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Abstract- The minisuperspace Wheeler-De Witt equation is solved exactly for some suitable parameters. A slightly modified Wheeler-
De Witt equation has been considered to examine the effect of higher order field variables on the potential function, through which 
an exact solution with suitable parameters is found. From the solution, it is seen that the universe expands or contracts exponentially. 
Other physical significance of the solution is also discussed. 
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I. INTRODUCTION 

Three fundamental forces of nature, namely, electromagnetic, weak nuclear and strong nuclear forces, have been 
successfully explained with the help of quantum theory. But it has not been possible yet to bring the gravitational force into 
this scheme. The quantization of gravitation is a very difficult problem, although there have been simplified approaches to 
handle the problem. One of these approaches is quantum cosmology which comes out from the marriage between general 
relativity and quantum theory. An aspect of this approach is the consideration of a closed model of the universe with finite time 
duration and compact space-like sections with three geometries hij. One can write down a functional differential equation for 
the wave function of the universe Ψ[ℎ𝑖𝑖𝑖𝑖 ], which is a functional of hij. This is the so-called Wheeler-De Witt equation (WDW) 
[1] given by: 

 ℋΨ�ℎ𝑖𝑖𝑖𝑖 � = �−𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕2

𝜕𝜕ℎ𝑖𝑖𝑖𝑖 𝜕𝜕ℎ𝑖𝑖𝑖𝑖
− √ℎ 𝑅𝑅3 �Ψ�ℎ𝑖𝑖𝑖𝑖 � = 0 (1) 

where 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is known as the DeWitt metric or (5+1) dimensional metric on superspace with signature (-+++++), given by 

 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1
2√ℎ

�ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖 − ℎ𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑖𝑖 � (2) 

𝑅𝑅3   is the scalar curvature of the intrinsic geometry of three-surface and ℎ is the determinant of the metric ℎ𝑖𝑖𝑖𝑖 . The inverse 
of DeWitt metric can be given by: 

 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = √ℎ
2

(ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖 − ℎ𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑖𝑖 ) (3) 

Now it is clear from Eqs. (2) and (3) that  

  𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 = 1
2
�𝛿𝛿𝑘𝑘𝑖𝑖 𝛿𝛿𝑘𝑘

𝑖𝑖 + 𝛿𝛿𝑘𝑘𝑖𝑖 𝛿𝛿𝑘𝑘
𝑖𝑖 � (4) 

The WDW equation is a ‘hyperbolic’ functional differential equation in superspace [2]. In the three-space with metric ℎ𝑖𝑖𝑖𝑖 , 
for example, the ℎ𝑖𝑖𝑖𝑖   is the function of 𝑥𝑥1,  𝑥𝑥2,  𝑥𝑥3 and determines the distance 𝑑𝑑𝑑𝑑  between infinitesimally separated 
points(𝑥𝑥1,  𝑥𝑥2,  𝑥𝑥3) and (𝑥𝑥1 + Δ𝑥𝑥1,   𝑥𝑥2 + Δ𝑥𝑥2, 𝑥𝑥3 + Δ𝑥𝑥3) as follows: 

 𝑑𝑑𝑑𝑑2 = ℎ𝑖𝑖𝑖𝑖Δ𝑥𝑥𝑖𝑖Δ𝑥𝑥𝑖𝑖  (5) 

This distance is invariant under spatial coordinate transformations. In a similar manner, the space of all matrices ℎ𝑖𝑖𝑖𝑖  can be 
regarded as a superspace in which the points are the metric functions of   ℎ𝑖𝑖𝑖𝑖 , (which are the inverse of ℎ𝑖𝑖𝑖𝑖  ), and one can 
define a corresponding metric 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  so that the distance  𝑑𝑑Σ  between neighboring metric ℎ𝑖𝑖𝑖𝑖 and   ℎ𝑖𝑖𝑖𝑖 + 𝛿𝛿ℎ𝑖𝑖𝑖𝑖    is given by 

