava
technology is managed by Oracle.

To avoid misunderstandings with the nomenclature, we provide below the complete list of Java versions up to the moment of
writing this contribution:

• JDK 1.0 (1996) was the initial version. The name JDK (Java Development Kit) refers to the software development package.

• JDK 1.1 (1997) restructured the GUI (Graphic User Interface) model and introduced the RMI (Remote Method Invocation)
concept.

• J2SE 1.2 (1998) modified the name to J2SE (Java 2 Standard Edition) to distinguish this version from J2EE (Java 2
Enterprise Edition). In this release, the Swing graphic API(Application Programming Interface) was integrated in thecore
of the distribution.

• J2SE 1.3 (2000) included a new virtual machine called Hot Spot.

- 136 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

• J2SE 1.4 (2002) was the first release of the Java platform managed by the JCP (Java Community Process) as the project
JSR (Java Specification Request) 59. From a programmer pointof view, its main novelty was the inclusion of an integrated
security model which allowed third-party cryptographic extensions.

• J2SE 5.0 (2004) represented the change from the numbering scheme 1.X to X.0.

• Java SE 6 (2006) modified once more the platform’s name, from J2SE to Java SE, and removed the final “.0”.

• Java SE 7 (2011) presented changes in the Java language coming from several JSR projects.

In addition to the Standard and Enterprise editions, designed for personal computers and servers, Java can be used also in
Android devices and smart cards.

In Java, security is built around two elements: the JCA (JavaCryptography Architecture) and the JCE (Java Cryptography
Extension). While the JCA deals with digital signatures andmessage digests, the JCE manages the key agreement, encryption,
key generation and message authentication algorithms.

Algorithm independence is achieved by means of specific cryptographic engines that implement the security functionality.
Before J2SE 5.0, the JCA/JCE architecture did not include specific classes for ECC. Developers willing to use ECC algorithms
were forced to acquire software from third parties that, in most cases, was not compatible with software from other vendors. In
J2SE 5.0 and Java SE 6, some classes and interfaces were included in order to facilitate a standard ECC support. However, it was
still necessary to use third party engines in order to accessall the power that ECC can provide to Java applications.

With the release of Java SE 7 the situation changed again, since in that version Oracle included a new cryptographic engine
called SunEC [19]. Using key lengths from 112 to 571 bits, SunEC allows to generate key pairs, complete key agreement
exchanges, and produce digital signatures.

More specifically, the SunEC provider implements the ECDH key agreement protocol and the ECDSA digital signature
procedure. Whilst the SunEC implementation of the ECDH protocol produces a shared value which is the first coordinate of the
elliptic curve point computed as the product as one user’s public key and the other user’s private key, the ECDSA implementation
allows to use the following hash functions: SHA-1, SHA-256,SHA-384, and SHA-512.

IV.ELLIPTIC CURVES IN THE SunEC PROVIDER

Tables II and III show the Java identifiers of the elliptic curves implemented in SunEC over prime and binary fields, respec-
tively. These curves were defined in the first versions of SECGSEC 2 [20] and ANSI X9.62 [21], and in the second version of
NIST FIPS 186 [22].

TABLE II ELLIPTIC CURVES OVERFp IN SunEC

SECG SEC 2 ANSI X9.62 NIST FIPS 186-2

secp112r1
secp112r2
secp128r1
secp128r2
secp160k1
secp160r1
secp160r2
secp192k1
secp192r1 X9.62 prime192v1 NIST P-192

X9.62 prime192v2
X9.62 prime192v3

secp224k1
secp224r1 NIST P-224

X9.62 prime239v1
X9.62 prime239v2
X9.62 prime239v3

secp256k1
secp256r1 X9.62 prime256v1 NIST P-256
secp384r1 NIST P-384
secp521r1 NIST P-521

- 137 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

TABLE III ELLIPTIC CURVES OVERF2m IN SunEC

SECG SEC 2 ANSI X9.62 NIST FIPS 186-2

sect113r1
sect113r2
sect131r1
sect131r2
sect163k1 NIST K-163
sect163r1
sect163r2 NIST B-163

