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Abstract- Damped wave conduction and relaxation equation is solved in three dimensions in order to gauge the ampacity risks in PCB 
interconnections. V = u/r substitution is used and the temperature profile is obtained in three dimensions and in one dimension. In the 
creeping transfer limit, the spatio-temporal profile is given as a modified Bessel composite function in space and time of the third order. 
Three regimes of solution are identified; (i) lag regime; (ii) rising regime given by Bessel composite function in space and time and; (iii) 
rising regime given by modified Bessel composite function in space and time. In the general case, the order of the solution is found to be 
7/2 and the order of the solution is two in the case of one dimension. 
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I. INTRODUCTION 

Information handling systems (IHS) are used to process, compile, store and communicate data for business personnel or other 
similar purposes. Application specific requirements are used to configure IHS. It may use one or more computer systems, data 
storage systems and networking systems. Depending on the information handled, the IHS may differ from one application to 
another. They may differ as to what information is handled, how the information is processed, stored, communicated and how soon 
and efficiently the information may be processed, stored or communicated. IHS may be configured for general use or for specific 
use such as passenger reservation in the airlines, railways, credit card transactions, global communications, and enterprise data 
storage. A variety of hardware and software components may be configured to perform different tasks such as storage, 
communication, processing.   

  During the design and manufacture of HIS, one salient consideration is the detection of areas of the system or circuit that are 
prone to certain risks. Corrective steps have to be taken in order to minimize these risks. One example is the ampacity risks on 
circuit boards. The circuit or interconnection may go back to the drawing board stage for rerouting. “Ampacity’ is defined [1] as 
the current in amperes that a conductor can carry continuously under the condition of use without exceeding the temperature rating 
or fuse point. The simulation, analysis, validation to laboratory data, direct current (DC) and short duration, alternating current (AC) 
transient pulse effects on the ampacity risks on PCB interconnectivity are needed. This would result in assessment of ampacity 
risks on PCB interconnections and improvement of the reliability of the operation of IHS. One critical aspect is the computation of 
heat conduction at short times where non-Fourier effects can be expected. The damped wave conduction equation may be 
applicable here. The damped wave conduction and relaxation equation was sought over Fourier’s law of heat conduction for eight 
reasons by Sharma [2].    

The damped wave conduction and relaxation equation was originally suggested by Maxwell [3], and postulated independently 
by Cattaneo [4, 5] and Vernotte [6]. The damped wave conduction and relaxation equation in one dimension across constant area 
may be written as follows; 
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Where qx is the heat transfer rate in x direction in (watts, w), A is the cross-sectional area across which the heat conduction 
occurs in (m2), k is the thermal conductivity of the material in (w.m-1.K-1), τr is the relaxation time (s). 

Reviews of the use of this equation have been presented by Joseph and Preziosi [7, 8] and Ozisik and Tzou [9].  Extensive 
theoretical treatments of the equation have been reported by Tzou [9] and Sharma [10].  Experimental measurement of relaxation 
times has been reported by Mitra et al. [11] recently for biological materials. Taitel [12] found an overshoot in his transient 
temperature solution for a finite slab subject to constant wall temperature boundary condition.  Bai and Lavine [13] was concerned 
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about Eq. (1) violating the second law of thermodynamics. Zanchini [14], Barletta and Zanchini [15] calculated an entropy 
production term and are concerned of a violation of Clausius’ inequality.  Al Nimir et al. [16, 17] discussed an “overshoot” and 
equilibrium entropy production. Haji Sheik et al. [18] pointed out some anomalies in Eq. (1).  Tzou [9] has found Eq. (1) to be 
admissible within the framework of the second law of thermodynamics. Sharma [19-25] has presented closed form analytical 
solutions for different geometries within the bounds of the second law of thermodynamics; the damped wave equation was derived 
by accounting for acceleration of the molecules in the Stokes-Einstein formulation, demonstrating that the overshoot disappeared 
using the physically reasonable initial condition. Final condition in time was used and bounded solutions without violating the 
second law of thermodynamics were presented. Antaki [26] has discussed some analytical solutions for convective boundary 
condition. 

 Analytical solutions are derived in this study for the damped wave conduction equation in three dimensions (3D). The 
solutions are in the form of Bessel composite function of the third order. The derived spatio-temporal temperature profiles can be 
used to gauge the ampacity risks in PCB interconnections. 

