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Abstract-The effect of internal heat source on double diffusive convection in a couple stress fluid saturated horizontal anisotropic porous 

layer was studied analytically by performing linear and nonlinear stability analyses. For linear stability analysis, normal mode technique 

was used, whereas for nonlinear stability analysis a minimal representation of Fourier series upto two terms was used. Effects of 

anisotropic parameter, couple stress parameter, solute Rayleigh number, Vadász number, Lewis number, internal heat source parameter 

on stationary, oscillatory and finite amplitude convection were obtained and shown graphically. Also the graphs for heat and mass 

transport, streamlines, isotherms, isohalines for steady and unsteady cases were drawn. It was found that internal heat source parameter 

had destabilizing effect on all modes of convection. Heat transport increased and mass transport decreased with the increase in internal 

heat source parameter.  
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NOMENCLATURE 

LATIN SYMBOLS 

         Wave number 

         Couple stress parameter   
  

    

         Depth of the fluid layer 

         Darcy number    
  

   

         Acceleration due to gravity 

         Permeability in  -direction 

         Permeability in  -direction 

         Lewis number,    
   

  
 

         Nusselt number 

         Reduced pressure 

         Prandtl number,    
 

   
 

         Thermal Rayleigh number,     
        

    
 

         Solute Rayleigh number,     
        

    
 

         Internal heat source parameter,    
   

   
 

         Solute concentration 

         Solute difference across the porous layer 
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         Sherwood number 

         Temperature 

         Temperature difference across the porous layer 

          Time 

         Vadász number    
   

  
 

( , ,      Space Co-ordinates 

GREEK SYMBOLS 

         Coefficient of thermal expansion 

         Coefficient of solute expansion 

         Heat capacity ratio 
      

      
 

         Thermal anisotropy parameter,        

         Mechanical anisotropy parameter,       

           Solutal diffusivity 

         Thermal diffusivity,     ̂ ̂   ̂ ̂      k̂ k̂   

         Effective thermal diffusivity in  -direction 

         Effective thermal diffusivity in  -direction 

         Dynamic viscosity of the fluid  

         Couple stress viscosity of the fluid  

         Porosity 

         Kinematic viscosity, (
 

  
) 

         Fluid density  

         Stream function 

OTHER SYMBOLS  

 
       

 
  

   
 

  

   
 

 
         

  
  

   
 

SUBSCRIPTS 

    basic state 

     critical 

    reference value 

SUPERSCRIPTS 

   perturbed quantity 

   dimensionless quantity 

   finite amplitude 

     oscillatory 

    stationary 

 

I. INTRODUCTION 
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Double-diffusive convection in porous media provides many opportunities for researchers due to its analytical and practical 

accessibility. It arises in many physical situations such as solidification of binary mixture, migration of solutes in water-saturated 

soils, geophysical system, crystal growth, electrochemistry, the migration of moisture through air contained in fibrous insulation, 

Earth’s oceans, magma chambers etc. The reviews in this area have been well collected and presented by Nield and Bejan [1], 

Ingham and Pop [2,3], Vafai [4,5], Vadász [6]. Very first study on double-diffusive convection in porous media mainly concerns 

with linear stability analysis, and was performed by Nield [7]. Later, the study was continued by Taunton et al. [8], Rudraiah et al. 

[9], Poulikakos [10], Travison and Bejan [11], Rosenberg and Spera [12], Mamou [13], Kuznetsov and Nield [14-16], Nield and 

Kuznetsov [17,18]. Till now, there are numerous papers available on double-diffusive convection in porous media. 

