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Abstract- The methodology was presented for evaluating creep-fatigue damage and for optimizing the shape of stress concentration 
in high temperature components under start-up cycles and steady state operations. Relatively simplified steam turbine casing models 
were employed by assigning shape parameters such as wall thickness t, fillet height ts and fillet corner root radius R. Total 27 cases 
were investigated by FE(finite element) elastic thermal stress and pressure stress analysis for different sets of shape parameters. 
Elastic stress concentration factors were formulated by the shape parameters and by the reference plate stress under ramp 
temperature change for thermal stress and also by the internally pressurized cylinder stress under steady state conditions. Neuber’s 
rule and cyclic stress-strain response were introduced and elastic-plastic strain ranges were obtained numerically. Fatigue life Nf was 
calculated by the material’s low cycle fatigue properties for the elastic-plastic total strain range and creep rupture life tr was 
calculated by the material’s creep rupture properties for pressure stresses. The shape optimization was realized to set the corner 
radius as the object parameter by attaining the optimum sets of fatigue damage as the cycle fraction and creep damage as the time 
fraction to meet the non-linear creep-fatigue cumulative damage curve. This method was proved to be effective for shape 
optimization procedure even when non-linear material behaviours were exhibited. 

Keywords-Creep-fatigue; Damage; Thermal Stress; Stress Concentration; Steam Turbine; Casing; Shape Optimization  

I. INTRODUCTION 

Fossil power plants are still working as the primary energy sources currently all over the world. Steam turbines are the 
steam prime movers of steam power plants. Figure 1 shows the longitudinal cut view of high pressure steam turbine assembly 
which contains a high pressure rotor with buckets(moving blades), high pressure inner casings with nozzle boxes or nozzles 
and high pressure outer casings with main steam flanges. High temperature and high pressure conditions may cause severe 
creep and fatigue damage during operation and then outage after the long term service [1]. Therefore, it is indispensible to 
conduct the proper maintenance actions for the long term used components such as turbine casings which have complex 
geometries and large dimensions as shown in Fig.1, but it may require amounts of cost and time to make inspection and repair 
actions. Especially, the stress concentration geometries such as fillet corners could suffer from severe thermal fatigue 
conditions at start up cycles coupled with creep damage accumulation during steady operations. To reduce the accumulation of 
thermo-mechanical fatigue and creep combined damage (we abbreviate here as “creep-fatigue damage”) [2] at these portions, 
shape optimization technique [3] is thought to be a useful tool. However, the design of casings may depend on the skills and 
experiences of design experts and the optimization methodology has not been fully established yet partly due to the complexity 
and non-linearity of the creep-fatigue damage phenomena. Therefore, this article aims to describe the current analytical shape 
optimization method using simplified models as an example of current status of solution under creep-fatigue conditions. 
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Fig. 1  xial cut view of a high pressure turbine assembly 
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II. CREEP-FATIGUE DESIGN APPROACH 

Figure 2 shows the general flow-chart of creep-fatigue damage analysis and shape optimization. In this article, thermal 
stress analysis was conducted by elastic FEM and elastic-plastic stress-strain analysis was conducted through Neuber’s rule[4] 
while the pressure stress analysis was conducted by elastic FEM. The full creep FE analysis was not adopted here because the 
steady state thermal stress might be compressive and relaxed rapidly and then the tensile pressure stress should become 
dominant in the relatively early stage of operation. Calculation of fatigue damage and creep damage was conducted 
independently by cycle fraction and time fraction using high temperature low cycle properties and creep rupture properties 
described later. Using creep-fatigue damage law as the design criteria, the optimization procedure was employed to find 
suitable corner root radius for the variety of other geometrical parameters. 
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Thermal stress 
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Creep stress 
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Fig. 2 The outline of optimum creep-fatigue design approach 