X9.62 c2tnb191v1
X9.62 c2tnb191v2
X9.62 c2tnb191v3

sect193r1
sect193r2
sect233k1 NIST K-233
sect233r1 NIST B-233
sect239k1

X9.62 c2tnb239v1
X9.62 c2tnb239v2
X9.62 c2tnb239v3

sect283k1 NIST K-283
sect283r1 NIST B-283

X9.62 c2tnb359v1
sect409k1 NIST K-409
sect409r1 NIST B-409

X9.62 c2tnb431r1
sect571k1 NIST K-571
sect571r1 NIST B-571

The identifiers, which are part of the classsun.security.ec.SunECEntries, have been distributed along Tables II
and III so that the identifiers located in the same row represent the same curve. Therefore, if a cell is empty, that means that the
elliptic curve referred to by that row is not defined in the standard in question.

The meaning of the elements used as part of the identifiers canbe found in their parent specifications. As a summary, the
identifiers are composed of a string that informs about the original specification and the type of elliptic curve (e.g. secp, sect,
X9.62 prime, X9.62 c2tnb, NIST P, NIST B, and NIST K), followed by the size in bits of the finite field and, depending on the
standard, a string that allows to differentiate between curves where the rest of the parameters used by the same specification have
the same value.

It is important to note that the curves published in the 2005 version of the X9.62 standard [23] do not match those includedin
the 1998 edition [21], since as described in [23], some were eliminated as they ceased to be considered secure. Additionally, the
2005 edition changed the identifiers of the remaining curves(e.g. the ansix9p192r1 curve of the 2005 edition is the prime192v1
curve of the 1998 edition).

Similarly, the second version of SECG SEC 2 [24] removed someof the curves defined in the first version [20] due to security
reasons. SECG is planning to revise the specification every five years in order to ensure the integrity of the curves against new
attacks, which means that the next version will probably be published in 2015.

Given that [24] is the most recent standard dealing with thistopic, and that the curves of [9] are a subset of those defined in
[24], we recommend to use the following curves when developing ECC applications with Java.

• Curves overFp

– 192 bits: secp192k1 and secp192r1.

– 224 bits: secp224k1 and secp224r1.

– 256 bits: secp256k1 and secp256r1.

– 384 bits: secp384r1.

– 521 bits: secp521r1.

• Curves overF2m

– 163 bits: sect163k1, sect163r1, and sect163r2.

– 233 bits: sect233k1 and sect233r1.

– 239 bits: sect239k1.

– 283 bits: sect283k1 and sect283r1.

– 409 bits: sect409k1 and sect409r1.

– 571 bits: sect571k1 and sect571r1.

- 138 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

V. CODE EXAMPLES

In this section we will show three examples of Java applications using the SunEC cryptographic engine.

A. Key Pair Generation

The code shown in Listing A. generates a key pair using the secp192r1 curve. Additionally, it displays on the screen the
content of the public and private keys.

1 import java.security.*;
2 import java.security.spec.*;
3

4 public class ECCKeyGeneration {
5 public static void main(String[] args) throws Exception {
6 KeyPairGenerator kpg;
7 kpg = KeyPairGenerator.getInstance("EC","SunEC");
8 ECGenParameterSpec ecsp;
9 ecsp = new ECGenParameterSpec("secp192r1");

10 kpg.initialize(ecsp);
11

12 KeyPair kp = kpg.genKeyPair();
13 PrivateKey privKey = kp.getPrivate();
14 PublicKey pubKey = kp.getPublic();
15

16 System.out.println(privKey.toString());
17 System.out.println(pubKey.toString());
18 }
19 }

Listing 1 ECC key generation example code

Figure 1 shows the output produced when executing the program ECCKeyGeneration.

Fig. 1 ECC key generation example output

B. Key Agreement

The code displayed in Listing B. allows two users, U and V, to complete the ECDH key agreement protocol. The private keys
of those users areu andv, respectively, while their public keys are denoted asU = u ·G andV = v ·G, respectively. The SunEC
implementation of the ECDH protocol produces a shared valuewhich is the first coordinate of the elliptic curve point computed
asu · V = u · v ·G = v · u ·G = v · U .

