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Abstract- Experimental methods such as high-throughput screening have been widely used for the discovery of new drug targets. 

Genes or proteins close to one another in a network can govern similar functions and diseases. In an effort to predict new disease-

related genes or proteins, we hypothesized that a network-neighbor of a disease-related gene or protein could cause the same or 

similar diseases. First, we constructed a cancer-related human disease network based on the known cancer-related genes and 

proteins. We obtained 60 diseasomal proteins that appeared to be involved at least cancers and/or other diseases, and chose them as 

potential drug targets. We then compared the cancer-related target proteins with a cancer-related drug target dataset obtained from 

DrugBank. Excluding 17 diseasomal proteins that have been already targeted by approved drugs, we identified 43 proteins as 

putative drug candidates for controlling cancer and/or cancer-related diseases. 
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I. INTRODUCTION 

Several decades of experimental and clinical studies on individual diseases, genes, and proteins have led to the 
identification of numerous disease-related genes and proteins. Recently, new computational approaches for studying human 
diseases have allowed research to analyze single genes and/or proteins for the elucidation of complex diseases on the genome- 
and/or proteome-wide scale [1-4]. These studies were based on analyzing disease genes datasets, such as those found in the 
Online Mendelian Inheritance in Man (OMIM) database [5] and the Genome Wide Association Study (GWAS) database [6]. 
Human disease networks and disease gene networks derived from OMIM were the first to demonstrate the existence of 
“diseasome,” i.e., a set of two or more diseases that share a disease-causing gene [3], and to extract large-scale co-morbidity 
patterns of disease pairs that share given genes [7]. Similarly, GWAS-based networks have been used to explore the shared 
genetic architectures of genes involved with complex human diseases [8]. Today, network biology is considered as a general 
means for understanding the relationships between diseases and genes/proteins and identifying disease mechanisms. 

Network-based approaches have been used to elucidate the network properties of various disease-related genes and proteins 
[9, 10]. For example, neighbors of a disease-related gene or protein in a network have been shown to be more likely to cause a 
similar disease [9]. Furthermore, in some cases, two or more diseases are linked to each other by a single disease-causing gene, 
forming the basis for co-morbidity [7, 11]. Most cellular components do not function alone, instead interacting with each other 
to form functional complexes or pathways. Similarly, some disease-causing genes are functionally related to one another 
because their products interact in complexes or biological pathways [12].  

For diseases that are caused by genetic abnormalities, the encoded disease proteins always directly, engage in the 
pathological events. Therefore, candidate drug targets can potentially be identified by using network studies to compare 
disease-related genes and proteins.  

The aim of this study is to construct three different cancer-related complex networks from cancer-related gene information 
for comparing the results of gene based and/or protein based networks to identify disease-related new drug target proteins from 
tripartite networks that consist of three different cancer-related nodes, proteins, diseases, and related drugs. In addition, the 
study is to inform the attribution of 95 and 60 drug target genes and proteins, respectively. 

II. METHODS 

A. Cancer-related Data Information 

The human cancer-related gene data used in this study was obtained from MorbidMap of OMIM 
(http://www.ncbi.nlm.nih.gov/omim/ getmorbid.cgi) [5]. This information was used to construct the disease and gene datasets. 
Goh et al. [3 previously reported the disease class information used based on the physiological system affected. The human 
protein-protein interaction dataset was obtained from Human Protein Reference Database (HPRD, http://hprd.org). Drug 
information was obtained from DrugBank (http://www.drugbank.ca). 

B. Construction of Disease-related Complex Networks 

We constructed the following six cancer-related complex networks: a gene-gene interaction network (GGN), a protein-
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protein interaction network (PPN), a disease-disease interaction network based on cancer-causing genes (DDNG), a disease-

disease interaction network based on cancer-performing proteins (DDNP), a drug-disease-gene tripartite network (DDGN), and 

a drug-disease-protein tripartite network (DDPN) [Fig. 1].  

 

Fig. 1 Flow chart for identifying drug target candidates from cancer-related networks 

In the GGN, each node represented a cancer-causing gene, and two genes were linked if the same disease was associated 

with both genes. This can prove insight into the relationship between cancer-causing genes and other genes, and important 

disease-related genes that have relationships with various diseases will have numerous links in the network. The nodes and 

links in the DDNG represented different diseases and the relationships between them, respectively. As a tripartite network, the 

DDGN also clearly identified the connections among genes, diseases, and drugs. 