The importance of non-Newtonian fluids with suspended particle is of very significant, however it attracted less attention as 

compared to Newtonian fluids. Application of non-Newtonian fluids are found in extrusion of polymer fluids in industry, exotic 

suspension, fluid film lubrication, solidification of liquid crystals, cooling of metallic plate in bath, colloidal and suspension 

solutions. Non-Newtonian couple stress fluids carries a specific feature of polar effects. Couple-stresses are found to appear in 

noticeable magnitudes in fluids with very large molecules. Theory for couple stress fluid was proposed by Stokes [19], which is 

simpler polar fluid theory and shows all the important features and effects of couple stresses in fluids caused by the mechanical 

interactions that occur inside a deforming continuum. Stabilizing effect of couple stress parameter is reported in the works of 

Sharma and Thakur [20], who studied thermal instability in an electrically conducting couple stress fluid with magnetic field. Sunil 

et al. [21] studied the effect of suspended particles on double diffusive convection in a couple stress fluid saturated porous medium, 

Sharma and Sharma [22] investigated the effect of suspended particles on couple-stress fluid, heated from below, in the presence of 

rotation and magnetic field. Malashetty et al. [23] did an analytical study of linear and nonlinear double diffusive convection with 

Soret effect in couple stress liquids. Shivakumara [24] studied the effect of nonuniform temperature gradient on the onset of 

convection in a couple stress fluid saturated porous medium. Malashetty et al. [25] performed linear and weakly nonlinear analyses 

of double diffusive convection in an isotropic porous medium saturated with couple stress fluid. Malashetty and Kollur [26] studied 

the onset of double diffusive convection in a couple stress fluid saturated anisotropic porous layer. Shivkumara et al. [27] carried 

out linear and nonlinear stability analysis of double diffusive convection in a couple stress fluid saturated porous layer. 

Most of the studies in relevant areas mainly dealt with isotropic porous media, however there are many physical situations 

where thermal and mechanical anisotropy exists in porous matrix, one of such examples is our geothermal environment. 

Anisotropy is generally a consequence of preferential orientation of asymmetric geometry of porous matrix or fibres and is in fact 

encountered in numerous systems in industry and nature. Also artificial porous matrix anisotropy can be made deliberately 

according to applications. The first study in this area was given by Castinel and Combarnous [28], who obtained the criterion for 

the onset of convection in a layer with anisotropic permeability and impermeable upper and lower boundaries. Epherre [29] applied 

anisotropy in both permeability and thermal conductivity, Kvernvold and Tyvand [30] studied the steady finite amplitude 

convection and derived criterion for the onset of convection. Tyvand [31] studied the onset of thermohaline convection in 

anisotropic porous media, while anisotropy in only thermal conductivity has been studied by Storesletten [32]. It was found that the 

convection cells are rectangular with vertical lateral cell walls when longitudinal diffusivity is greater than transverse diffusivity 

and for reverse case the lateral cell walls are tilted as well as curved. Nield and Kuznetsov [33] studied the combined effects of 

horizontal and vertical heterogeneity and anisotropy on the onset of convection in a porous medium. Gaikwad et al. [34] performed 

linear and nonlinear stability analyses of double diffusive convection in anisotropic porous media including Soret effect and 

reported that the effect of mechanical anisotropic parameter is to destabilize and of thermal anisotropic parameter is to stabilize the 

system. 

There are large number of practical situations in which convection is driven by internal heat source in the porous media. The 

wide applications of such convections occur in nuclear reactions, nuclear heat cores, nuclear energy, nuclear waste disposals, oil 

extractions, and crystal growth. The study concerning internal heat source in porous media is provided by Tveitereid [35], who 

obtained the steady solution in the form of hexagons and two dimensional rolls for convection in a horizontal porous layer with 

internal heat source. Bejan [36] studied analytically the buoyancy induced convection with internal heat source, Parthiban and Patil 