 𝑑𝑑Σ2 = 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑖𝑖  (6) 

which is invariant in a suitable sense when one transforms one set of ℎ𝑖𝑖𝑖𝑖  to another set ℎ′ 𝑖𝑖𝑖𝑖 . The DeWitt metric can be regarded 
as 6 × 6 matrix in the symmetric space of (𝑖𝑖𝑖𝑖) . So Eq. (6) can be written as 

 𝑑𝑑Σ2 = 𝐺𝐺𝐴𝐴𝐴𝐴𝛿𝛿ℎ𝐴𝐴𝛿𝛿ℎ𝐴𝐴 ,           𝐴𝐴,𝐴𝐴 = 1, 2, … ,6, (7) 

 𝐴𝐴,𝐴𝐴 ∈ {ℎ11, ℎ12 , ℎ13, ℎ22, ℎ23, ℎ33} ≡ {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6}.   (8) 
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II. MINISUPERSPACE WHEELER-DE WITT EQUATION 

The solution of WDW equation [3-10] in its full form is very hard for its infinite dimensionality. To make the problem 
tractable, one can simplify the WDW equation by restricting it to minisuperspace, that is, by considering some limited 
fluctuations of the geometry to contribute to the sum of histories in the path integral, such as geometries conformal to any 
given geometry. In this way we get some standard and suitably modified differential equations or simplified functional 
differential equations which might be solved exactly and might be given some suitable interpretations. 

Let us consider a “minisuperspace” which is defined by homogeneous and isotropic manifolds where Euclidean histories 
can contribute to the sum defining the wave function. The suitable metric of this form can be given by 

 𝑑𝑑𝑑𝑑2 = 𝑑𝑑�𝑁𝑁2(𝑡𝑡)𝑑𝑑𝑡𝑡2 + 𝑎𝑎2(𝑡𝑡)𝑑𝑑Ω3
2� (9) 

where  𝑁𝑁(𝑡𝑡) is the lapse function, 𝑑𝑑2 = 𝑖𝑖2/24𝜋𝜋2, 𝑖𝑖2 = 16𝜋𝜋 = 2𝜅𝜅2 and 𝑑𝑑Ω3 is the line element on the three- sphere [2,11], 𝑆𝑆3, 
given by 

 𝑑𝑑Ω3
2 = 𝑑𝑑𝑑𝑑2 + sin2 𝑑𝑑(𝑑𝑑𝑑𝑑2 + sin2 𝑑𝑑  𝑑𝑑𝑑𝑑2)  (10) 

The Euclidean action can be written by the following equation 

 𝑖𝑖2𝐼𝐼𝐸𝐸 = −∫ 𝑑𝑑4𝑥𝑥 𝑔𝑔
1
2( 𝑅𝑅 − 2Λ) + 2∫ 𝑑𝑑3𝑥𝑥 ℎ

1
2𝐾𝐾2   𝜕𝜕𝜕𝜕

4
𝜕𝜕  (11) 

The corresponding minisuperspace action is given by 

 𝐼𝐼𝐸𝐸 = 1
2 ∫𝑑𝑑𝑑𝑑 �𝑁𝑁

𝑎𝑎
� �− �𝑎𝑎�̇�𝑎

𝑁𝑁
�

2
− 𝑎𝑎2 + 𝜆𝜆𝑎𝑎4� (12) 

where 𝑑𝑑
2Λ
3

= 𝐻𝐻2 = 𝜆𝜆,   �̇�𝑎 = da/d𝑑𝑑, 𝐻𝐻 is the Hubble constant and 𝜆𝜆 is a parameter. Now the WDW can be given by an ordinary 
partial differential equation of the form: 

 
1
2
� 1
𝑎𝑎𝑝𝑝

𝜕𝜕
𝜕𝜕𝑎𝑎
�𝑎𝑎𝑝𝑝 𝜕𝜕

𝜕𝜕𝑎𝑎
� − 𝑎𝑎2 + 𝜆𝜆𝑎𝑎4�Ψ(𝑎𝑎) = 0 (13) 

where p is a suitable parameter. The wave function of the universe  Ψ(𝑎𝑎) is given by a path integral over all compact metrices 
of the form (9) which are bound by a three-sphere of radius  a. 