Although a disease may originate from an abnormality of a gene, the disease manifests because of an abnormality of the 

protein transcribed by the gene. Therefore, we constructed three different cancer-related networks based on proteins. The PPN 

was constructed from information on cancer-performing protein-protein interactions obtained from HPRD; in this network, the 

nodes represented proteins and the links represented protein-protein interactions. The DDNP and DDPN were constructed 

using the same methods that used to construct the DDNG and DDGN, respectively. 

In basic principle, if two given components interacted, the link was designated as one. In contrast, if a component failed to 

interact with any other component, the link was set to zero. The network was then constructed as an adjacent matrix, wherein 

the rows and columns were labeled by graph nodes with 1 or 0 in component (i, j), according to whether i and j were adjacent 

or not. All networks were represented in graph form by using Cytoscape (http://www.cytoscape.org).  

C. Identification of Diseasomal Genes and/or Proteins and New Drug Target Candidates 

We identified a set of diseasomal genes (those connected with two or more diseases) from the DDGN. We also identified a 

set of diseasomal proteins (those connected with two or more diseases) from the DDPN. These diseasomal genes or proteins 

were designated as „drug target candidates.‟ After excluding 17 proteins that have been already targeted by approved drugs, we 

identified a set of 43 novel candidate drug targets. 

III. RESULTS AND DISCUSSION 

We herein constructed six different cancer-related complex networks using human diseases, genes, proteins, and/or drugs 

as nodes and their interactions as links. The utilized datasets were obtained from OMIM, HPRD, and DrugBank. The GGN 

comprised 194 cancer-related genes and 1,644 interactions; its largest network consisted of 168 genes participating in 1,623 

interactions [Fig. 2A]. PPN comprised 105 cancer-related proteins and 246 interactions; its largest network consisted of 103 

proteins participating in 245 interactions [Fig. 2B]. 

http://www.cytoscape.org/
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Fig. 2 Cancer-related gene-gene interaction network (GGN) and protein-protein interaction network (PPN). The GGN is composed of  

194 genes and 1,644 interactions (A), while the PPN is composed of 105 proteins and 246 interactions (B). 

Just as functions may be interrelated within a cell, diseases may be connected with one another. Although our networks 

were composed of cancer-causing genes and cancer-performing proteins, we explored cancer could be closely linked with 

various other diseases. Therefore, we converted the GGN and PPN to the DDNG and DDNP, respectively. The DDNG 

comprised 190 diseases and 541 interactions; its largest network consisted of 154 genes participating in 494 interactions [Fig. 

3A]. The DDNP contained only a single large network, composed of 134 diseases and 1,191 interactions [Fig. 3B]. The nodes 

of the DDNP (134 proteins) were smaller than those of the DDNG (154 genes), but the links of the DDNP (1,191) were larger 

than those of the DDNG (494). Although genes always cause the diseases, proteins always directly govern the disease state; 

thus the number of links in the DDNP was, as expected, larger than that in the DDNG. 

 

Fig. 3 Disease-disease interaction networks. The disease-disease interaction network (DDNG) derived from the GGN is composed of 190 diseases and 541 

interactions (A), while the disease-disease interaction network (DDNP) derived from the PPN is composed of 134 diseases and 1,191 interactions (B). 

By combining drug information with the DDNG and DDNP, we constructed the tripartite networks, DDGN and DDPN. 

The DDGN contained two tripartite networks (one large network and one very small network) and 19 relatively tiny bipartite 

networks that were not linked with any drugs [Fig. 4A]. The largest tripartite network contained 386 nodes (176 genes, 156 

diseases, and 54 drugs) and 460 interactions; in it, all of the drugs related with diseasomal genes were connected with two or 

more diseases. The smaller tripartite network contained two diseasomal genes, nine diseases, nine drugs, and their interactions 

[Fig. 4A, bottom right]. 

The DDPN contained two tripartite networks (one large network and one very small network) and 10 relatively tiny 

bipartite networks [Fig. 4B]. The largest tripartite network contained 250 nodes (90 proteins, 110 diseases, and 50 drugs) and 

302 interactions. As in the DDGN, all of the drugs related with diseasomal proteins were connected with two or more diseases. 

The smaller tripartite network contained only one diseasomal protein, five diseases, five drugs, and their interactions [Fig. 4B, 

bottom]. 

