
Biomedical Engineering Research  Dec. 2013, Vol. 2 Iss. 4, PP. 153-158 

- 153 - 

DOI: 10.5963/BER0204001 

A Novel Method for Curvefitting the Stretched 

Exponential Function to Experimental Data 
Ronald K. June*1, John P. Cunningham2, David P. Fyhrie3 

1Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 
2Department of Electrical Engineering, Stanford University, Stanford, CA 

Present Address: Department of Statistics, Columbia University, New York, NY 
3Departments of Biomedical Engineering and Orthopaedics, University of California, Davis, Davis, CA 

*1rjune@me.montana.edu 

 

 

Abstract- The stretched exponential function has many applications in modeling numerous types of experimental relaxation data. 

However, problems arise when using standard algorithms to fit this function: we have observed that different initializations result in 

distinct fitted parameters. To avoid this problem, we developed a novel algorithm for fitting the stretched exponential model to 

relaxation data. This method is advantageous both because it requires only a single adjustable parameter and because it does not 

require initialization in the solution space. We tested this method on simulated data and experimental stress-relaxation data from 

bone and cartilage and found favorable results compared to a commonly-used Quasi-Newton method. For the simulated data, strong 

correlations were found between the simulated and fitted parameters suggesting that this method can accurately determine stretched 

exponential parameters. When this method was tested on experimental data, high quality fits were observed for both bone and 

cartilage stress-relaxation data that were significantly better than those determined with the Quasi-Newton algorithm. 
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I. INTRODUCTION 

Relaxation experiments are widely used across multiple scientific and engineering disciplines. Examples include dielectric 

relaxation, for characterization of dielectric responses to external electric fields [1], nuclear magnetic relaxation, used to 

characterize the molecular mobility of paramagnetic atomic nuclei [2], and stress-relaxation, which characterizes the response 

of a viscoelastic material to a rapid deformation [3].   

Interpreting relaxation data involves fitting mathematical models to the experimental data to determine how the model 

parameters vary between experimental conditions. Therefore, curvefitting the model to the experimental data is of fundamental 

importance for deriving meaningful model parameters toward improved understanding of physical systems. Many different 

models have been used to fit relaxation data including various mono and multi-exponential functions [4-9]. The stretched 

exponential function (Equation 1) is a common model for describing relaxation data. This model has been used extensively to 

represent the stress-relaxation of biological tissues and other systems [10-14].   

The stretched exponential model presents significant challenges for standard curve fitting methods, including redundant fits 

(Figure 1). The present study was motivated by these fitting difficulties which present a challenge to the interpretation of 

relaxation data modeled by the stretched exponential model. Our objective was to develop a method for stretched exponential 

fitting that improves the aforementioned difficulties. 

 

Fig. 1 Non-unique fitting of the stretched exponential function to relaxation data using a gradient-based steepest descent method. (A) Two distinct converged 

models for the same experimental dataset have substantially different  and β values while having similar derivative values (B). These fits were obtained by 

minimizing the weighted sum of the squared error (wSSE) between the model and the data using a Quasi-Newton method. Similar quality fits resulted with 



Biomedical Engineering Research  Dec. 2013, Vol. 2 Iss. 4, PP. 153-158 

- 154 - 

DOI: 10.5963/BER0204001 

disparate combinations of fitted parameters that depended on the initialization of the algorithm. These results demonstrate the challenges associated with using 

a descent-based fitting method to determine stretched exponential parameters from experimental data. 

II. METHODS 

A. Stretched Exponential Model and Optimization Framework 

The stretched exponential function is a model for relaxation of complex systems (Equation 1) [15, 16]: 
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 represents the temporally-measured dependent variable (e.g. stress in a stress-relaxation experiment). This model has four 

parameters, A, B, , and β, which can be adjusted to fit relaxation data [17]. The parameters B and A represent the equilibrium 

and peak beyond equilibrium values, respectively.  is the time constant of relaxation of the system. β ( 10   ) is the 

stretching parameter. For polymer systems, the time constant can be derived from polymer statistical physics, and the stretched 

exponential form represents polydisperse collections of polymers such as cartilage [15, 16, 18]. 

Ideally, we want to minimize the weighted and squared L2 norm (wL2) between the data and the model (Equation 2) with 

respect to the model parameters.   
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In Equation 2, w represents the weight, d the data, and σ the model. The index i represents each discrete timepoint at which 

data was sampled. First, we note that this function is not convex in the parameter set, and empirically we have found this 

parameter set to have multiple local minima [19]. Both of these facts complicate fitting substantially. 