Let us now introduce a conformally invariant scalar field 𝜑𝜑 to represent the matter degrees of freedom. Thus one obtains 
the action keeping 𝑑𝑑 and a fixed on the boundary 

 I = 1
2 ∫ dt �N

a
� ��a

N
ȧ�

2
+ a2 − λa4 + �a

N
χ̇� − χ2�   (14) 

where  𝑑𝑑  is conformally invariant and related to 𝑑𝑑 by the following relation: 

 𝑑𝑑 = 𝑑𝑑

(2𝜋𝜋2𝑑𝑑2)
1
2 𝑎𝑎

 (15) 

Therefore the corresponding minisuperspace WDW equation can be given by 

 
1
2
� 1
𝑎𝑎𝑝𝑝

𝜕𝜕
𝜕𝜕𝑎𝑎
�𝑎𝑎𝑝𝑝 𝜕𝜕

𝜕𝜕𝑎𝑎
� − 𝑎𝑎2 + 𝜆𝜆𝑎𝑎4 − 𝜕𝜕2

𝜕𝜕𝑑𝑑 2 + 𝑑𝑑2 − 2𝜖𝜖0�Ψ(𝑎𝑎,𝑑𝑑) = 0 (16) 

where 2𝜖𝜖0 is an arbitrary constant included in the matter-energy renormalization [5]. Thus, an infinite number of degrees of 
freedom of the model can be reduced only to two 𝑎𝑎(𝑡𝑡)  and 𝑑𝑑(𝑡𝑡), where 𝑎𝑎(𝑡𝑡) is the scale factor. The scale factor can be 
regarded as the radius of the known universe. 

III. AN EXACT SOLUTION OF MINISUPERSPACE WDW EQUATION 

In this paper, we are only interested in exact solutions of WDW equation. We have found an exact solution with the 
parameters 𝑝𝑝 = 1, 𝜆𝜆 = 0. For 𝜆𝜆 = 0,  the cosmological constant Λ = 0, and consequently, the Hubble constant 𝐻𝐻 = 0, too. 
This is expected for the ground state of the universe. Hence it seems that the expansion of the universe is not possible in this 
case. But if one carefully looks at the equations (15) and (16), it will be evident that the term 𝑑𝑑2  serves as an effective 
cosmological constant. Therefore, the scalar field will initiate expansion or contraction. Let us put  𝑑𝑑 = 𝑖𝑖𝑖𝑖,  and   𝑟𝑟2 = 𝑎𝑎2 + 𝑑𝑑2. 
Now the equation (16) becomes 

 
1
𝑎𝑎
𝜕𝜕Ψ
𝜕𝜕𝑎𝑎

+ 𝜕𝜕2Ψ
𝜕𝜕𝑎𝑎 2 + 𝜕𝜕2Ψ

𝜕𝜕𝑖𝑖 2 − (𝑟𝑟2 + 2𝜖𝜖0)Ψ = 0 (17) 

The first three terms in Eq. (17) can be considered as a two dimensional Laplacian in the variables 𝑎𝑎  and   𝑖𝑖. Hence we can 
write Eq. (17) as follows: 
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 ∇2Ψ − (𝑟𝑟2 + 2𝜖𝜖0)Ψ = 0 (18) 

Again, let Ψ = 𝐹𝐹(𝑟𝑟) and Eq. (18) leads to 

 𝐹𝐹′′ + 2𝐹𝐹′
𝑟𝑟

= (𝑟𝑟2 + 2𝜖𝜖0)𝐹𝐹 (19) 

Put  𝐹𝐹 = 𝐴𝐴 exp(𝛼𝛼𝑟𝑟2)𝑢𝑢, where 𝐴𝐴 and 𝛼𝛼 are arbitrary constants, by which, Eq. (19) becomes 

