
Consumer Electronics Times CET

CET Vol. 1 No. 1 2012 PP. 6-11 www.cet-journal.org ©World Academic Publishing
- 6 -

Research of Embedded Home Gateway Network
Driver and Software Realization

Guang Dong1 , Luping Jiang2 , Xiaohan Zhang3

School of Computer Science & Technology, Changchun University of Science & Technology
7089 Weixing Road, Changchun 130022, China

1 lightdg@yahoo.com.cn; 2jiangluping@yahoo.com.cn; 3zhangxiaohan@126.com

Abstract-This paper introduced the present research and
development trend of intelligence home and home gateway,
studied network driver of embedded Linux system, and designed
function and software structure of home gateway network. It
gave the method of network driver and the corresponding data
structure, and introduced in detail the embedded Linux Socket
programming and serial interface operation.

Keywords-Intelligence Home; Home Gateway; Embedded
Linux; Network Driver; Serial Interface Operation

I. INTRODUCTION
As the development of the 3rd Generation

Telecommunication (3G) technology[1], Internet of Things
(IOT) technology[2], three nets fusion technology[3], the
integration of household appliances and network informat ion
technology, network electrical appliances and intelligence
home[4] are more and more widespread in home and abroad.
Home gateway is one of the areas the research focusing on [5].

Home gateway is an independent, intelligence, flexib le,
and standardized household network system interface unit. It
can receive communication signal through Internet, WAP,
telephone, mobile phone and a variety o f external network,
which send signals to the specific user equipment through
home internal network, and send the corresponding signal
back to external communicat ions nodes to achieve the entire
distance interaction process.

Remote monitoring, data acquisition and system
reconstruction, etc have changed with the development and
application of embedded Internet products[6]. On one hand,
along with the rapid development of Microprocessor
technology and the improvement of system design, the speed
of CPU is continuously raised. RISC technology and virtual
technology has a wide range of applicat ions. External circuit
implement has realized the internal integration.
Microprocessor in intelligent household appliances, intelligent
water meter, watt-hour meter and other intelligent home field
has a wide range of applicat ions[7]. On the other hand, with
the development of embedded technology and all kinds of
network informat ion product appearance, it has become
possible for the development of embedded home gateway.

In fact, the theory of home gate way has been published
and the technical difficulties have been solved before.
However, it always fails to spread into the ordinary user’s
family because of its particularity. First, price restricting the
development is a primary p roblem. The prices of home
gateway must be low for the vast number of users at family
acceptance. Second, the installation and using of home
gateway must be more convenient, and the operation must be
intelligent. The operation requires "The fool”. Th ird, the work
must be stable which does not need too much maintenance

because it is impossible to provide a network administrator for
each family. Embedded Linux in these aspects is suitable for
the need of home gateway [8].

II. NETWORK DRIVER OF EMBEDDED HOME GATEWAY

Embedded Linux is applied for software arch itecture
design of home gateway and its software. The essential
method of the network driver of home gateway, network
driver structure, and data structure of the network driver are
introduced.

A. Essential Network Driver Method
Network equipment provides some system access methods

as an object. The methods with unified interfaces concealed
hardware details, which makes a unified v isit on various
network devices and realizes the hardware independency[9]..

1) Initialize:
The driver must have an initialization method. When the

driver is loaded into system, the in itializat ion routine will be
called to fu lfil the fo llowing work. Equipment detection is to
detect whether the hardware exists based on the hardware
features and decide whether the driver is activated. Hardware
initialization and configuration is fulfilled in init ialization,
such as plug and play hardware (Linux kernel has good
support on PnP functions to complete the function). After the
negotiation and configuration, the resources can be taken up
from the system. Some resources can be shared with other
devices, such as interruption, but others such as IO, DMA
cannot. The following work is to initialize the variable in
device structure. Finally, the hardware starts to work.

2) Open:
The OPEN method is called in the network equipment

driver, when the network equipment activates (when the
equipment status by DOWN to UP).Therefore, in fact in the
very many INITIALIZE works may be done here such as
resource application and hardware activation. If DEV->OPEN
returns NON-0(ERROR), state of the hardware is still DOWN.
Another function of OPEN method is, if DEV->OPEN returns
NON-0(ERROR), state of the hardware is still DOW N. OPEN
method another action is. If the driver is loaded as a module,
it needs to prevent the equipment in open state when the
module is unloaded. MOD_INC_USE_ COUNT Macro needs
to be called in OPEN method.