II. THEORY 

The ‘defect’ region is modeled as a spherical shell with radius R0. The effects of the defects can be in any direction. The 
transient temperature field surrounding the surge needs to be represented using spherical coordinates. Spherical coordinates can be 
used when events in arbitrary direction becomes important. Spherical coordinates are used when the cross-sectional area along the 
path of heat conduction changes such as in conical objects. The governing equation for temperature, T (0 K) can be obtained as 
follows; an energy balance on the spherical shell at a distance r from the origin can be written. When combined with the damped 
wave diffusion and relaxation equation, it becomes 
















∂
∂

∂
∂

=
∂
∂

+
∂
∂

r
Tr

rrt
T

t
T

r
2

22

2 ατ  (2) 

Let 

rrs

rXt
TT
TT

u
αττ

τ ==







−
−

= ;;
0

0  (3) 

Eq. (2) is made dimensionless by using the variables defined in Eq. (3), then Eq. (2) becomes 
















∂
∂

∂
∂

=
∂
∂

+
∂
∂

X
uX

XX
uu 2

22

2 1
ττ

 (4) 

The time and space conditions can be written as 

τ = 0, u = 0 (5) 

τ = ∞, u = 1 (6) 

τ > 0, X = XR0,   u = 1 (7) 

X = ∞,   u  = 0 (8) 
These boundary conditions represent the constant wall temperature surface boundary condition in an infinite medium. The 

infinite space assumption lends the solution with fewer terms and is physically reasonable. The two time conditions, i.e., one at 
initial time and the other after infinite time, has been assumed as a first approximation.  

Substituting V = u/X into Eq. (4), we can get  
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The damping term can be removed by the substitution V = Wexp(-nτ) and τ is defined in Eq. (3). As shown in the preceding 
sections for n = ½, Eq. (9) becomes; 
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Let η = τ2 – X2 

The term 2W/X2 can be neglected for a large X, because at large distances from the point of disturbance, the effect cannot be 
seen to an appreciable extent. W can be expected to be small for a large r as u = Wexp (-τ/2)/r.  For a large X, Eq. (10) can be 
modified as follows. 

Now each of the terms in Eq. (10) in terms of X and τ  is transformed in terms of η,  
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Comparing Eq. (13) with the generalized Bessel equation, the solution is; 

a = 3; b = 0; c = 0; d = -1/16; s = ½ 

The order p of the solution is then p = 2 and 2=
s
d

. The generalized Bessel equation and forms of Bessel solution are 

given in [10]. In the following equation (14), 2 is the order of the function, I2 is the modified Bessel function of the first kind and 
second order and K2 is the modified Bessel function of the second kind and second order. 
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Where c2 can be seen to be zero as W is finite and not infinitely large at η = 0. At η = 0, the velocity of heat times, the time 
ordinate t becomes the space ordinate r. This can be seen at the point where the disturbance would have travelled at the speed of 
heat. 
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Where c1 can be eliminated between the above equation and the equation from the boundary condition. The boundary condition 
is given by Eq. (7). 
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Thus for τ > X 
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For X > τ, 
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On examining Eq. (18), it can be seen that the Bessel function of the second order and first kind will go to zero at some value of 
η. The first root of the Bessel function occurs when 

½(X2 - τ2)1/2 = 5.1356 (19) 

How 5.1366 was obtained is discussed in details by graph in Ref. [10]. It has something to do with the zeros of the function 

considered. In this case, it’s the first root of the Bessel function. 

Or    X2 - τ2 = 105.498 (20) 

 When an exterior point in the infinite sphere is considered, a lag time can be calculated prior to when there is no heat 
transfer to that point. After the lag time, there exist two regimes. One is described by Eq. (18) and the third regime is described by 
Eq. (17).  Thus, 

τlag = sqrt( Xp
2  - 105.498)                  

 

Fig. 1 Three regimes of dimensionless temperature at an exterior point from the defect 

All the three dimensions of the spherical coordinates are considered. The V = u/r substitution is used and the spatio-temporal 
temperature in the infinite sphere is derived as follows. 
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 The governing equation for the temperature is obtained when the energy balance equation and the constitutive damped 
wave diffusion and relaxation equation are combined. The equation is made dimensionless by using the substitutions in Eq. (3). 