III. FE MODELLING 

A. FE Analysis Models 

Figure 3 shows the FE modeling portion of casing as the axisymmetric cylinder including three fillets of the same 
configuration placed in the same intervals. FE calculations were conducted using the software MARC ver. 2005. Cracks would 
often emanate from the nozzle fit radius circumferentially due to the corner stress distribution. Figure 4 shows three models of 
cross sectional configuration for stress concentration calculation. (a) shows the original Gonyea’s rotor model [5] without a 
bore hole, (b) shows the topologically identical model corresponding to the  rotor model if it has a bore hole [6] and (c) shows 
the subject model we use here with three fillets to be more constrained than (b). In the original rotor case, Gonyea proposed the 
following formula for thermal stress concentration factor TSCF based on FE analysis following Peterson’s mechanical stress 
concentration factor for shaft bending [7]. In this article, FE analysis based stress concentration factor was redefined using 
maximum thermal stress parameter concept for flat plate but Gonyea’s formula was modified for creep stress concentration by 
FE pressure analysis conducted on model (c).  
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Table I shows the dimensional parameter sets for FE analyses. The dimensional variables are minimum wall thickness t, 
total height of fillet portion from outer surface ts and nozzle fit corner radius R, while the fixed dimensions are total length A, 
fillet width L and inner diameter Dd, which result in total 27 cases. Figures 5 to 7 show all the FE mesh models used for all 
variations of t, ts and R listed in Table I. 
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Fig. 3 Schematic of FE modelling portion 

  
 (a) Rotor                                            (b) Casing 1                                     (c) Casing 2(current model) 

Fig. 4 The comparison of simplified models for rotors and casings 

TABLE I THE VARIATION IN THE DIMENSIONS OF CALCULATION MODEL 

Dimensional symbol Numerical values in mm 

 

t 50 100 150 

ts 
60 120 180 
75 150 225 

100 200 300 
R 1 5 10 2 10 20 3 15 30 
A 600 
L 100 
Dd 500 
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Fig. 5 FE mesh models in case of t=50mm 
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Fig. 6 FE mesh models in case of t=100mm 
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Fig. 7 FE mesh models in case of t=150mm 

B. Boundary Conditions 

Figure 8 shows the thermal boundary condition imposed area along the grooves between two adjacent fillets. Thermal 
conductivity was imposed for the edge film portion as a constant value of 11630W/(m2·K). This value (corresponding to 
104kcal/m2/h/˚C) was adopted as the typical upper case for the inlet steam condition of high pressure turbine. Figure 9 shows 
the pressure boundary condition imposed area for creep stress calculation. Figure 10 shows the steam temperature trend for FE 
calculation. This temperature trend was imposed on the boundary condition areas.  

 
Fig. 8 Area of boundary conditions for thermal analysis                 Fig. 9 Area of boundary conditions for pressure stress analysis 
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Fig. 10 Steam temperature change for FE calculation 

C. Physical Properties for Thermal Analysis 

Figures 11 and 12 show the temperature dependence of specific heat [8] and thermal conductivity [8] of subject material 
which were used in the calculation of temperature distribution. Regression curves are derived from the regression of the plotted 
data by the second order polynomials as indicated in these figures. As the temperature dependence of specific heat could not be 
obtained for 1Cr1Mo0.25V cast, 2.25Cr1.6WVNb steel data were utilized instead as the only available data at present. 

       :Insulated 

       :Edge film        :Edge load 
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Fig. 11 Temperature dependence of specific heat.                                  Fig.12 Temperature dependence of thermal conductivity. 

IV. FE ANALYSIS RESULTS 

A. Thermal Stress Distribution 

Table II shows the FE calculation results. In this table, σlFEM means local peak thermal stress at the corner of radius, σnFEM 
means the corresponding thermal stress at the flat portion (i.e. surface stress at mid -position between two fillets) and σpFEM 
means pressure stress. All stress values are expressed as von Mises equivalent stresses hereafter. Elastic stress concentration 
factor KtFEM is defined as the ratio of σlFEM to σnFEM .  

Figures 13 to 15 show the von MISES equivalent thermal stress maps for each configuration. The pressure stress maps will 
be shown later. Unfortunately, the stress contour scaling is different among each case, the upper and lower stress levels as well 
as the stress intervals are noted in each column for the convenience of reference. It can be found that stress localization is more 
apparent for smaller fillet corner root radius. This stress distribution suggests that the start-up thermal stress damage is highly 
localized in the fillet corner root positions. The flat portion stress is obtained from the flat portion apart from the fillet corner 
root stress concentration. 