3) Close:
CLOSE method takes the opposite of operation to OPEN

method, which can release some resources to reduce the
burden of system. The CLOSE method is called when the
device status switch from UP to DOWN. In addition, if the
driver is loaded as a module, the CLOSE needs to call

mailto:1first.author@first-third.edu

Consumer Electronics Times CET

CET Vol. 1 No. 1 2012 PP. 6-11 www.cet-journal.org ©World Academic Publishing
- 7 -

MOD_DEC_USE_COUNT for reducing equipment cited
times so that the driver can be unloaded. CLOSE method must
return success (0 = SUCCESS).

4) Send (Hard_Start_Xmit):
All the network device drivers must have the send

methods. When system calls driver’s XMIT, data will be sent
to a SK_BUFF structure. The general driver passes the data to
hardware. Also there have some special equipment such as
LOOPBACK to compose the data as a receive data to send
back to the system, o r DUMMY equipment will d irectly
discards the data.

If sending successfully, SK_BUFF will be released in the
HARD_START_XMIT and returns 0 (successfully). If the
equipment is unable to process temporarily such as the
hardware is busy, returns 1. Now, if DEV-> TBUSY is set for
NON-0, the system knows the hardware is busy and waits
until DEV->TBUSY resets for sending again. The task to set
TBUSY 0 is completed generally by interrupt. The hardware
will g ive an interrupt after completing the sending. Now
TBUSY might be set 0, then it is called with MARK_BH () to
inform system to send once more. When the sending is not
successful, it may also not set DEV->TBUSY NON-0 so that
system can attempt the resend unceasingly. If
HARD_START_XMIT sending is not successful, it does not
have to release SK_BUFF. Data sent in SK_BUFF data
contains the frame head which the hardware needs. Therefore,
in the sending methods, it does not need again to fill the
hardware frame head, and the data may be submitted directly
by hardware. SK_BUFF is locked to ensure that the other
programs will not access it.

5) Reception:
The driver does not have a receive method. It is driver that

informs the system when there has data received. Generally,
when the device receives data, it will give an interrupt. In the
interrupt processing program, the driver will apply a buffer
SK_BUFF (SKB). Data are read from hardware and put into
the applied buffer. Then fill the informat ion to SK_BUFF.
SKB-> DEV = DEV, and judge the protocol type of the
received frame, fill in the SKB-> PROTOCOL (more protocol
support). The pointer SKB->MAC.RAW is set to hardware
data, and then discards hardware frame head (SKB_PULL).
SKB->PKT_TYPE is also needed to be set for marking the
second layer (link layer) data types. It can be the following
types:

PACKET_BROADCAST: Link layer rad io.

PACKET_MULTICAST: Link layer mult icast.

PACKET_SELF: Send to own frames.

PACKET_OTHERHOST: The frame sent to others (listen
mode will have this kind of frame). Finally call NETIF_RX ()
to send data to the protocol layer. NETIF_RX () put the data
in processing queue and then return, and the real processing is
after the interrupt returns, which can reduce interrupt time.
After calling NETIF_RX (), the driver can't again access data
buffer SKB.

6) Hard Header:
Usually, before upper data send, the hardware will add

own hardware frame head, such as Ethernet have 14 bytes
frame head. This frame head is added in the front of the upper
level such as IP and IPX data packets. The driver provides a

HARDE_HEADER method, and the protocol layer (IP, IPX
ARP, etc) will call it before sending data.

The length of the hardware frame heads must be filled in
DEV->HARD_HEADER_LEN. Protocol layer will reserve
space of hardware frame heads so that HARDE_HEADER
program only calls SKB_PUSH, then fills in the correct
hardware frame head. When the protocol layer calls
HARDE_HEADER, the sent parameters include (2.O.xx):
SK_UFF, DEVICE pointer, PROTOCOL, the destination
(DADDR), the source (SADDR) and the data length (LEN).
The data’s length will not use the parameters in SK_BUFF
because when calling HARD_HEADER, the data possibly has
not organized completely. If SADDR is NULL, it uses the
default address (DEFAULT). DADDR is NULL means that
protocol layer dose not know the hardware destination address.
If HARD_HEADER completely fill in the hardware frame
head, return the added bytes. If the information in the
hardware frame header is not completely yet (for example,
when DADDR is NULL but the frame header needs
destination hardware address. Typically Ethernet needs to
address analytical (APP)), and return the negative bytes.