[37] studied the effect of non-uniform boundaries temperatures on thermal instability in a porous medium with internal heat source 

and predicted that internal heat source parameter advances the onset of convection. Hill [38] performed linear and nonlinear 

stability analyses of double-diffusive convection in a porous layer with a concentration based internal heat source. Saravanan [39] 

investigated linear stability analysis for the onset of natural convection in a fluid saturated porous medium with uniform internal 

heat source and density maximum in an local thermal nonequilibrium model and predicted that internal heat source parameter 

advances the onset of convection, Cookey et al. [40] studied the onset of stationary convection in a low Prandtl number with 

internal heat source and found that effect of internal heat source parameter is destabilization. Borujerdi et al. [41] investigated the 

stability criterion for a horizontal porous layer with uniform heat source in both fluid and solid phases by considering thermal 

nonequilibrium model, Borujerdi et al. [42] performed linear stability analysis to predict the effect of Brinkman term on the onset 

criterion for the stability of natural convection in a horizontal porous layer with uniform heat generation. Capone et al. [43] carried 
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out the linear and nonlinear stability analysis of double-diffusive penetrative convection in an anisotropic porous layer with a 

constant throughflow via internal heat source. Recently Bhadauria group [44-47] have studied the problem of thermal instability in 

porous media with internal heating, considering various physical models. 

Double diffusive convection occurs in many systems in industry and nature, and in the present context, is of particular interest 

in the study of extraction of metals from ores where a mushy layer is formed during solidification of a metalic alloy. Further, the 

quality and structure of the resulting solid can be controlled by influencing the transport process externally, which can be done by 

thermal modulation, gravity modulation, rotation or by internal heating. However in the present study, internal heating of the 

system was used as an external means to influence the transport process, thereby controlling the quality and structure of the 

resulting solid. Further, many of the previous studies have modeled the mushy layer as isotropic porous medium, however in 

reality, the permeability of the porous medium is anisotropic as discussed above. In addtion, due to specific properties of couple 

stress fluids over Newtonian fluids, couple stress fluids are widely being used in modern industries. Therefore, in the present study 

the porous medium was assumed to be saturated with couple stress fluid as the melt in the mushy layer may be considered as 

couple stress fluid. With these motivations, a weak non linear analysis of hydrodynamic stability was conducted to study the 

effect of internal heating on double diffusive convection in an anisotropic porous medium saturated with a couple stress fluid. 

II. GOVERNING EQUATIONS 

An infinite horizontal anisotropic porous layer saturated by couple stress fluid, confined between the planes 0=z  and 

dz =  with internal heat source, heated and salted from below, was considered. Cartesian frame of reference was chosen as; 

origin in the lower boundary and the z -axis in vertically upward direction. The gravity force acted in vertically downward 

direction, and only free-free boundaries were considered. It was assumed that the mechanical properties and thermal properties in

x and y directions were the same. Uniform adverse temperature gradient dT/  and concentation gradient dS/ were 

maintained across the surfaces. Further, the density variation was considered under Boussinesq approximation. The governing 

equations under the above considerations are given by  

 0,=.q  (1) 

 
  ,

1ˆ= 20 qg
q





c

K
kp

t





 (2) 

 
     ,..=. 0TTQTT

t

T
T 




 q  (3) 

 
  ,=. 2SS

t

S
S




 q  (4) 

 )]()([1= 000 SSTT ST    (5) 

The thermal and solutal boundary conditions are  

 ,=at   =  and0=at= 00 dzTT z  TTT   (6) 

 .=at  =  and0=at = 00 dzSS z SSS   (7) 

The basic state of liquid is quiescent and given by  
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which satisfy the following equations  
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The solution of Eq. (9), subject to the boundary conditions (6) , is given by  
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Also Eq. (10) has been solved subjected to the boundary conditions (7) , and 

 
.1= 0 









d

z
SSSb  (14) 

Infinitesimal perturbation was applied to the basic state of the system and then the pressure term waseliminated by taking curl 

twice of Eq. (2). The resulting equations were nondimensionlized using the following transformations,  
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The nondimensionlized equations (after dropping the asterisks for simplicity) and by setting 1=  are  
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The stress free, isothermal, isohalines boundary conditions are given by 
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III. LINEAR STABILITY ANALYSIS 

For linear stability analysis, normal mode technique was used to solve the eigenvalue problem defined by Eqs. (16)-(18), 

subject to the boundary conditions given by Eq. (9), using time periodic disturbance in horizontal plane. For fundamental mode, 

there is 
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where l , m  are horizontal wave number and ir i = is growth rate, and in general a complex quantity. Substituting Eq. 

