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Abstract-In this study, the load carrying capacities of glass columns with rectangular, T and X cross-sections having different lengths 

were calculated. The proposed analytical procedure allows to calculate the load carrying capacity associated with strength of 

transverse cross-section including local and global flexural and/or torsional buckling phenomenon. Moreover, initial imperfections 

and time dependant effects, the latter associated with the viscoelastic behaviour of interlayer (PVB), were included in the model as 

suggested in the literature. Those effects were calculated by introducing the equivalent thickness of glass panels, which takes into 

account the shear modulus of PVB and the viscoleastic behaviour of a composite. Failure of the glass panels connected with 

structural silicone was not considered. Experimental research recently conducted by the authors was utilised for comparison with 

the analytical prediction. Cases of study were those of compressed glass panels constituted by single tempered glass jointed between 

PVB, and compressed members having T or X tranverse cross-sections and constituted by single layered panels jointed between 

structural silicone. The analytical model had good prediction accuracy, and the experimental results were in agreement with the 

failure modes observed experimentally.  
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I. INTRODUCTION 

In the field of glass structures, it is well known that glass columns are made by assembling thin laminated glass panels. 

Every panel is made by coupling two or more glass foils, connected by means of an interlayer. In most cases, float or annealed 

glass is used, due to its better post-breakage behavior and to lower costs compared to fully-tempered glass, which is more 

expensive and in addition breaks into many small fragments. The interlayer has viscous-elastic behavior, and is normally 

formed by a polyvinylbutiral (PVB), polycarbonate (PC) or ethylene-vinyl-acetate (EVA) film. It is clear and already well 

known from the literature that the strength of the laminated glass columns is substantially affected by the buckling (flexural 

and torsional) effects due to the slenderness of the panels and the shape of the transverse cross-section [1-6]. An accurate 

investigation of second-order effects in glass panels has to take two main aspects into account: the effective connection level 

ensured by the interlayer, whose mechanical properties are affected by temperature and loading rate, and the initial 

imperfections due to the glass production process. Regarding the first aspect, different authors have investigated how the 

mechanical features of the viscous-elastic interlayer are affected by temperature and loading rate [7-11], highlighting the fact 

that low values of shear stiffness can be achieved in real applications. The aim of this work was to calculate the load carrying 

capacity of glass columns, including second order effects. The examined cases refer to columns constituted by two foils of 

laminated glass and assembled together with structural silicone to form glass columns with different shapes of the transverse 

cross-section (T and X shape). It was observed that buckling effect out of the plane strongly influences the compressive 

behavior of multilayer glass panels with rectangular cross-section, while torsional and local buckling effects strongly influence 

the compressive behavior of members with T or X transverse cross-sections.  

II. CALCULUS OF LOAD CARRYING CAPACITY 

Many studies have been carried out on the buckling phenomena in laminated glass panels in compression, highlighting the 

role of the time dependant effects and of the initial imperfection [2, 6]. For the strength verification of the transverse cross-

section the interaction domain, moment-axial force (Mu-Pu) was determined under the hypothesis of linear elastic behavior, and 

the same values for Young modulus in both tension and compression were assumed. In this manner, the axial force-bending 

moment domain took a polygonal shape, and considering only the case of P positive (compression), it was simply 

characterized by three points: 
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where c is the glass compressive strength (assumed positive), t the tensile strength (negative), A is the transverse cross-

section of the panel and W is the bending modulus calculated with the equivalent thickness.The expression utilised for 

equivalent thickness was the one suggested by CNR-DT (210-2012) [9] in the form:  
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where teq,w is the equivalent thickness useful for the calculation of deformation and teq,1 is the equivalent thickness useful for 

the strength verification. 

And 
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where E is the elastic modulus of glass (assumed 70000 MPa) and Gint is the shear modulus of PVB interlayer. 

A. Second Order Flexural Effects 

To study the second-order flexural effects in a glass column subject to pure compression and affected by initial geometrical 

imperfections (out of straightness) wo, the first-order moment was calculated as: 

 
o

I wPM  . (7) 

Belis et al. [3] proposed to assume wo in the range between L/500 and L/350, suggesting the value L/400 for 

straightforward calculations.  

The second order moment is  

  zwPM II  , (8) 

where w(z) is the lateral displacement of the beam due to the second-order effect. 