In HARD_HEADER returns negative, the protocol layer
can make further BUILD_HEADER work. At present, Linux
system makes ARP (if HARDE_HEADER returns positively,
DEV->ARP=1, it indicates no need to make ARP; if returns
negative, DEV->ARP=0, then makes ARP). The
HARDE_HEADER is called in each protocol layer of the
processing procedure, such as IP_OUTPUT.

7) Address Resolution (Arp):
Some network has hardware address (such as Ethernet).

When sending hardware frame, it needs to know the purpose
hardware address, which needs the upper level protocol
address (IP, IPX) to correspond with the hardware address.
This kind of correspondence is fulfilled by ARP. The ARP
device will call REBUILD_ HEADER before sending.

The main calling parameters include pointers of hardware
frame head and protocol layer address. If the driver can
resolve hardware address, return to 1; otherwise, return to 0.
REBUILD_ HEADER calls are in the DO_
DEV_QUEUE_XMIT () of the NET/CORE/DEV.C.

8) Parameter Setting and Counting Data:
The driver also provides some methods for setting system

device parameters and read ing in formation. Usually, only
super users (ROOT) can set the device parameters. The
setting methods are:

DEV-> SET_MAC_ADDRESS ()

When user calls IOCTL and the type is
SIOCSIFHWADDR, it means to set the device’s MAC
address. Generally, the setting of MAC address has no too
much significance.

DEV-> SET_CONFIG ()

When user calls IOCTL and the type is SIOCSIFMAP, the
system will call the driver SET_CONFIG method, and the
user will deliver the IFMAP structure including parameters
such as I/O, interrupt.

DEV -> DO_IOCTL ()

Consumer Electronics Times CET

CET Vol. 1 No. 1 2012 PP. 6-11 www.cet-journal.org ©World Academic Publishing
- 8 -

If the user calls IOCTL and the type is between SIOCDEV
and SIOCDEVPRIVATE + 15, the system will call the
corresponding method of the driver, which is generally set the
special data of the device.

Reading informat ion is also through calling IOCTL. In
addition that the driver can also provide a DEV-
>GET_STATS method, for returning an ENET_STATISTICS
structure, which contains the counts informat ion of sending
and receiving.

The OCTL processing is included in DEV_IOCTL () and
DEV_IFSIOC () of the NET/CORE/DEV.C.

B. Structure of Network Driver
All the Linux network drivers follow the generic

interface[10]. The design uses object-oriented method. A
device is an object (DEVICE structure), inside which it has its
own data and methods. When each equipment method is
called, first parameter is the device object itself. So this
method can access own data (similar to object-oriented
program design of “THIS” reference). The essential methods
of a network device include initialization, sending, and
reception. Initializat ion routine completes the hardware and
DEVICE variab le init ialization and system resources
application. The sending routine is automatically called when
the driver's upper level protocol layer has the requirements to
send data. The general driver does not provide buffer for the
send data, but uses the hardware transmission function to send
directly the data. The reception is informed by hardware
interrupt. In the interrupt handlers, the hardware frame
informat ion will be filled in a SK_BUFF structure, and then
NETIF_RX () will be called to transfer to the upper level
processing.

C. Data Structure of Network Driver
In the network d rivers, the most important thing is the data

structure of network equipment.

It is defined in the INCLUDE/LINUX/ NETDEVICE.H.
As shown in the following.