We identified 95 diseasomal genes and 60 diseasomal proteins in the DDGN and DDPN, respectively. The encoding genes 

of all 60 diseasomal proteins were found within the dataset containing the 95 diseasomal genes. The rest 35 genes have only 

gene information but not protein one in datasets is used in this study. In DDGN and DDPN, all of the connected drugs targeted 

diseasomal genes or proteins, indicating that the drug developers had aimed at such targets despite lacking identified 
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diseasomal information, and further suggesting that identified diseasomal genes and proteins could be considered candidate 

drug target. 

 

Fig. 4 Drug-disease-gene tripartite networks. The drug-disease-gene network (DDGN) is composed of 63 drugs, 201 diseases, 209 genes, and 528 interactions 

(A), while the drug-disease-protein network (DDPN) is composed of 56 drugs, 134 diseases, 105 proteins, and 336 interactions (B). Drugs, diseases, 

genes/proteins, and diseasomal genes/proteins are indicated with red triangles, green squares, small blue circles, and large blue circles, respectively. 

Figure 5 shows the relationships between our identified diseasomal genes and proteins and the known, previously 

developed drugs. Of 95 diseasomal genes, only 22 were found to be targeted by developed drug. Thus, the remaining 73 could 

be considered target genes for future drug development. At the protein level, we identified 43 candidates that have not yet been 

targeted by drug development [Fig. 5]. Although a disease may originate from an abnormality of a gene, the disease reveals 

abnormal action of the protein transcribed by the gene. The latter might be more useful, given that proteins directly shape the 

disease phenotype. Thus, we herein propose 43 proteins as putative drug candidates for controlling cancer and cancer-related 

diseases. 

 

Fig. 5 Identification of drug target candidates. The 95 diseasomal genes (DGs) and 60 diseasomal proteins (DPs) obtained from the DDGN and DDPN, respectively, 

were identified as candidate drug targets. Their presence or absence in DrugBank is indicated as drug targets (DTs) or non-drug targets (NDTs), respectively. 

IV. CONCLUSIONS 

In the years since the first report of a human disease network [3], researchers have extensively studied disease-gene 

networks and disease-protein networks in the hope of identifying new network properties and/or novel potential drug targets [7, 

10, 11]. Here, we constructed two different networks containing disease-causing genes and disease-performing proteins, and 

then combined the different approaches to obtain drug target information. Although a protein-interaction network in tumors 

was previously reported and characterized with respect to its topological and informational aspects [13], we herein employed a 

more biological approach based on cancer-related networks.  

To consider diseases at the systems level, it is important to obtain diseasome information from related networks. Here, we 
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derived 95 diseasomal genes and 60 diseasomal proteins from the DDGN and DDPN, respectively [Fig. 3]. These are useful 

systems-level drug candidates because most of the identified genes/proteins are associated with multiple different diseases, 

forming a huge network. Of the 95 diseasomal genes, 22 were found to be targeted by commercialized drugs (In case of 

diseasomal proteins, 17 were found). Most of these drugs are small molecules that act as enzyme inhibitors, antagonists, anti-

angiogenesis agents, and/or pharmacological reagents. Two, RB1 and TSHR, are targeted by protein drugs for suppressing 

cancer and/or related diseases (recombinant insulin and thyrotropin α, respectively) 

When considering candidate drug targets, disease-performing proteins are better than disease-causing genes because 

proteins directly generate the disease phenotype. Of the 60 diseasomal proteins identified herein, 53% (32) are involved in 

signal transduction, and 25% (15) are involved in transcriptional regulation. Many cancers are due to abnormal cell 

proliferation, which is closely related to signal transduction and transcriptional regulation [14]; thus, these could be strong 

putative targets for cancer therapy. Effective targeting of the 43 new potential drug targets identified herein might allow us to 

suppress cancers via enzyme inhibition, antagonists, anti-angiogenesis agents, anti-cancer reagents, and related protein drugs. 

Although we suggested 43 proteins for new potential drug targets, it is still far away from a clinical application. Generally, 

action mechanism study for a drug candidate has to be performed before applying clinical approaches. 

In addition, microRNAs (miRNAs), which are small non-coding RNAs that function in the post-transcriptional regulation 

of gene expression, have recently been reported as strong candidates for the treatment of many diseases, especially cancer [15]. 

To regulate the 60 diseasomal proteins for controlling cancer and/or related diseases at the mRNA level, it might be possible to 

design specific miRNAs. In addition, it may also be possible to control the 95 diseasomal genes at the transcriptional level via 

epigenetic approaches [16].  
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