 2𝛼𝛼𝑢𝑢 + 4𝛼𝛼2𝑟𝑟2𝑢𝑢 + 4𝛼𝛼𝑟𝑟𝑢𝑢′ + 𝑢𝑢′′ + 4𝛼𝛼𝑢𝑢 + 2
𝑟𝑟
𝑢𝑢′ = (𝑟𝑟2 + 2𝜖𝜖0)𝑢𝑢   (20) 

Again put 6𝛼𝛼 = 2𝜖𝜖0,    4𝛼𝛼2 = 1, then 

 𝑢𝑢′′ + �4𝛼𝛼𝑟𝑟 + 2
𝑟𝑟
� 𝑢𝑢′ = 0 (21) 

The exact solution of Eq. (21) can be given by 

 𝑢𝑢 = 𝐴𝐴 ∫ 1
𝑟𝑟2 exp(−2𝛼𝛼𝑟𝑟2) 𝑑𝑑𝑟𝑟   𝑟𝑟

 (22) 

where  𝐴𝐴 is some arbitrary constant. Hence the exact solution of Eq. (19) is given by 

 𝐹𝐹(𝑟𝑟) = 𝐴𝐴𝐴𝐴exp(𝛼𝛼𝑟𝑟2)∫ exp (−2𝛼𝛼𝑟𝑟2)
𝑟𝑟2  𝑑𝑑𝑟𝑟𝑟𝑟

 (23) 

Therefore, 

 Ψ(𝑟𝑟) = 𝐹𝐹(𝑟𝑟) = 𝐶𝐶 exp(𝛼𝛼𝑟𝑟2)∫ exp �−2𝛼𝛼𝑟𝑟2�
𝑟𝑟2  𝑑𝑑𝑟𝑟  𝑟𝑟

 (24) 

where 𝐴𝐴𝐴𝐴 = 𝐶𝐶, which is also a constant. This then provides one exact solution of the “minisuperspace” Wheeler-De Witt 
equation. The wave function Ψ(𝑟𝑟) in Eq. (24) contains an integral which does not exist for infinite limiting values; but for 
suitable finite limiting values, it yields a constant. Considering the integral yields a constant, the wave function becomes an 
exponential function of 𝑟𝑟 which is depicted in Figs. 1 and 2 for values 𝛼𝛼 = + 1 2⁄    and for  𝛼𝛼 = −  1 2⁄ , respectively: 

 Ψ(𝑟𝑟) = 𝐷𝐷 exp � ± 1
2
𝑟𝑟2� (25) 

where  𝐷𝐷 is a constant. The physical significance of this solution will be discussed in the discussion. 

 

Fig. 1 Graphical representation of Eq. (25) with suitable parameters for 𝛼𝛼 = +1/2 

 

Fig. 2 Graphical representation of Eq. (25) with suitable parameters for 𝛼𝛼 = −1/2 
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IV. MODIFIED WDW EQUATION 

After the Big Bang when the universe starts expansion, the fields are highly non-linear in nature for extreme spatial 
curvature. The potential function in Eq. (16) is in its simplest form. One can try for higher order terms of the fields to 
investigate the higher order effects. With this motivation to get an exact solution, we include the term   𝜂𝜂(𝑑𝑑2 − 𝑎𝑎2)3 in the 
potential function of WDW equation and rename the equation as modified WDW equation. Therefore, the modified WDW 
equation can be given by 

 � 1
𝑎𝑎𝑝𝑝

𝜕𝜕
𝜕𝜕𝑎𝑎
�𝑎𝑎𝑝𝑝 𝜕𝜕

𝜕𝜕𝑎𝑎
� − 𝑎𝑎2 + 𝜆𝜆𝑎𝑎4 − 𝜕𝜕2

𝜕𝜕𝑑𝑑 2 + 𝑑𝑑2 − 2𝜖𝜖0 +  𝜂𝜂(𝑑𝑑2 − 𝑎𝑎2)3�Ψ(𝑎𝑎,𝑑𝑑) = 0 (26) 

where  𝜂𝜂 is an arbitrary parameter. The potential function is depicted in Figs. 3 and 4 for different suitable values of the 
parameter 𝜂𝜂. 