 Then the governing equation in three dimensions in spherical coordinates can be written as; 
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Substituting V = u/X into Eq. (21), we can get 
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The damping term can be removed by a V = wexp(-nτ) substitution. As shown in the preceding sections for n = ½, Eq. (22) 
becomes 
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For small θ by Taylor approximation as shown in [10],  
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Let ξ = θX,    
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ψ = φXSinθ,  
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Eq. (24) then becomes for a large X,  
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Consider the transformation,  η = (τ2 – X2 - ξ2 - ψ2)    

As shown in Eq. (11), the derivatives in Eq. (27) in four independent variables become converted into one independent variable 
(η), and Eq. (27) becomes 
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Comparing Eq. (29) with the generalized Bessel equation given in [10], the solution is 

a = 9/2; b = 0; c = 0; d = -1/16; s = ½ 

Then the order p of the solution is p = 7/2                 
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Where c2 can be seen to be zero as W is finite and not infinitely large at η = 0. An approximate solution can be obtained by 
eliminating c1 between the above equation and the equation from the boundary condition. The equation from the boundary 
condition can be written as; 
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Dividing Eq. (30) by Eq. (31) 
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For small X, 
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In the creeping heat transfer limit, Eq. (27) can be approximated as; 
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Creeping limit is suitable for problems in spherical geometry. The characteristics of transient temperature close to the sphere R0 
can be expected to be completely different from that far from the sphere. Creeping flow assumptions have been made successfully 
in fluid mechanics in the flow with sphere problems. By analogy between momentum transfer and heat transfer, Eq. (27) is 
approximated as Eq. (34).  

After the transformation, the PDE with 4 variables is converted to a Bessel equation with one variable: 
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The order of the Bessel solution for Eq. (35) can be calculated by comparing Eq. (35) with the generalized Bessel equation and 
the solution is   

when a = 4, b = 0, c = 0,  d = -1/16,  s = ½ , the order p of the solution is  3 
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c2 can be seen to be zero as W is finite and not infinitely large at η = 0. The boundary condition is given in Eq. [7]. An 
approximate solution can be obtained by eliminating c1 between the above equation and the equation from the boundary condition. 
The equation from the boundary condition can be written as; 
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Dividing Eq. (36) by Eq. (37), 
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For small X, 
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For small X, 
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The solution is in terms of a Bessel composite function of the third order and first kind for a small X and a modified Bessel 
composite function of the third order and first kind for a large X. The first root of the Bessel function of the third order is 
calculated by using 17 terms of the series expansion of the Bessel function in a Pentium IV microprocessor using a Micorsoft 
Spreadsheet up to four decimal places. The root is found to be 6.3802. 
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½(X2 + ξ2 + ψ2 - τ2)1/2 = 6.3802 (41) 

Or    X2 + ξ2 + ψ2 - τ2 = 162.828 (42) 

When an exterior point in the infinite sphere is considered, a lag time can be calculated prior to when there is no heat transfer to 
that point. After the lag time, there exist two regimes. One is described by Eq. (40) and the third regime is described by Eq. (39). 
Thus, 

828.162222 −++= ppplag X ψξτ  (43) 

III. CONCLUSIONS 

Analytical solutions are presented to evaluate the ampacity risks in PCB interconnections. Earlier studies have used numerical 
solutions. In [1], conjugate gradient numerical analysis method is used for the non-Fourier heat conduction equation. In this study, 
analytical solutions are presented for the damped wave conduction and relaxation non Fourier model. Method of relativistic 
transformation is used. Solutions in one dimension and in three dimensions are given. The orders of the Bessel composite functions 
are: (i) 7/2 for the 1 dimensional case; (ii) 2 for the three dimensional case and (iii) 3 for the case with the ‘creeping limit’ 
assumption.Three regimes can be seen in each solution: (i) inertia lag regime; (ii) rising regime characterized by Bessel composite 
function and; (iii) rising regime characterized by modified Bessel composite function in space and time. The final condition is 
made to obtain physically realistic solutions. These solutions are within the framework permitted by the second law of 
thermodynamics. Other reports with violating the second law and overshoot occurrence can be seen due to the use of unrealistic 
initial accumulation condition [10]. The occurrence of solution with spatio-temporal symmetry can have implications in the special 
theory of relativity proposed by Sir Albert Einstein. Model can be used to prevent potential damage to predetermined excitation.  
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