(20) in Eqs. (16)-(18), the nontrivial solution in the form of thermal Rayleigh number can be obtained as 
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For neutral stability state 0=r , whereas for < 0,r the system is always stable and for > 0,r the system is always 

unstable. 

A. Stationary State 

The expression of thermal Rayleigh number for the onset of stationary convection at the marginally stable steady state, for 

which the exchange of stabilities are valid correspond to the 0= i.e.  0=r  and 0=i
 

becomes  
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Onset of double-diffusive convection with couple stress fluid saturated isotropic porous layer in presence of internal heat source for 

stationary mode is obtained by putting 1=  and 1=  in Eq. (22) 

        
 

.1
2

=
22

2
2222

2

22















a

LeRaa
aCa

Fa

aR
Ra Sist

T





 (23) 

In case of single component fluid with internal heat source 0=SRa , Eq. (22) gets the form  
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In absence of internal heat source one has to put 
2

1
= F  and 0=iR  in Eq. (22) to obtain  
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The above expression of thermal Rayleigh number is the result of stationary mode for onset of double-diffusive convection in a 

couple stress saturated anisotropic porous layer given by Malashetty and Premila Kollur [26]. In the case when medium is isotropic 

i.e. 1=(  and 1)=  
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This is the result for stationary mode for the onset of double-diffusive convection with couple stress fluid saturated isotropic porous 

media given by Malashetty et al [25]. For 0=C  above Eq. (26) reduces to 
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The above expression of thermal Rayleigh number for double-diffusive convection in porous media is the result for stationary 

mode given by Nield [7]. For single component couple stress fluid saturated porous medium i.e. 0=SRa , Eq. (25) becomes  
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When 0=C , the above Eq. (28) 
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is the result for single component fluid in anisotropic porous media given by Storeslette [32]. For isotropic case, the above Eq. (29) 

takes the form  
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which is the classical result obtained by Horton and Rogers [48] and Lapwood [49] for single component fluid in porous layer.  

B. Oscillatory State 

To obtain the expression of thermal Rayleigh number for oscillatory convection at the marginal state, we have ii =  (since 

the real part of   for marginal oscillatory state is zero i.e 0=r ). After some simplification, we have  

 .= 21  i
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T iRa   (31) 

Since TRa  cannot be imaginary as thermal Rayleigh number is a physical quantity, for marginal oscillatory state 0i , 

therefore we must have 0=2 . This gives the expression for the frequency of oscillation  
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Corresponding to the above value of i , the expression of thermal Rayleigh number for oscillatory convection becomes  
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From the close observation of Eq. (23), it was found that for the physical significance of thermal Rayleigh number, there must be
2

2< iR  as F  is negative. The effect of various parameters on neutral stability of the system are given in the Figs. 1-2.  

IV. WEAK NONLINEAR ANALYSIS 

Although the linear stability analysis result is significant, some important physical quantities like the value of convection 

amplitude, heat transfer, mass transfer, cannot be calculated using linear stability analysis, thus nonlinear stability analysis of the 

system is needed. Nonlinear stability analysis provides useful information which helps to describe the physical mechanism of 

convective flow with minimum amount of mathematics. 

For this, only two-dimensional rolls were considered. The calculation started from Eqs. (2)-(5) by introducing stream function 
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in the form 
z

u



=  and 

x
w







=  then, taking curl to eliminate pressure term from Eq. (2) and then nondimensionlizing 

the resulting equations by using transformations given by Eq. (15). Finally, it was set 1=  and the following equations were 

obtained 
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 (36) 

A local nonlinear stability analysis shall be performed by using a severely truncated representation of Fourier series for stream 

function, temperature and concentration, Veronis [50], Rudraiah et al. [51]. This study will help in understanding the physics of the 

problem with minimum mathematical expressions. Further the results can be used as starting point to generalize it for full nonlinear 

problem. Also, it is to be noted that the effect of nonlinearity is to distort the temperature and concentration fields through the 

interaction of   and T , and   and S  respectively. As a result a component of the form )(2sin z  will be generated. 