B. Data Transformation and Novel Fitting Algorithm 

Toward addressing the fitting complications, the relaxation data were transformed by first subtracting the measured 

equilibrium value, eq , followed by division by the difference between the peak and equilibrium values, eqpeak   . Note 

that these values allow direct calculation of model parameters A and B. For testing, the equilibrium value was estimated from 

the average of the last 0.25 seconds of data and the peak value from the largest stress value. We call the transformed data  

(Figure 2, Equation 3): 

  (3) 

 

Fig. 2 Transformation used in Tβ method. This method utilizes the parameter D̂  to fit the data. D̂  is calculated by transforming the data as shown. 

Relaxation data (A) were transformed via Equation 3. The shaded region (B) represents D̂  which is calculated from the experimental data and used to 

calculate the final fitted parameters. 
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Our goal becomes to find the values of  and β that best fit the transformed data using the transformed model (̂ , Equation 

4):  

  (4) 

We applied an additional constraint that required the area under the curve of the transformed data to equal the area under 

the transformed model. Experimental noise is usually symmetrically-distributed (data not shown), so this is a logical constraint. 

We defined  as the area under the transformed data and  as the area under the transformed model.  was calculated in 

closed form (Equation 5), as 
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where Γ is the gamma function.  was estimated from the data using the trapezoidal rule [20]. Applying the area constraint, 

 = , allows us to solve Equation 5 for , substitution of which into Equation 6 yields a one-dimensional  optimization 

problem, with the single free parameter β. 
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We minimized the squared L2 norm of the weighted residuals between the transformed data and the model (Equation 7): 
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Weights, 
iw , were determined using a standard method by dividing the stress at each timepoint by the signal variance, 

which provided a method for minimizing the potentially dominant influence of datapoints collected during the equilibrium 

portion of the experiment which have a low signal to noise ratio (e.g. Figure 1a) [21]. Fitting the model required determining 

the free parameter β that minimizes Equation 7. Note that the domain of β is (0, 1). Hereafter, we refer to the method 

presented above as the Transform-β (Tβ) method. 

We minimized Equation 7 for values of β between 0 and 1 using the Golden Section Search algorithm with custom-written 

MATLAB (Mathworks, Natick, MA, USA) software. Our convergence criterion was a change of less than 10-9 between 

successive values of either β or the cost function. The Tβ algorithm was compared to a commonly-used Quasi-Newton method 

implemented in MATLAB via the function fminunc with the same convergence criterion using initial values of  = 5 and β = 

0.5. This Quasi-Newton method utilized a line search procedure [22], finite-differences to approximate the Hessian matrix via 

the BFGS method [23-26], and the same convergence criterion as the T algorithm. 

C. Data for Algorithm Testing 

The optimization algorithms were tested on both simulated and experimental data. Simulated data were generated from a 

stretched exponential function with randomly-selected parameters of known values, which acted as gold standards for 

determining the accuracy of the fitting method. These data (n = 100) were simulated using  and  values sampled from a 

uniform random distribution (0 <  < 10 and 0 < β < 1) with normally distributed noise added with a variance σ2 = 2.68x10-6. 

The experimental data used to test the curvefitting algorithm consisted of stress-relaxation tests performed on cartilage and 

bone samples. For the tests, a rapid compression was applied and the relaxation of the stress, defined as measured force divided 

by the initial sample cross-sectional area, was observed. For cartilage tests, a 5% compression was applied followed by 300 s 

of relaxation for n = 70 samples [12]. For demineralized bone samples [27], a 50% strain was applied and relaxation data were 

sampled for 1000 s (n = 6). 

D. Analysis 

The quality of the fitting methods was assessed using both a nonlinear R2 metric (Equation 8) [7, 28] and the value of the 

weighted L2 norm for the converged fit parameters.   
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For calculation of R2, meand̂  represents the average value of the transformed data and the subscript i represents the index of 

the discretely-sampled data. The wL2 norm values were normalized by dividing by the number of datapoints to account for 

small variations in sampled datapoints between experiments. To compare the algorithms, Wilcoxan Signed-Rank tests [29] 

with an a priori significance level of  = 0.05 were used to assess statistical differences between R2 and wL2 values. To assess 

the accuracy of the Transform- method, linear correlation coefficients were calculated between the fitted  and  values and 

the gold-standard parameters used to simulate the data. To examine the T method, graphs of the wL2 norm as a function of  

were generated and examined for each stress-relaxation dataset. The relaxation data are downsampled for ease of visual display 

in all plots.   