Struct_evice

{

 /* Low level status flags.*/

 volatile unsigned char start, /*start an operation*/

 volatile unsigned int interrupt; /*interrupt arrived*/

/*When handling interrupts interrupt set to 1, processes
the reset.*/

 unsigned long busy; /*transmitter busy must belong for
bit ops*/

 struct_device *next; /*the device initializat ion function.
Called only once.*/

/*Point to the driver's init ial method.*/

int (* init)(struct device *dev); /*Some hardware also
needs these fields, but they are not part of the usual set
specified in Space. c. */

/*Some hardware, can be in a board support mult iple
interface, if_port may be used.*/

unsigned char if port; /*Select able AUI,TP,..*/

unsigned char dma; /*DMA channel*/

struct enet_statistics *(*get_stats)(struct device*dev);
/*This marks the end of the "visible" part of the structure.

All fields here after are internal to the system, and may
change at*will (read: maybe cleaned up at will). These maybe
needed for future network-power-down code trans-start. The
last record the time successfully sent. Can be used to
determine the hardware is working correctly. */

unsigned long trans_start; /*Time (in jiffies) of last Tx*/

unsigned long last_ rx; /*Time of last Rx*/
/*in the flags there are a lot of content, defined in

include/linux/ if.h.*/

unsigned short flags; /*interface flags (ala BSD)*/

unsigned short family; /*address family ID(AF_NET)*/

unsigned short metric; /*routing metric (not used)*/

unsigned short mtu; /*interface MTU value*/
/*type Indicate the type of physical hardware. The main

hardware that whether need arp. Defined in include / linux /
if_arp.h.*/

unsigned short type; /*interface hardware type*/

/*The upper protocol layer, according to hard_header_len,
in front of the sending data buffer, reserves a hardware frame
space.*/

unsigned shorthard header len; /*hardware head length*/
/*priv point to drivers from the definit ion of some

parameters.*/

void *priv; /*pointer to private data*/

/*Interface address info.*/

......

};

III. SOFTWARE REALIZATION OF EMBEDDED HOME GATEWAY

A. Home Gateway Function and Principle
The home gateway is the intelligent plot terminal device

and the core, its main functions and principles are shown in
Fig. 1.

Fig. 1 Home gateway function and principle

Consumer Electronics Times CET

CET Vol. 1 No. 1 2012 PP. 6-11 www.cet-journal.org ©World Academic Publishing
- 9 -

Fig. 1 shows that, intelligent home equipments are
connected through the home gateway to provide interface
home gateway, and connected to the network switch or hubs
through the embedded gateway, so as to realize
communicat ion between intelligent home equipment and the
district central server.

B. Software Architecture of Embedded Home Gateway
Embedded Home Gateway mainly realizes the data

exchange of major internal RS232 and external internet data.
When the gateway receives an access requesting from the
remote host, it reads from the RS-232 serial, does the
corresponding processing, calls kernel, BSD socket, the
transport layer and network layer by Linux system, and adds
the corresponding logical addresses and other data for the
network layer. Then IP datagram is encapsulated, a physical
address is added to the MAC layer and other corresponding
MAC frame data are added to network card. Finally, the data
are sent by hardware. The software structure is shown as Fig.
2.

Fig. 2 Software architecture of embedded home gateway

C. RS -232 Serial Interface Operations
RS-232 is a standard serial interface. It is commonly used

in computers, peripherals, switches and many other
communicat ion equipments[11]. Linux provides good support
on RS-232 from the beginning.

The head files needed in Linux serial port operating are:

include <stdio.h> /*standard input/output definition * /

include <stdlib.h> /*standard function library definitions
*/

include <unistd.h> /*Unix standard function define * /

include <sys/types.h>

include <sys/stat. h>

include <fcntl.h> /* files control defines */

include <errno.h> /* error code defin ition */

include <termios.h> /* PPSIX terminal control defines*
/

Serial port files of Linux are /dev/ttyS0 and /dev/ttyS1 in
/dev. Its basic operations include opening serial port, setting

serial interface, reading serial port, writing serial port and
closing serial port. The basic serial port settings includes baud
rate setting, check bit setting and stop bit setting. The serial

port settings will mainly set the various member values of
structure STRUCT_TERMIOS:

Struct_termios

{

unsigned short c_iflag; /* input pattern flag */

unsigned short c_oflag; /* output pattern flag */

unsigned short c_cflag; /* control pattern flag */

unsigned short c_lflag; /* local pattern flag */

unsigned char c_ine ; /*linediscipline*/

unsigned char c_cc[NCC]: /* special control character */

}

The five members in STRUCT_TERMIOS structure
correspond to the input, output, control, local patterns and
special characters of terminals. Terminal access control
function is shown in Table I.