TABLE II RESULT OF FE ANALYSIS 

t(mm) ts(mm) R(mm) 
Thermal stress Pressure stress 

σlFEM(MPa) σnFEM(MPa） KtFEM σpFEM(MPa) 

50 

60 
1 469.96 151.67 3.10 189.32 
5 255.27 147.05 1.74 191.28 
10 199.96 136.75 1.46 193.56 

75 
1 591.42 154.10 3.84 247.62 
5 302.05 145.85 2.07 171.66 
10 225.64 136.89 1.65 173.90 

100 
1 681.48 154.78 4.40 317.02 
5 329.74 146.08 2.26 179.10 
10 240.38 136.27 1.76 154.52 

100 

120 
2 1066.47 304.27 3.51 116.75 
10 576.00 293.77 1.96 88.75 
20 440.99 277.46 1.59 90.19 

150 
2 1225.70 275.99 4.44 156.43 
10 622.27 261.26 2.38 94.48 
20 458.47 242.62 1.89 86.01 

200 
2 1298.36 251.28 5.17 225.66 
10 637.89 233.71 2.73 120.33 
20 459.84 214.52 2.14 100.74 

150 

180 
3 1464.17 444.13 3.30 111.41 
15 831.43 440.15 1.89 70.67 
30 681.05 435.34 1.56 69.31 

225 
3 1570.85 392.51 4.00 152.65 
15 841.49 383.44 2.19 85.14 
30 671.56 377.40 1.78 78.14 

300 
3 1650.63 342.68 4.82 238.44 
15 842.92 328.20 2.57 131.90 
30 653.45 321.64 2.03 116.45 
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100 

 
Upper:386.9MPa 
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Upper:187.1MPa 
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Interval:18.2MPa 

 
Upper:136.3MPa 
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Fig. 13 Equivalent thermal stress maps by FE calculation in case of t=50mm 
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Fig. 14 Equivalent thermal stress maps by FE calculation in case of t=100mm 
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Fig. 15 Equivalent thermal stress maps by FE calculation in case of t=150mm 

B. Evaluation of Inelastic Stress Strain Concentration 

To evaluate thermal fatigue damage, local inelastic stress strain values should be evaluated. In this article, the formula of 
thermal stress concentration will be established as the function of geometrical parameters and the basic plate thermal stresses. 
To evaluate the reference plate thermal stress plateσ  defined as the maximum thermal stress of flat plate subjected to ramp 
change of temperature with time on one side surface and insulated on the other side, the maximum thermal stress parameter 
CSHmax[9] is introduced as the indicator of the intensity of thermal stress level defined as follows if we assume the plane strain 
condition. 

 
( )
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 (2) 

Where, α: coefficient of linear expansion (1/K), E:Young’s modulus(MPa), ν:Poisson’s ratio(here, put as 0.3), ΔTf: the 
range of fluid temperature change(K)  

For regression analysis of CSHmax curves, the logistic curve function[10] form was utilized as follows. 
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The resultant curves are shown in Fig.16. Then the reference plate thermal stress σplate is calculated by CSHmax.from Eq.(2) 
as follows. 
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Fig. 16 Diagram for evaluation of maximum thermal stress parameter CSHmax 
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As the local stress at corner by FEM σlFEM showed apparent dependence of corner radius R as shown in Figs.17 and 18, we 
can get the following expression by regression. The estimated flat portion stress is denoted as σles. 

 ll
platelles Rb αβ σσ =  (5) 

where, σles: estimated local thermal stress by Eq.(5), αl, βl, bl : constants. 
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Fig. 17 Relationship between plate stress  
and local stress by FEM 

Fig.18 Comparison of estimated local stress by formula  
and local stress by FEM 

For flat portion stress by FEM σnFEM can be expressed by the following equation as the function of the reference plate 
thermal stress σplate, corner radius R, thicknesses t and ts as shown in Figs.19 and 20. The estimated flat portion stress is 
denoted as σnes. 
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where, αl, βl, bl : constants. 
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Fig. 19 Relationship between plate  
stress and flat portion stress by FEM 

Fig.20 Comparison of estimated flat portion stress  
by formula and by FEM 

Even in the flat portion stress of FE analysis, the influence of the stress distribution at fillet corner root radius is still 
observed. Therefore, the stress concentration factor by FE analysis KtFEM should be defined as the ratio of the local FEM von 
Mises equivalent stress to the flat portion FEM von Mises equivalent stress as indicated in Eq.(7). While we can also obtain the 
estimated thermal stress concentration factor Ktes as Eq.(8) by the ratio of Eq.(5) to Eq.(6) as the approximation of KtFEM. The 
estimated Ktes and actual KtFEM showed good coincidence as shown in Fig.21.  
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Fig. 21 Comparison of stress concentration factor Kt calculated by FEM and estimated by formula 