III. RESULTS 

Data for the fit quality metrics of R2 and wL2 norm were found to be non-normally distributed using the Lilliefors test [30], 

necessitating the use of the non-parametric Wilcoxan test for statistical comparison between the novel Transform- method 

and the Quasi-Newton algorithm. The Transform- method resulted in significantly larger R2 values (p = 0.0003) and smaller 

wL2 norm values (p = 0.003) than the Quasi-Newton method when fitting the stress-relaxation data from bone and cartilage 

samples (Figure 3). Generally, the T method resulted in qualitatively better or similar fits than the Quasi-Newton method for 

each experimental dataset. The worst fits for the T method were better than the worst fits for the Quasi-Newton method 

(Figure 4). The T method resulted in accurate fits for both stretched exponential parameters  (r = 0.97) and  (r = 0.99). 

Graphs of wL2 norm as a function of  demonstrated a single minimum for each dataset (n = 76) indicating that the T method 

results in unimodal fits. When fitting the simulated data, each algorithm failed to converge on a meaningful solution for a small 

number of datasets (3 out of 100 for the T method and 10 out of 100 for the Quasi-Newton method). 

 

Fig. 3 The Transform- method resulted in higher-quality fits than the commonly-used Quasi-Newton method. Each symbol represents results from an 

individual experimental dataset connected by gray lines between methods. (A) R2 values were significantly larger (p = 0.0003) for fits resulting from the T 

method than those resulting from the Quasi-Newton method. (B) wL2 norm values were significantly smaller for the T method than for the Quasi-Newton 

method (p = 0.003). 

IV. DISCUSSION AND CONCLUSIONS 

The algorithm presented herein fits the model using a single adjustable parameter in a transformed space which greatly 

simplifies computation. Using simulated data, we compared this algorithm to a common Quasi-Newton method and found both 

good performance and accurate fits over a wide parameter range for the novel method. Furthermore, we tested this method on 

experimental stress-relaxation data from bone and cartilage, and found that it provided good fits that were better than the 

Quasi-Newton method. 

The Transform- method provided high-quality fits to the experimental data. Large R2 and small wL2 values (Figure 3) 
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demonstrate the capacity to fit cartilage and bone stress-relaxation data (Figure 4). The T method resulted in better fits than 

the Quasi-Newton method as assessed by R2 and wL2 norm values indicating that it may be an improvement for determining 

stretched exponential parameters for relaxation data. The high-quality fits to the simulated data suggesting that the T 

algorithm may be generalizable to many different relaxation systems [1, 2, 6, 10]. 

 

Fig. 4 The Transform-β method yielded better fits to both bone and cartilage stress-relaxation data than the Quasi-Newton method. Panels A-C (left) show 

cartilage data and panels D-F (right) show bone data. Best (top), median (middle), and worst (bottom) fits were determined, respectively, by the smallest, 

median, and largest normalized wL2 norm values obtained using the present method. For comparison, the Quasi-Newton results are shown in black. 

The T method has advantages compared with the Quasi-Newton and other gradient-based methods. While gradient-based 

methods require an initialization in the solution space, because the T method requires searching for only a single parameter 

over a finite interval (0 <  < 1), no initialization is needed, and the entire solution space can be searched. Finally, in all of the 

datasets examined, the wL2 norm appears to be a unimodal function of  indicating that unique solution can be obtained to 

avoid the problems of redundant fits (Figure 5).   

                    

Fig. 5 Large correlation coefficient values between simulated data (gold standard) and converged model parameters for the present method. Gold standard data 

were simulated numerically including zero-mean noise. The proposed algorithm was used to determine τ and β from the simulated data. Large correlations > 

0.96 were found between the gold standard values for both τ (A) and β (B). 
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While the T method can provide high-quality fits to experimental and simulated data, there are important limitations to 

this method. First, the relaxation data to be fit must be shaped as a stretched exponential. Non-stretched exponential relaxation 

data cannot be fit by this algorithm. Additionally, the T method is challenged by datasets containing small  and large  

values. In these cases our empirical results suggest that good estimation of the equilibrium values is essential toward using the 

T method to obtain high-quality fits.   

In conclusion, we have developed a novel algorithm for determining the stretched exponential parameters for relaxation 

data. This method is advantageous compared with other fitting algorithms in that it does not require an initialization in solution 

space and requires searching in only one dimension. 
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