TABLE I
TERMINAL ACCESS CONTROL FUNCTION

Function Description

tcgetattr Get terminal attributes (termios structure)

tcsetarrt Set terminal attributes (termios structure)

cfgetispeed Get input rate

cfgetospeed Get output rate

cfsetispeed Set input rate

cfsettospeed Set output rate

tcdrain Waiting for all output was transmitted

fclow Suspend sending or receiving

toflush Forsake the queue has not send or receive data

tcsendbreak Send BREAK characters

tcgetgrp Get foreground process group ID

The embedded serial communication of Linux is
illustrated as follows:

Step1. Open the device file by OPEN. Open flag
O_NONBLOCK and O_NOCCTY will be used.
O_ONBLOCK will return immediately without waiting, and
O_OCCTY specifies that the serial device is not control
terminal;

Step2. Set communicat ion baud rate by CFSETISPEED
and CFSETOSPEED;

Step3. Set odd parity bit;
Step4. Read or write serial port;

Step5. Read or write end, and close the serial port by the
CLOSE.

D. Socket Programming in Embedded Linux
Network communication is a basic function of the

gateway service program. The network communication of
Linux system is evolved from UlVIX4.3BSD model, which

Consumer Electronics Times CET

CET Vol. 1 No. 1 2012 PP. 6-11 www.cet-journal.org ©World Academic Publishing
- 10 -

supports all the BSD Socket and TCP/IP functions. Linux
supports mult iple Sockets, so that it is suitable for both the
general inter-process communication and the inter-process
communicat ion in network environment. Socket has logically
three elements: domain, type, and procedures. Domain shows
which kind of network the socket are used. Type means the
network communicat ion pattern, which includes connection
oriented and connectionless two means of communication.
Combin ing with domain and type can identify the applicable
procedures in general. For example domain for AF_INET,
type has the connection, the procedure is basically TCP. The
process with socket communication uses server/client mode.
Linux kernel p rovides a unified system called interface
SYS_SOCKET_CALL (int call, unsigned long * args) for all
the operations related with Socket. The first parameter call is
the specific OPCODE defined in the INCLUDE/LINUX/NET.
H. The common BSD Socket API [12] is introduced as follows:

INT socket (int domain, int type, int protocol) is used to
get socket descriptors. The first parameter is set to AF_INET;
the second parameter is interface type: SOCK_STREAM or
SOCK_DGRAM, and the third parameter is 0 accord ing to
the first two parameters procedures.

For the servers, the next step calls BIND () to bind to a
port. The client calls CONNECT () through the system to set
up a connection, and the server will wait for a connection
request and deals with them. So it must first transfer LISTEN
(), then transfer ACCEPT () to realize again. To send and
receive data, we can generally use function SEND ()/RECV (),
SENDTO ()/REOVFROM () and SENDMSG ()/RECVMSG
(). It can also operate as normal as file reading and writing a
socket. Finally the client and the server can call CLOSE () to
shut down a socket. SELECT () is a very useful system call. It
can monitor a few sockets simultaneously to determine which
socket can read data, which can write data. It can also specify
the wait ing time to prevent the system from system call
blocking. This function can also be used for testing equipment
of other types. The function is as follows:

int select(int numfds, fd set *readfds, fd set*writefds, fd
set *exceptfds, struct timeval *timeout);

If it needs to read data of the descriptor, add only the
descriptor to READFDS, and at the same time NUMFDS is
set as the greatest file descriptors value plus one. SELECT ()
will modify the READFDS (). It can use FD_ISSET () to test
which descriptor has been ready for reading. The write
operation of descriptors is similar. The basic set of socket
functions is shown in Fig. 3.

Fig. 3 Basic TCP/IP Socket function

IV. CONCLUSIONS
The intelligence home unifies computer technology,

computer network technology, embedded system technology,
network communication, signal processing technology, long
distance control technology, and intelligent control
technology. Home gateway research plays a powerfu l role in
the development of intelligence homes.