Therefore, the minimal expression which describes the finite amplitude convection are of the forms 

 ),(sin)(sin)(= zaxtA   (37) 

 ),(2sin)()(sin)(cos)(= 21 ztBzaxtBT    (38) 

 ),(2sin)()(sin)(cos)(= 21 ztEzaxtES    (39) 

where the amplitudes )(tA , )(1 tB , )(2 tB , )(1 tE  and )(2 tE  are functions of time and are to be determined. Substituting 

above expressions in Eqs. (34)-(36) and equating the like terms, the following set of nonlinear autonomous differential equations 

were obtained 
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The above system of autonomous nonlinear differential equation is not suitable for analytical study. Numerical method was used to 

solve the above set of nonlinear differential equations to find the amplitudes. After determining the amplitudes, they were 

computed to plot the graphs for heat transfer, mass transfer, streamlines, isotherms and isohalines in unsteady case.  

A. Steady Finite Amplitude Convection 

For steady state finite amplitude convection we have to set left hand side of the Eqs. (40)-(44) to zero. This will give set of 

equations in amplitudes of convection, as  

   0,=1 11

22

1 EaRaBaRaAC ST    (45) 

   0,=21

2

22 aFABRaAB i    (46) 
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From the nontrivial solution of the above Eqs. (45)-(49), a quadratic equation in 








8

2A
is given by  
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where 

          
            

       
        (                 (  

    ))

      (                     ) 

           * 
   

        (  
    )    (             (  

    ))+  

 

The required root of the above equation is  
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For the expression of thermal Rayleigh number to characterize the onset of finite amplitude steady convection, the radical of above 

equation must vanish, this condition gives  
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B. Heat And Mass Transports 

The quantification of heat and mass transport is very important for the study of convection in porous media. This is because the 

onset of convection, as Rayleigh number is increased is more readily detected by its effect on the heat and mass transport. However, 

in the basic state, heat and mass transfer is given by conduction alone. 

The Nusselt number and Sherwood number are defined by  
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 (53) 
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Substituting the value of T , bT , S  and bS  in Eqs. (53)-(54), there is 
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 .21= 2ESh   (56) 

Substituting the value of 2B  and 2E  in Eqs. (55)-(56), the expressions for Nu  and Sh were obtained in terms of A  
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V. RESULTS AND DISCUSSION 

In this section, the results obtained from the graphs of various parameters on the onset of convection, finite amplitude 

convection, heat transfer and mass transfer are discussed. 

From the expressions of thermal Rayleigh number of stationary and oscillatory state convection, the graphs of neutral stability 

curves for various parameters are shown in Figs. 1(a-g). The values of parameters were fixed at 0.5= , 0.5= , 2=C , 

20=SRa , 20=Le , 5=Va , 2=iR  except for the varying one. The critical thermal Rayleigh number was defined as at 

which onset of convection takes place. It can be found from Fig. 1(a) that the critical thermal Rayleigh number increases with the 

increment in thermal anisotropic parameter  , resulting in delay in the onset of convection. Similar effects were produced by 

couple stress parameter as in Fig. 1(c), and solute Rayleigh number in Fig. 1(d) on the onset of convection. However, from Fig. 