From Neuber’s rule [4], we can get the relationship between local stress range epσ∆ and strain range tε∆
 
by Eq.(9). The 

number of 100 is used in case of strains in %. Moreover, we can solve the local total strain range tε∆
 
combining Eq.(10) and 

Fig.22 with material’s cyclic stress-strain response expressed by Eq.(11) as the summation of elastic part and plastic part. The 
plastic part is determined by the regression analysis from room temperature to 600˚C(873K) as shown in Fig.22.  
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where, Kσ: elastic-plastic (or actual) stress concentration factor(=Δσep/Δσnes) , Kε: elastic-plastic (or actual) strain concentration 
factor (=Δσep/Δσnes) , Δσnes: nominal stress range(MPa), Δεnes: nominal strain range (=Δσnes/E×100, %), Kt: nominal stress 
concentration factor, Δσles: local elastic stress range(MPa), σB: tensile strength at subject temperature(MPa), Ap, np: material 
constants as shown in Fig.22. 
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 Fig. 22 Unified cyclic stress range - plastic strain range relationship for subject material 

Eq.(12) is the modification of Eq.(11) substituted by Eq.(10) for solving the local total strain range Δεt. As this equation 
cannot be solved explicitly, we must search the numerical solution. The solution can be indicated in Fig.23 as the intersection 
of Eq.(10) and Eq.(11). Stress range values are obtained by multiplying 2 to the stress amplitude values because if the thermal 
stress at start up is fully relieved by stress relaxation during steady state operation, the shut down thermal stress can be up to 
the stress level of start-up. This assumption is considerably safer side estimation but often used for life assessment of actual 
components [12].  
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where, 
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CSS  

Fig. 23 Elastic-plastic stress strain determination using Neuber’s rule and cyclic stress-strain curve 

TABLE III LOCAL STRAIN RANGE AND STRESS RANGE OBTAINED BY NEUBER’S RULE 

t(mm) ts(mm) R(mm) Total strain range 
∆εt(%) 

Elastic-plastic stress  
range ∆σep (MPa) 

50 

60 
1 0.8560 619.3 
5 0.3069 509.6 
10 0.2400 399.9 

75 
1 1.3269 632.7 
5 0.3830 571.8 
10 0.2708 451.3 

100 
1 1.7415 640.1 
5 0.4444 587.3 
10 0.2886 480.6 

100 

120 
2 4.1293 661.1 
10 1.2614 631.3 
20 0.7590 615.0 

150 
2 5.4035 667.4 
10 1.4627 635.4 
20 0.8168 617.7 

200 
2 6.0400 669.9 
10 1.5340 636.7 
20 0.8214 617.9 

150 

180 
3 7.6208 675.2 
15 2.5539 649.7 
30 1.7394 640.0 

225 
3 8.7318 678.3 
15 2.6138 650.3 
30 1.6932 639.3 

300 
3 9.6104 680.5 
15 2.6224 650.3 
30 1.6065 638.0 
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C. Pressure Stress Analysis 

Figures 24 to 26 show the FE analysis results. For shallow notch type fillets, the maximum stress portion moved to the 
flat surface portion, while for deep notch type fillets, the pressure stress concentrated at the corner radius. The strong 
sensitivity of corner root radius was also observed and the stress distribution features suggested that the effect of bending 
moment from the fillet area was significant. In Fig.24, the small value of wall thickness t and the low height of ts resulted in the 
flat portion inner surface between fillets. Other cases showed that stress concentration was located at the fillet corner root 
radius. In this study, von MISES equivalent pressure stresses are adopted as the values at the same position of the maximum 
thermal stress at start-up stage for evaluating creep-fatigue damage analysis.