1 import java.math.BigInteger;
2 import java.security.*;
3 import java.security.spec.*;
4 import javax.crypto.KeyAgreement;
5

6 public class ECCKeyAgreement
7 {
8 public static void main(String[] args) throws Exception
9 {

10 KeyPairGenerator kpg;
11 kpg = KeyPairGenerator.getInstance("EC","SunEC");
12 ECGenParameterSpec ecsp;
13

14 ecsp = new ECGenParameterSpec("secp192k1");
15 kpg.initialize(ecsp);
16

17 KeyPair kpU = kpg.genKeyPair();

- 139 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

18 PrivateKey privKeyU = kpU.getPrivate();
19 PublicKey pubKeyU = kpU.getPublic();
20 System.out.println("User U: " + privKeyU.toString());
21 System.out.println("User U: " + pubKeyU.toString());
22

23 KeyPair kpV = kpg.genKeyPair();
24 PrivateKey privKeyV = kpV.getPrivate();
25 PublicKey pubKeyV = kpV.getPublic();
26 System.out.println("User V: " + privKeyV.toString());
27 System.out.println("User V: " + pubKeyV.toString());
28

29 KeyAgreement ecdhU = KeyAgreement.getInstance("ECDH");
30 ecdhU.init(privKeyU);
31 ecdhU.doPhase(pubKeyV,true);
32

33 KeyAgreement ecdhV = KeyAgreement.getInstance("ECDH");
34 ecdhV.init(privKeyV);
35 ecdhV.doPhase(pubKeyU,true);
36

37 System.out.println("Secret computed by U: 0x" + (new BigInteger(1, ecdhU.generateSecret())
38 .toString(16)).toUpperCase());
39 System.out.println("Secret computed by V: 0x" + (new BigInteger(1, ecdhV.generateSecret())
40 .toString(16)).toUpperCase());
41 }
42 }

Listing 2 ECC key agreement example code

The output of the application called ECCKeyAgreement is displayed in Figure 2.

Fig. 2 ECC key agreement example output

C. Digital Signature

The code shown in Listing C. allows to generate the digital signature of the text “In teaching others we teach ourselves” using
the ECDSA scheme. In addition to that, the application validates the resulting signature, simulating the action of the user who
receives both the text and the signature.

1 import java.math.BigInteger;
2 import java.security.*;
3 import java.security.spec.*;
4

5 public class ECCSignature
6 {
7 public static void main(String[] args) throws Exception
8 {
9 KeyPairGenerator kpg;

10 kpg = KeyPairGenerator.getInstance("EC","SunEC");
11

12 ECGenParameterSpec ecsp;
13 ecsp = new ECGenParameterSpec("sect163k1");
14 kpg.initialize(ecsp);
15

16 KeyPair kp = kpg.genKeyPair();
17 PrivateKey privKey = kp.getPrivate();

- 140 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

18 PublicKey pubKey = kp.getPublic();
19 System.out.println(privKey.toString());
20 System.out.println(pubKey.toString());
21

22 Signature ecdsa;
23 ecdsa = Signature.getInstance("SHA1withECDSA","SunEC");
24 ecdsa.initSign(privKey);
25

26 String text = "In teaching others we teach ourselves";
27 System.out.println("Text: " + text);
28 byte[] baText = text.getBytes("UTF-8");
29

30 ecdsa.update(baText);
31 byte[] baSignature = ecdsa.sign();
32 System.out.println("Signature: 0x" + (new BigInteger(1, baSignature).toString(16)).toUpperCase());
33

34 Signature signature;
35 signature = Signature.getInstance("SHA1withECDSA","SunEC");
36 signature.initVerify(pubKey);
37 signature.update(baText);
38 boolean result = signature.verify(baSignature);
39 System.out.println("Valid: " + result);
40 }
41 }

Listing 3 ECC digital signature example code

Figure 3 shows the output produced when running the application presented in Listing C..

Fig. 3 ECC digital signature example output

VI. CONCLUSIONS

During the past years, Java has been one of the technologies with a fastest growth. Since its version Java SE 5.0, it is possible
to use ECC implementations adapted to the JCA/JCE framework. With the new SunEC cryptographic provider included by
Oracle in the Java SE 7 distribution, programmers are able todevelop ECC applications easily without the need to manage third
party libraries.

However, there is scarce information about this cryptographic provider. For example, the list of supported elliptic curves
included in this document has been taken from the source codeof one of the SunEC classes, as they are not documented.
Another limiting factor is the lack of code samples that use the SunEC provider.