The total moment is  

   zwwPM o  .  (9) 

The differential equilibrium equation gives: 
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By introducing 
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Eq. (10) becomes 
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The solution to Eq. (8) is 
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021 )sin()cos()( wKzCKzCzw  . (13) 

The constants C1 and C2 are obtained by imposing the boundary conditions, which for a beam simply pinned are: 

 0)0( w , 

0)2(' Lw . 
(14) 

Finally the solution is 

       1sin2tancos)( 0  KzKLKzwzw . (15) 

The maximum deflection of the beam is 
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And therefore the moment is  
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By introducing the axial force P acting on the column in Eq. (17), the moment variation was obtained. The coupled P, M 

values describes the non-linear path loading. Each pair of M-P values can be placed in the Mu-Pu interaction domain, making it 

possible to calculate the failure load, which corresponds to the ordinate of the intersection point between the load pathway and 

the strength domain.  

By applying this procedure, it is possible to derive the strength domain including second-order effects. Fig. 1 shows the 

strength domain of a single compressed panels in the length of L= 300 mm, width of b=300 mm and thickness of t= 9.52 mm 

(4+4+1.52 mm). The initial out of straightness of 1/400 L was considered. Duration of the external load was assumed 3 sec. 

Corresponding values of Gint were calculated as in Bennison [13-14]. In the same graph elastic domain, elastic and inelastic 

paths loads were also given.  
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Fig. 1 Strength domain of multilayered glass panels of 300x9.52 mm with second-order effects and for short time load duration 

a) L=300 mm; b) L= 600 mm; c) L=1200 mm. 

In Fig. 1, continuous line indicates inelastic path-load, straight dashed line indicates linear elastic path-load and dashed line 

indicates strength domain. To derive the strength domain, compressive strength was assumed conventionally as c=100 MPa, 

although the value of 1000 MPa was also possible. Choosing the value of 100 MPa for the maximum compressive strength 

instead of 1000 MPa was only for graphical purpose in representation of the strength domain, yet it did not influence the value 

of load carrying capacity that is related to the tensile strength of glass. The tensile strength assumed was the value determined 

experimentally in the study of Campione et al. [12] and equals to t=37 MPa. The analysis of graphs in Fig.1 highlights a 

significant reduction in the loading carrying capacity with the increase in the slenderness of the panel. 
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B. Second-Order Torsional and Local Effects 

In the case of T and X cross-sections, a further risk of local and torsional buckling arises. For flexural buckling out of the 

plane, the same procedure of the previous section was utilized by adopting the strength modulus defined in Table 1. In the case 

of elastic torsional buckling, the members exhibit a deformation shape similar to that shown in Fig. 2.  

 
Fig. 2 Buckled mode of failure of cruciform cross-section  

In this case, the expression of resistance Noz of a simply supported column with length of L is as following. 
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with G the shear modulus of glass expressed as 
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Where J is the torsion section constant, Iw is the warping section constant and ro is the polar radius of gyration and is 

expressed as: 
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Ix and Iy are the principal axis moments of inertia and A the area of the cross-section. 

Table 1 present the expressions of J, Iw, Ix, Iy, ro and A. 

In the case of open section, the warping section constant is negligible and therefore Eq. (18) with Eq. (19) and Eq. (20) in 

terms of normal stress becomes: 
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TABLE 1 GEOMETRICAL CHARACTERISTICS OF T AND X CROSS-SECTIONS 
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R=rectangular-shaped; X =X-shaped; T= T-shaped; W=min(Ix,Iy)/yg with yg position of center of cross-section 

In the case of members with X cross-sections, Eq. (21) gives the load carrying capacity Noz. Consequantely, the stress 

results: 
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And therefore, substituting in Eq. (19) and expressions of inertia given in Table 1 results: 
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While the Eulerian load results: 
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Therefore substituting in Eq. (24) the expressions of inertia given in Table 1 it results: 
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Against buckling phenomenon a further control against local effects consists in calculating the critical load, expressed as 

suggested in [16-17] as follows:  
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With t assumed as the effective thickness of steel panels or the equivalent thickness for glass panels (see Eq. (2)) to take 

into account of the time dependant effects. Eq. (21) refers to perfect panels therefore a further penalization should be 

introduced if initial imperfection has to be introduced (see [16-17]).  

Eq. (25) in terms of normal stress results: 
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For a twisted cruciform section the maximum shear stress due to the torsional buckling load, can be calculated as suggested 

in [17] as: 
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As demonstrated in [16-17] it results: 
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To take into account of initial imperfection the initial crookedness om  can be assumed as 
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With wo=L/400 the initial imperfection due to the out of straightness. 

Noz represents the asymptotic value of critical load for member with initial imperfections. 