 

Fig. 3 3D graphical representation of modified WDW potential (𝜆𝜆 = 0) with suitable parameters for 𝜂𝜂 = +𝑣𝑣𝑣𝑣  values 

 

Fig. 4 3D graphical representation of modified WDW potential (𝜆𝜆 = 0) with suitable parameters for 𝜂𝜂 = −𝑣𝑣𝑣𝑣  values 

V. AN EXACT SOLUTION OF MODIFIED WDW EQUATION 

We put (𝑑𝑑2 − 𝑎𝑎2) = 𝜁𝜁. Therefore it can be written that Ψ(𝑎𝑎,𝑑𝑑) = Ψ(𝜁𝜁). Now we have 

 
𝜕𝜕Ψ
𝜕𝜕𝑎𝑎

= 𝜕𝜕Ψ
𝜕𝜕𝜁𝜁

𝜕𝜕𝜁𝜁
𝜕𝜕𝑎𝑎

= −2𝑎𝑎 𝜕𝜕Ψ
𝜕𝜕𝜁𝜁
≡ −2𝑎𝑎Ψ′ (27) 

 
𝜕𝜕2Ψ
𝜕𝜕𝑎𝑎2 = 4𝑎𝑎2 𝜕𝜕2Ψ

𝜕𝜕𝜁𝜁2 − 2 𝜕𝜕Ψ
𝜕𝜕𝜁𝜁
≡ 4𝑎𝑎2Ψ′′ − 2Ψ′ (28) 

 
𝜕𝜕Ψ
𝜕𝜕𝑑𝑑

= 𝜕𝜕Ψ
𝜕𝜕𝜁𝜁

𝜕𝜕𝜁𝜁
𝜕𝜕𝑑𝑑

= 2𝑑𝑑 𝜕𝜕Ψ
𝜕𝜕𝜁𝜁
≡ 2𝑑𝑑Ψ′   (29) 

 
𝜕𝜕2Ψ
𝜕𝜕𝑑𝑑2 = 4𝑑𝑑2 𝜕𝜕2Ψ

𝜕𝜕𝜁𝜁2 + 2 𝜕𝜕Ψ
𝜕𝜕𝜁𝜁
≡ 4𝑑𝑑2Ψ′′ + 2Ψ′ (30) 
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Putting all these in Eq. (26) and considering = 0 , we have 

 −4𝜁𝜁Ψ′′ − (4 + 2𝑝𝑝)Ψ′ + (𝜁𝜁 − 2𝜖𝜖0 + 𝑑𝑑𝜁𝜁3)Ψ = 0 (31) 

We consider a trial solution of (31) 

 Ψ = (𝐽𝐽0 + 𝐽𝐽1𝜁𝜁)exp(− 1
2

 𝜅𝜅𝜁𝜁2) (32) 

where  𝐽𝐽0, 𝐽𝐽1  and  𝜅𝜅 are arbitrary constants. Calculating Ψ′  and Ψ′′    and putting these in Eq. (31) and equating the powers of 
𝜁𝜁, we get  

 𝜁𝜁0 :  − (4 + 2𝑝𝑝)𝐽𝐽1 − 2𝜖𝜖0𝐽𝐽0 = 0 (33) 

 𝜁𝜁 ∶   (4 + 2𝑝𝑝)𝜅𝜅𝐽𝐽0 + 4𝜅𝜅𝐽𝐽0 − 2𝜖𝜖0𝐽𝐽1 + 𝐽𝐽0 = 0 (34) 

 𝜁𝜁2: (4 + 2𝑝𝑝)𝜅𝜅𝐽𝐽1 + 12𝜅𝜅𝐽𝐽1 + 𝐽𝐽1 = 0 (35) 