In this contribution, we have tried to facilitate the usage of ECC in Java by analysing the capabilities of the SunEC provider
and offering three complete examples dealing with key generation, key exchange, and digital signatures. With that information,
we believe that any interested reader can start developing powerful ECC applications very quickly.

Although the issuing of the SunEC provider has facilitated alot the adoption of ECC by Java programmers, it must be noted
that there is still room for improvement. In this sense, the actual elliptic curves implemented by the provider should beupdated
in accordance with the latest standards. In addition to that, it would be highly desirable if Oracle implemented ECIES, the most
widely used ECC encryption procedure. With the implementation of this encryption scheme, developers would have accessto
the three security primitives typically needed in securityprojects: key exchanges, digital signatures, and data encryption.

ACKNOWLEDGEMENTS

This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under the grant TIN2011-22668.

- 141 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

REFERENCES

[1] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22:644–654,
1976.

[2] V. S. Miller. Use of elliptic curves in cryptography.Lecture Notes in Computer Science, 218:417–426, 1986.

[3] N. Koblitz. Elliptic curve cryptosystems.Mathematics of Computation, 48:203–209, 1987.

[4] N. Koblitz. Algebraic Aspects of Cryptography. Springer-Verlag, New York, NY, USA, 1998.

[5] J. H. Silverman.The Arithmetic of Elliptic Curves. Springer-Verlag,2nd ed., New York, NY, USA, 2009.

[6] A. J. Menezes.Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Boston, MA, USA, 1993.

[7] D. Hankerson, A. J. Menezes, and S. A. Vanstone.Guide to Elliptic Curve Cryptography. Springer-Verlag, New York, NY,
USA, 2004.

[8] E. Bach and J. Shallit.Algorithmic Number Theory. Volume I: Efficient Algorithms. The MIT Press, Cambridge, MA, USA,
1996.

[9] National Institute of Standards and Technology.Digital Signature Standard (DSS). NIST FIPS 186-3, 2009.

[10] American National Standards Institute.Public Key Cryptography for the Financial Services Industry: Key Agreement and
Key Transport Using Elliptic Curve Cryptography. ANSI X9.63, 2001.

[11] Institute of Electrical and Electronics Engineers.Standard Specifications for Public Key Cryptography - Amendment 1:
Additional Techniques. IEEE 1363a, 2004.

[12] International Organization for Standardization / International Electrotechnical Commission.Information Technology –
Security Techniques – Encryption Algorithms – Part 2: Asymmetric Ciphers. ISO/IEC 18033-2, 2006.

[13] Standards for Efficient Cryptography Group.Recommended Elliptic Curve Domain Parameters. SECG SEC 1 version 2.0,
2009.

[14] Bundesamt für Sicherheit in der Informationstechnik. Elliptic Curve Cryptography, 2009. http://www.bsi.de/
literat/tr/tr03111/BSI-TR-03111.pdf.

[15] National Institute of Standards and Technology.Recommendation for Key Management. Part 1: General. NIST SP 800-57,
2007.

[16] Oracle Corp.Java Technology, 2013.http://java.com/en/about.

[17] Oracle Corp.OpenJDK, 2010.http://openjdk.java.net.

[18] Oracle Corp.Oracle Completes Acquisition of Sun, 2010. http://www.oracle.com/us/corporate/press/
044428.

[19] Oracle Corp.The SunEC Provider, 2013.http://docs.oracle.com/javase/7/docs/technotes/guides/
security/SunProviders.html#SunEC.

[20] Standards for Efficient Cryptography Group.Recommended Elliptic Curve Domain Parameters. SECG SEC 2 version 1.0,
2000.

[21] American National Standards Institute.Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA). ANSI X9.62, 1998.

[22] National Institute of Standards and Technology.Digital Signature Standard (DSS). NIST FIPS 186-2, 2000.

[23] American National Standards Institute.Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA). ANSI X9.62, 2005.

[24] Standards for Efficient Cryptography Group.Recommended Elliptic Curve Domain Parameters. SECG SEC 2 version 2.0,
2010.

- 142 -

DOI: 10.5963/IJCSAI0304002

International Journal of Computer Science and Artificial Intelligence Dec. 2013, Vol. 3 Iss. 4, PP. 134-142