Finally, load carrying capacity is the minimum between Eq. (18), Eq. (23) and Eq. (25) coupled with the moment axial 

forces domain. 

III. COMPARISON BETWEEN ANALYTICAL AND EXPERIMENTAL RESULTS 

The experimental research utilised for comparison with analytical model are those of Aiello et al. [11] and of Campione et 

al. [12]. In both researches, specimens utilised are made of laminated glass, which thickness of 9.52 mm (4+1.52+4). This 

choice is connected to the use of a structural glass available commercially. It was constituted by two single foils of float glass 

had thickness t of 4 mm connected by a polyvinylbutiral (PVB) film having a thickness tint equal to 1.52 mm. Compressive 

tests were carried out on single panels and columns. Two different cross-section shapes characterized the latter; based on the 

number of assembled panels, the column had a T-shaped or X-shaped cross-section. The columns were assembled with a main 

panel having a width of 300 mm and one (T-shaped section) or two (X-shaped section) orthogonally disposed panels with side 

b=150 mm. Assemblage was achieved by structural silicone glazing. Single panels had width 300 mm, thickness 9.52 mm and 

height L equal to 300, 400, 500 and 600 mm, while for columns it was equal to 600, 800 and 1000 mm. Table 2 and Table 3 

give geometrical characteristics of specimens tested with load carrying capacity determined experimentally and theoretically.  

For local effects it was assumed v=0.2 and E=70000 MPa. Table 2 and Table 3 give data of specimens tested with 

experimental load carrying capacity values and analytical predictions. Analytical values calculated with the procedure 

proposed gives in the majority of cases examined in which torsional buckling was observed good prediction of experimental 

results.  

TABLE 2 DATA OF AIELLO ET AL. [11] AND CAMPIONE ET AL. [12] FOR PANELS WITH RECTANGULAR CROSS-SECTION 

Data from b(mm) L(mm) Pexp. (kN) Pteor (kN) 

(Eq.17) 

[11] 300 400 56.00 59.00 

[11] 300 400 60.40 

[11] 300 500 47.00 42.84 

[11] 300 500 49.60 

[11] 300 600 32.70 31.42 

[11] 300 600 33.10 

[12] 300 300 116.00 109.48 

[12] 300 300 128.00 

[12] 300 500 40.00 42.84 

[12] 300 500 48.00 

[12] 300 600 29.00 28.56 

[12] 300 600 30.00 

[12] 300 800 16.00 19.04 

[12] 300 800 22.00 

TABLE 3 DATA OF CAMPIONE ET AL. [12] FOR COLUMNS WITH T AND X CROSS-SECTION 

T cross-section 

Data from b(mm) L(mm) Pexp. (kN) Pteor (kN) (Eq.18) 

[12] 300+150 600 231 204 

[12] 300+150 600 200 

[12] 300+150 800 224 194 

[12] 300+150 800 200 

[12] 300+150 1000 214 190 

 [12] 300+150 1000 193 

X cross-section 
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[12] 300+150+150 600 269 272 

 [12] 300+150+150 600 288 

[12] 300+150+150 800 208 255 

[12] 300+150+150 800 227 

[12] 300+150+150 1000 296 248 

[12] 300+150+150 1000 272 

IV. CONCLUSIONS 

In this paper, an analytical procedure able to calculate the load carrying capacity associated with compressive strength 

cross-section (including local and global flexural and/or torsional buckling phenomenon) of shapes rectangular, X and T is 

proposed. Initial imperfections and time dependant effects, the latter associated with the viscoelastic behaviour of PVB, are 

included in the model highlighting their influences on the reduction of load carrying capacity.  

Experimental results recently obtained by the authors referred to compressive tests on glass members with different lengths 

and cross-sections (rectangular panels, T and X shape) are assumed for comparison with the analytical results obtained with the 

proposed model.  

For the range of variables analyzed the following conclusions can be drawn: 

 the buckling strength of single panels depends very much on the slenderness and time dependant effect that reduce 

drastically the load carrying capacity mainly governed by the tensile strength of glass; 

 T and X shapes of the transverse cross-section are affected mainly by local buckling and torsional buckling effects, 

which significantly reduce the bearing capacity of columns associated with compressive strength cross-section. 

Finally, analytical prediction was satisfactory when compared with experimental results and the proposed method is a 

useful instruments for a preliminary design of glass columns. Failure of glass panels connected with structural silicone often 

observed experimentally are not considered in the proposed model and further studies will be addressed to analyse these effects. 
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