1(b), it was found that with increasing value of mechanical anisotropic parameter  , the critical thermal Rayleigh number 

decreased, resulting in advancing of the onset of convection. Similar effects were found for Lewis number Le as in Fig. 1(e) and 

for internal heat source parameter iR as in Fig. 1(f). The effect of Vadász number Va  on oscillatory neutral curve is shown in 

Fig. 1(g), which reveals that the effect of Vadász number Va  is to advance the onset of convection with increment in Va . 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

 

(g)  

Fig. 1 Neutral stability curves for different values of (a)  , (b)  , (c) C , (d) SRa , (e) Le ,(f) iR , (g) Va  

Figs. 2(a-f) show the variation of critical thermal Rayleigh number TcRa  for both stationary and oscillatory convection with 

solute Rayleigh number SRa  for different values of varying parameters. It is clear from Fig. 2(a), that for the fixed value of 

solute Rayleigh number SRa , the effect of the increase in thermal anisotropic parameter   was to increase the value of critical 

thermal Rayleigh number TcRa  for both stationary and oscillatory convection. Fig. 2(b) shows that the effect of mechanical 

anisotropic parameter   was to decrease the TcRa  with corresponding increment in  . Further, it was found that the effect of 

mechanical anisotropic parameter   was to advance the onset of convection as compared to isotropic case. The variation of 

couple stress parameter C  is shown by Fig. 2(c), it is clear that when couple stress parameter increased, the critical thermal 

Rayleigh number TcRa  also increased for both stationary and oscillatory convection. From Fig. 2(d), an interesting effect of 

Lewis number Le  was observed for stationary and oscillatory convection, to increase in Le  the critical thermal Rayleigh 

number TcRa  increased for stationary convection, whereas it decreased for oscillatory convection, moreover the effect of Lewis 

number Le  for oscillatory convection was found very frail. Fig. 2(e) depicts that the effect of internal heat parameter iR  was to 

decrease the value of critical thermal number TcRa  with an increment in the value of iR  for both stationary and oscillatory 
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cases. Therefore, the effect of internal heat parameter iR  was to destabilize the system. In Fig. 2(f) the effect of Va  is shown on 

oscillatory convection, critical thermal Rayleigh number decreased with increasing value of Va  and hence advanced the onset of 

convection. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2 Variations of cTRa ,  with SRa  for different values of (a)  , (b)  , (c) C , (d) Le , (e) iR , (f) Va  

Figs. 3(a-f) depict the variations of critical finite amplitude thermal Rayleigh number 
F

TcRa  with respect to solute Rayleigh 

number SRa . Figs. 3(a, c) show that increments in thermal anisotropic parameter   and couple stress parameter C  
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increasedthe values of critical finite amplitude thermal Rayleigh number 
F

TcRa , thus delaying the finite amplitude convection. 

However, from Figs. 3(b, e) it was found that on increasing the values of mechanical anisotropic parameter   and internal heat 

source parameter iR , the values of critical finite amplitude thermal Rayleigh number 
F

TcRa  decreased, thus advancing the finite 

amplitude convection. Fig. 3(d) depicts the effect of Lewis number Le  on the value of critical finite amplitude thermal Rayleigh 

number 
F

TcRa , and shows that an increment in the value of Le  increased the value of 
F

TcRa  at small values of SRa , however 

the trend was reversed at higher values of SRa .  

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Fig. 3 Variations of 
F

cTRa ,  with SRa  for different values of (a)  , (b)  , (c) C , (d) Le , (e) iR  

In Figs. 4(a-f) and 5(a-f), the variation of Nusselt number Nu  and Sherwood number Sh  with respect to 
st

TcT RaRa /  for 

different values of parameters were depicted. The values of Nu  and Sh  started with 1 , thus showing conduction state initially. 

As the value of TRa  increased, the values of Nu  and Sh  increased thus increasing the heat and mass transfers across the 
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porous layer. However, on further increasing TRa  the values of Nu  and Sh  became constants and approached fixed values. 