This paper studies the development method of home
gateway network driver and data structure. It gives a
communicat ion principle diagram and home gateway function
structure, and designs the embedded home gateway software
structure diagram. Finally, it discusses in details RS-232 serial
interface communication under embedded Linux environment
and the embedded Linux Socket programming. It establishes
the embedded Linux development environment on VMware
Workstation, debugs and tests the network driver fo r home
gateway, and realizes socket programming in RS-232 serial
port network communication and embedded Linux system. It
obtains the good effect.

ACKNOWLEDGMENT
Here, we would like to give thanks to our p rofessions who

gave us support and advice, especially Dr. Wei He in School
of Computer Science and Technology of Changchun
University of Science and Technology.

REFERENCES
[1] Jun Wang. “Gateway Technology Applications in 3G Mobile

Communication System”, Communications Technology, vol. 44, pp.
120-121, Jun. 2011.

[2] Jianwu Zhang, Huan Yan, Jianrong Bao. “Design of Intelligent Family
Gateway and Its Application in Internet of Things”, Computer
Engineering, vol. 37, pp. 246-248, Sep. 2011.

[3] Fan Li. “Home gateway prospect forecast”, China Telecommunications
Trade, vol. 3 pp. 123. Mar. 2011.

[4] Mingjie Zhang, “Analysis and Design of Home Gateway in Smart
Home System”, Science Technology and Engineering, vol. 9, pp. 1921-
1924, Apr. 2009.

[5] Ling Zhang, Dengji Hu, Yongjin Xu. “Gateway Study for Intelligent
Home System”, Instrument Technology, vol. 3, pp. 15-17, Mar. 2011.

[6] Wenzao Shi, Ping Wang, Xi Huang, Wude Ye. “Software Design of
Embedded Smart Home Gateway”, Computer System Application, vol.
19, pp. 47-51, Oct. 2010.

[7] Cheng Chen, Xiaowei Qin, Ding Tang. “Research and Development of
Sensor Network Accessing Module in Home Gateway”, Computer
System Application, vol. 20, pp. 45-48, Oct. 2011.

[8] Hongru Chen, Guoming Sang. “Research and Application of Embedded
Wireless Home Gateway”, Computer & Digital Engineering, vol. 39,
pp. 165-169, Nov. 2011.

[9] Xuguang Li. ARM application system development explanation.
Beijing, China: Tsinghua University Press, 2003.

[10] Haiyan Xu, Yan Fu. Embedded system technology and application.
Beijing, China: Mechanic Industry Press, 2002.

[11] Lingyun Zhu, Kaiqi Cao, Zhao Chen. “Development of meter
monitoring system based on embedded home gateway”, Micro
Computer Information, vol. 26, pp. 42-44, Nov. 2010.

[12] ARM9TDMI (Rev4) Technical Reference Manual (ARM DDI0192A),
ARM Limited, 2000.

Consumer Electronics Times CET

CET Vol. 1 No. 1 2012 PP. 6-11 www.cet-journal.org ©World Academic Publishing
- 11 -

Guang Dong was born in Huadian of China in December
1963. He graduated from Dalian University of Science and
Technology of China in July 1985. He was in the
department of computer science and engineering as a
computer science professional and obtained technology
bachelor's degree.

He is currently an associate professor, and works at
School of Computer Science and Technology in

Changchun University of Science and Technology, Changchun, China. He
mainly engages in computer science and technology, embedded system and
database technology application of teaching and research work.

Prof. Dong is a member of Chinese Computer Academic Society.

Luping Jiang was born in Changchun of China in September 1969. She
graduated from Changchun University in July 1989. He was in the
department of computer as a computer application professional, and obtained
technology bachelor's degree.

She is currently an engineer, and works at School of Computer Science
and Technology in Changchun University of Science and Technology,
Changchun, China. She mainly engages in database technology application
and embedded system of teaching and research work

Xiaohan Zhang was born in Changchun of China in July 1973. In July 1973,
he was born in the Changchun of China, in July 1993 graduated from
Changchun University of Science and Technology, the department of the
electronic, the application electronic professionals, and obtains the
technology bachelor's degree.

He is currently an engineer, and works at School of Computer Science
and Technology in Changchun University of Science and Technology,
Changchun, China. He mainly engages in computer science and technology,
embedded system and database technology application of teaching and
research work.