  𝜁𝜁3 : − 4𝜅𝜅2𝐽𝐽0 + 𝐽𝐽0𝜂𝜂 = 0   (36) 

  𝜁𝜁4 : − 4𝜅𝜅2𝐽𝐽1 + 𝐽𝐽1𝜂𝜂 = 0 (37) 

Solving Eqs.  (33-37), we get 

 
𝐽𝐽1
𝐽𝐽0

= 4
𝜖𝜖0(16+2𝑝𝑝)

= −2𝜖𝜖0
(4+2𝑝𝑝)

 (38) 

Therefore, 

 𝜖𝜖0
2 = −2(4+2𝑝𝑝)

(16+2𝑝𝑝)
 (39) 

Let 𝑝𝑝 = −4, then we accordingly get 𝜖𝜖0 = ±1, 𝜅𝜅 = − 1 8⁄   and 𝜂𝜂 = 1 16⁄ . Therefore the exact solution is given by 

 Ψ = 𝐴𝐴(2 + 𝑑𝑑2 − 𝑎𝑎2) exp� 1
16�𝑑𝑑

2−𝑎𝑎2�
2� (40) 

where  𝐴𝐴 is a normalizing constant. Now, putting (𝑑𝑑2 − 𝑎𝑎2) = 𝑟𝑟2 in Eq. (40) and we get 

 Ψ(𝑟𝑟) = 𝐴𝐴(2 + 𝑟𝑟2) exp(𝑟𝑟4/16) (41) 

VI. DISCUSSIONS 

The exact solution of WDW equation given by Eq. (25) indicates that the universe starts expansion from a minimum finite 
radius and expands exponentially up to a maximum finite radius (for 𝛼𝛼 = + 1 2⁄ ) and bouncing back begins to contract 
exponentially up to a minimum radius (for  𝛼𝛼 = − 1 2⁄ ). Therefore the universe oscillates between finite radii. Hartle-Hawking 
model [5] represents a universe expanding from zero radius up to a maximum value and then collapsing back to zero radius. 
There is also a small probability that the universe might tunnel through the barrier to indefinite expansion in this present model 
and Hartle-Hawking model. The exact solution of Eq. (24) looks interesting from different points of view. Let us rewrite the 
Eq. (24) as follows: 

 Ψ(𝑟𝑟) exp(−𝛼𝛼𝑟𝑟2) = 𝐶𝐶 ∫ exp (−2𝛼𝛼𝑟𝑟2)
𝑟𝑟2

𝑟𝑟 𝑑𝑑𝑟𝑟 (42) 

By differentiating and rearranging, we get 

 𝑟𝑟2Ψ′(𝑟𝑟) − 2𝛼𝛼𝑟𝑟3Ψ(𝑟𝑟) = 𝐶𝐶 𝑣𝑣−𝛼𝛼𝑟𝑟2              (43) 

From (43), it is readily seen that as 𝑟𝑟 → ∞, then Ψ → 0. Hence it is consistent to assume that the universe is asymptotically 
flat. This might explain the fact that why the present universe is flat. 

From Eq. (41), when 𝑟𝑟 = 0 then  Ψ = 𝑐𝑐𝑐𝑐𝑘𝑘𝑑𝑑𝑡𝑡𝑎𝑎𝑘𝑘𝑡𝑡  , i.e., the universe starts expansion from a zero radius and expands 
exponentially for 𝑑𝑑 ≠ 𝑎𝑎 . But when 𝑑𝑑 = 𝑎𝑎,  then Ψ = 𝑐𝑐𝑐𝑐𝑘𝑘𝑑𝑑𝑡𝑡𝑎𝑎𝑘𝑘𝑡𝑡  again, i.e., and the universe becomes steady. Hence it is 
observed that the universe expands from a zero radius up to a certain value and ultimately becomes steady and it never 
contracts, i.e., there is a Big Bang, but not a Big Crunch. There is also the possibility that the stationary universe might transit 
to the situation where it will be expanding forever. 
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