In Figs. 4(a) and 5(a), it can be found that, on increasing the value of thermal anisotropic parameter  , the values of Nu  and 

Sh  increased, thus increasing the heat and mass transfers across the porous layer. Similar effects were also found for mechanical 

anisotropic parameter  as in Figs. 4(b) and 5(b), for Lewis number Le as in Figs. 4(d) and 5(d), and for solute Rayleigh number 

SRa as in Figs. 4(e) and 5(e). However as seen in Figs. 4(c) and 5(c), the effect of increasing couple stress parameter C  was to 

decrease the values of Nu  and Sh , thus reducing the heat and mass transfer. Also from Figs. 4(f) and 5(f) respectively, it was 

found that on increasing iR , the value of Nu  increased while that of Sh  decreased, thus the effect of an increment in iR  was 

to increase the heat transfer but to decrease the mass transfer across the porous layer. The results corresponding to the isotropic 

case are also presented in the Figs. 4-5 and shown by dotted lines. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4 Variations of Nusselt number with 
St

cTT RaRa ,/  for different values of (a)  , (b)  , (c) C , (d) Le , (e) iR , (f) Va  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 5 Variations of Sherwood number with 
St

cTT RaRa ,/  for different values of (a)  ,(b)  , (c) C , (d) Le , (e) iR , (f) Va  

The variation of streamlines, isotherms, isohalines with critical thermal Rayleigh number 
st

TcRa  are shown in Figs. 6-8. The 

values of parameters were kept at fixed values 0.5= , 0.5= , 2=C , 20=Le , 20=SRa , 2=iR , 5=Va . Figs. 

6(a), 7(a) and 8(a), respectively correspond to streamlines, isotherms, and isohalines calculated at 
st

TcT RaRa =  whereas Figs. 

6(b), 7(b) and 8(b) correspond to streamlines, isotherms, and isohalines calculated at 
st

TcT RaRa 3= . From Figs. 6(a, b), it was 

observed that the magnitude of contours of streamlines increased rapidly with increasing value of critical thermal Rayleigh number 
st

TcRa . From Figs. 7(a, b), it is clear that at 
st

TcT RaRa =  heat transfer was almost by conduction only, whereas at 
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st

TcT RaRa 3=  heat transfer came from the account of convection. From Figs. 8(a,b), it was found that at 
st

TcT RaRa =  mass 

transfer was by conduction whereas at 
st

TcT RaRa 3=  mass transfer was by convection. 

  
(a) (b) 

Fig. 6 Variations of Stream lines with TRa  (a) 
St

cTT RaRa ,= , (b) 
St

cTT RaRa ,3= 
 

  
(a) (b) 

Fig. 7 Variations of Isotherms with TRa  (a) 
St

cTT RaRa ,= , (b) 
St

cTT RaRa ,3= 
 

  
(a) (b) 

Fig. 8 Variations of Isohalines with TRa  (a) 
St

cTT RaRa ,= , (b) 
St

cTT RaRa ,3= 
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The effects of parameters on Nusselt number Nu  and Sherwood number Sh  for unsteady case are depicted in Figs. 9(a-g) 

and Figs. 10(a-g) respectively with qualitative comparison to Newtonian fluid. Runge-Kutta method was used to numerically solve 

the autonomous system of differential equations at fixed values of parameters 0.5= , 0.5= , 2=C , 2=Le , 

100=SRa , 1=iR , 10=Va  and 
F

TcT RaRa 5= . From these figures, it is clear that initially when time 0=t , the values 

of Nusselt and Sherwood numbers were1 , as the heat and mass transfers were taking place only due to conduction. However, as 

time passed, both Nu  and Sh  oscillated with time, and reached a steady state on further elapses of time. Figs. 9(a-g) show the 

behaviours of heat transfer with different values of parameters. From Fig. 9(a), it is clear that heat transfer increased with 

increasing value of thermal anisotropic parameter. Furthermore, it was noticed that heat transfer in the case of Newtonian fluid was 

more than that in the case of couple-stress fluid. Similar effects were found for mechanical anisotropic parameter, Lewis number, 

solute Rayleigh number and internal heat source parameter(see Figs. 9(b, d, e, f)). It was observed from Fig. 9(c) that heat transfer 

decreased with increasing value of couple stress parameter, and similar effect was also found for Vadász number(see Fig. 9(g)). 