  

t(mm) ts(mm) 
R(mm) 

1 5 10 
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60 

 

Upper:263.9MPa 
Lower:22.91MPa 
Interval:24.1MPa 

 

Upper:191.3MPa 
Lower:27.21MPa 
Interval:16.4MPa 

 

Upper:193.6MPa 
Lower:33.03MPa 
Interval:16.1MPa 

75 

 

Upper:453.8MPa 
Lower:26.11MPa 
Interval:42.8MPa 

 

Upper:231.1MPa 
Lower:29.94MPa 
Interval:20.1MPa 

 

Upper:181.2MPa 
Lower:35.16MPa 
Interval:14.6MPa 

100 

 

Upper:617.3MPa 
Lower:38.11MPa 
Interval:57.9MPa 

 

Upper:302.4MPa 
Lower:41.5MPa 

Interval:26.1MPa 

 

Upper:225.8MPa 
Lower:46.13MPa 
Interval:18.0MPa 

Fig. 24  Equivalent pressure stress maps by FE calculation in case of t=50mm 
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t(mm) ts(mm) 
R(mm) 

2 10 20 

100 

120 

 
Upper:198.0MPa 
Lower:32.52MPa 
Interval:16.5MPa 

 
Upper:107.3MPa 
Lower:36.56MPa 
Interval:7.07MPa 

 
Upper:91.75MPa 
Lower:42.01MPa 
Interval:4.97MPa 

150 

 
Upper:281.1MPa 
Lower:38.58MPa 
Interval:24.2MPa 

 
Upper:137.2MPa 
Lower:42.42MPa 
Interval:9.5MPa 

 
Upper:103.8MPa 
Lower:47.72MPa 
Interval:5.6MPa 

200 

 
Upper:586.8MPa 
Lower:31.68MPa 
Interval:55.5MPa 

 
Upper:288.5MPa 
Lower:37.73MPa 
Interval:25.1MPa 

 
Upper:213.7MPa 
Lower:41.71MPa 
Interval:17.2MPa 

Fig. 25 Equivalent pressure stress maps by FE calculation in case of t=100mm 
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3 15 30 
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Lower:36.7MPa 

Interval:3.62MPa 
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225 

 

Upper:316.5Mpa 
Lower:27.75MPa 
Interval:28.9MPa 

 

Upper:156.6MPa 
Lower:30.64MPa 
Interval:12.6MPa 

 

Upper:124.4MPa 
Lower:34.25MPa 

Interval:9MPa 

300 

 

Upper:769.6MPa 
Lower:20.36MPa 
Interval:74.9MPa 

 

Upper:398.7MPa 
Lower:23.0MPa 

Interval:37.6MPa 

 

Upper:341.4MPa 
Lower:25.73MPa 
Interval:31.5MPa 

Fig. 26 Equivalent pressure stress maps by FE calculation in case of t=150mm 

D. Evaluation of Pressure Stress Concentration  at Corner Root Radius 

To express the stress concentration for pressure stress analysis, the creep stress concentration factor Kσcrp was also defined 
here as the ratio of corner root radius stress to long hollow cylinder pressure stress though in some cases it was found that the 
higher stresses were distributed along flat area than corner root radius. The equivalent stress of long smooth cylinder for steady 
creep state can be expressed by the following equations. It follows the Gonyea’s original expression [5]  by Eq.(1). 
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where, αc is the creep exponent when minimum creep rate mε  is expressed by the following Norton’s law [4] and takes the 
value of 13.686 here.  
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B0:constant(it takes the value of 5.51×1020 here), σeq: von Mises equivalent stress(MPa), HV: Vickers hardness, Qc: activation 
energy for minimum creep rate(kJ/mol)[12], k: Boltzmann constant(=1.38×10 − 23J/K), nm: mol number(=6.025×1023), 
T:temperature(K). Eq.(18) was determined from data regression of subject material as shown in Fig.27. 
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Fig.27 Relationship between minimum creep rate and stress-hardness ratio for 1Cr1Mo0.25V cast steel 

Moreover, the stress components in Eq.(17) were expressed as the following forms; 
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V.  CREEP-FATIGUE DAMAGE ASSESSMENT 

Creep-fatigue damage assessment was conducted by cumulative damage rule [13]. In this evaluation scheme, fatigue 
damage φf was defined as the cycle fraction of imposed cycles N to the material’s fatigue life Nf for analysed strain range as 
follows. The right hand expressions are provided for variable strain range case. Fatigue damage should be calculated for each 
strain range level denoted as ∆εti. 
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where, ∆εt or ∆εti : total strain range, ∆εe or ∆εei :elastic strain range, ∆εp or ∆εpi : plastic strain range, i : operation mode, k: 
total number of operation modes. 