Figs. 10(a-g) show the variations of mass transfer with respect to time for different values of parameters. Fig. 10(a) reveals that 

mass transfer increased with increasing value of thermal anisotropic parameter. Also, more mass transfer took place in the case of 

Newtonian as compared to the case of couple-stress fluid. Similar effect was also found for mechanical anisotropic parameter, 

Lewis number, and solute Rayleigh number (see Figs. 10(b, d, e)). From Fig. 10(c), it was concluded that with increasing value of 

couple stress parameter, mass transfer decreases, and similar effect was also found for internal heat source and Vadász(see Figs. 

10(f, g)). 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g)  

Fig. 9 Variations of Nusselt number with time for different values of (a)  , (b)  , (c) C , (d) SRa , (e) Le , (f) iR , (g) Va  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g)  

Fig. 10 Variations of Sherwood number with time for different values of (a)  , (b)  , (c) C , (d) SRa , (e) Le , (f) iR , (g) Va  

In Figs. 11-13, variations of streamlines, isotherms and isohalines respectively are shown with time at fixed values of 0.5= , 

0.5= , 2=C , 20=Le , 20=SRa , 2=iR , 5=Va  and 
F

TcT RaRa 5= . The streamlines, isotherms, and 

isohalines were plotted for the time 0.1=t , 0.5=t  and 1=t . It was found that the magnitude of streamlines increased with 

time. Further, the graphs show that initially heat and mass transfers were by conduction alone. However, as time increases, the 

graphs of isotherms and isohalines oscillated and formed contours showing that convection has taken place. 

 

(a) (b) (c) 
 

Fig. 11 Variations of Stream lines with time (a) t=0.1, (b) t=0.5, (c) t=1.0 

 

(a) (b) (c) 

Fig. 12 Variations of Isotherms lines with time (a) t=0.1, (b) t=0.5, (c) t=1.0 
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(a) (b) (c) 

Fig. 13 Variations of Isohalines lines with time (a) t=0.1, (b) t=0.5, (c) t=1.0 

VI. CONCLUSIONS 

An analytical study of linear and nonlinear double-diffusive convection saturated by couple stress anisotropic porous media 

with internal heat source is presented in this paper. A horizontal anisotropic porous layer which is heated and salted from below 

was assumed. The effect of parameters on neutral stability curve, finite amplitude convection, heat and mass transfers, steamlines, 

isotherms and isohalines were discussed. Following conclusions were drawn: 

(1) Stabilizing effect was found for thermal anisotropic parameter  , couple stress parameter C  and solute Rayleigh number 

SRa  on the onset of stationary, oscillatory and finite amplitude convection. 

(2) Destabilizing effect was found for mechanical anisotropic parameter  , internal heat source parameter iR  on the onset of 

stationary, oscillatory and finite amplitude convection. 

(3) The effect of Lewis number Le  was to stabilize the stationary convection, and destabilize the oscillatory convection, 

however dual effect was found for finite amplitude convection. 

(4) Vadász number advanced the oscillatory convection. 

(5) Heat transfer increased with increasing values of thermal anisotropic parameter ,  mechanical anisotropic parameter  , 

Lewis number Le , solute Rayleigh number SRa  and internal heat source parameter iR  and decreased with increasing value of 

couple stress parameter C . 

(6) Mass transfer increased with increasing values of thermal anisotropic parameter  , mechanical anisotropic parameter  , 

Lewis number Le  and solute Rayleigh number SRa , and decreased with increasing values of couple stress parameter C  and 

internal heat source parameter iR . 

(7) Magnitude of streamlines increased while isotherms and isohalines took more contour forms with increasing value of 

Rayleigh number. Same behaviour was also observed with respect to time. 
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