Low cycle fatigue life Nf was calculated by the following equation for CrMoV casting at various temperatures. This 
equation was obtained by the modification of the elastic part in ordinary low cycle fatigue expressions to express the unique 
equation for the wide range of temperatures. This equation fits the test results successfully as shown in Fig.28. If we fix the 
value of Young’s modulus E and tensile strength σB at the subject temperature, we can get the conventional equation between 
the total strain range Δεt and cycles to failure Nf  [14]. 
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where, C*
e, Cp, α*

e, αp :regression constants as the values are shown in Fig.28.  
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Fig. 28 Unified curve for low cycle fatigue properties 

Creep damage φc was defined as the time fraction of duration hours t to the material’s creep rupture life tr as follows. For 
varying stress conditions the right hand integral (or summation) form could be used. 
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Creep rupture life tr is calculated by the following regression curve as indicated in Fig. 29. The regression form of Eq.(23) 
indicates the Larson-Miller parameter defined as the left hand side of the equation is expressed by the third order polynomials 
of the logarithm of stress-hardness ratio [14]. Instead of hardness HV, the use of tensile strength at ambient temperature can be 
used. 
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Fig. 29 Creep rupture curve 

Creep-fatigue damage diagram is expressed in the following equation and shown in Fig. 30. Eq.(22) is a non-linear 
cumulative damage model [15] when m≠1 and n≠1. This expression has the advantage that best fit curve can be easily obtained 
by the least square method compared with the conventional bi-linear expressions [13]. The constant values of m and n are 
given in Fig.30. 
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Fig. 30 Creep-fatigue damage diagram 

VI. SHAPE OPTIMIZATION 

To obtain creep-fatigue damage plots for the calculated cases, we must assume expected number of starts and operation 
time to calculate the fatigue and creep damage respectively. Three case studies are shown in Fig. 31. The optimum design was 
selected under the prescribed t and ts values for each case. The optimization of R was conducted numerically to meet the creep-
fatigue diagram expressed by Eq.(22) and the results are listed in Table IV. In these case studies, smaller values of R are 
welcomed because the design restriction can be reduced. For the case of t=50mm, relatively large R is required, but the fatigue 
damage is considerably small and the accuracy of the calculation could be worse. For the case of t=100mm, 2 or 3mm corner 
radius is required. For the case of t=150mm, larger R values are required to satisfy the imposed conditions. Thus, creep-fatigue 
optimization is proved to be achieved easily by the equations presented here.  
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Fig. 31 Creep-fatigue damage plot for calculated results 
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TABLE IV  OPTIMIZED R AND RESULTANT DAMAGE AMOUNTS 

t(mm) ts(mm) R optimized by analysis (mm) and resultant damage amounts 
Case 1 φf φc Case 2 φf φc Case 3 φf φc 

50 
60 11.0 3.0×10-5 0.99 29.2 0.0035 0.89 187 1.0×10-5 0.89 
75 3.7 1.3×10-5 0.91 6.8 0.012 0.78 11.0 6.7×10-6 0.95 
100 1.6 0.0072 0.84 2.4 0.019 0.71 3.2 1.4×10-6 0.93 

100 
120 2.4 0.14 0.30 2.6 0.061 0.51 3.1 0.021 0.71 
150 2.4 0.30 0.12 2.2 0.16 0.26 2.4 0.075 0.46 
200 3.0 0.49 0.033 2.4 0.34 0.093 2.1 0.19 0.22 

150 
180 4.0 0.49 0.034 3.1 0.33 0.095 2.8 0.19 0.22 
225 4.9 0.58 0.0160 3.6 0.44 0.047 2.9 0.28 0.13 
300 6.9 0.67 0.0069 4.6 0.56 0.020 3.3 0.41 0.058 

VII. CONCLUSIONS 

Creep-fatigue damage evaluation procedures and shape optimization methodology were demonstrated and applied to the 
simple casing models of steam turbine. By assigning the fillet corner radius R as the object shape parameter, creep-fatigue 
damage calculations were conducted using elastic FE analysis with inelastic strain analysis by Neuber’s rule and the pressure 
stress concentration factor. The formulation of creep and fatigue properties enabled the shape optimization for creep-fatigue 
conditions. The obtained fillet corner radius R strongly affected the low cycle fatigue damage accumulation as well as creep 
damage in this model. The application of the proposed method is not restricted to the casing model but can be applied to other 
structures used at high temperatures or at high stress/strain conditions for initial selection of basic design in large components. 
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