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Abstract-This paper proposes a new estimation algorithm that accurately predicts the delay, slew rate at each wire endpoint based on 

an RC extraction, regardless of the number of RC sections and the effective capacitance (Ceff) seen by a gate. In addition, an 

improved slew rate estimation metric based on prior work is introduced. The delay and edge rate results compare favourably with 

respect to HSPICE simulation results and are more accurate than those from the leading commercial static timing analysis tool. 
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I. INTRODUCTION 

The propagation delays of interconnect lines, and particularly the delays to specific wire endpoints, play an increasingly 

important role for today‟s submicron technologies. The chip sizes and wire lengths have not reduced much due to current 

elaborate levels of integration, while interconnect wires have become narrower, thicker and more tightly packed. For quite 

some time it was sufficient to consider only the effects of interconnect capacitance when performing static timing analysis 

(STA). However, with current technologies, the impact of wire resistances on gate and path delays is critically important for 

many wires. Thus, an accurate gate-plus-wire delay model is necessary in order to in turn achieve accurate STA results.  

A variety of wire-modeling methods have been proposed, including the lumped capacitance model, pi-model (or π-model), 

lumped RLC network model, lumped RC network model, and distributed transmission line model [1]. The lumped capacitance 

model (Fig. 1) simply sums up all extracted capacitances, ignoring resistances and inductances, saving computation time but 

underestimating path delays. The single π -model (Fig. 2) contains two resistors and one capacitor (in a π configuration). 

Instead of analyzing the entire network, the π -model only converts the network to a single π -structure and analyzes it [2, 3]. 

This is the simplest model that captures some of the effects of resistive shielding. The distributed transmission line model (a 

lumped version of this is shown in Fig. 3) fully represents the interconnect, including all resistor, capacitor and inductor effects, 

yielding good accuracy. However, this model is usually overly complex, leading to unacceptable computation times, unless the 

signal ramp time, and the corresponding propagation distance for that duration, approaches the length of a portion of the net [1, 

3]. The lumped RC network model shown in Fig. 4 is currently the mostly widely used model in industry for STA, where it is 

specified in a Standard Parasitic Exchange Format (SPEF) file. The lumped RC model normally uses a number of RC 

segments to represent a wire so that a tolerable runtime is achieved with sufficient accuracy. 

 

Fig. 1 Lumped capacitance model 

 

Fig. 2 Single π-model 
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Fig. 3 Lumped RLC network model 

 

Fig. 4 Lumped RC network model 

As illustrated in Fig. 5, STA requires an accurate computation of the delay from A to B based on the lumped RC network 

model, that is, the delay of a gate as well as the delay of interconnect it drives. A popular method to solve this problem is to 

decompose the problem into two steps [2], as illustrated in Fig. 6. In this approach, the whole RC network is replaced by an 

effective capacitance Ceff attached directly to the gate output, which enables table look-up to compute the delay d1 at point A‟. 

Then the wire delay d2 from A‟ to B is computed using an approximated ramp input acquired from the previous step. 

 

Fig. 5 Delay from A to B 

 

Fig. 6 Two-step approach 

The d1 computation usually comprises two steps: converting the RC network to a single π -model and then converting the 

single π -model to an effective capacitance, as shown in Fig. 7 [3-8, 15, 16]. O‟Brien proposed a method in [3] to obtain the 

converted π -model parameters by matching the driving point admittance function of the actual gate load to the driving point 

admittance of the π -model up to 3
rd

 order. Ceff is converted from the single π -model based on the Thevenin gate model by 

matching the currents flowing into Ceff and the actual load. 

After the d1 computation, the slew rate at A‟ and the delay from A to A‟ are obtained. The d2 computation solves for the 

delay from A‟ to B based on a purely RC network, as shown in Fig. 8. Alpert demonstrates an accurate delay metric in [9] to 

compute the delay from the source of an RC network to any ending point. Agarwal gives slew rate metrics in [10] for 

computing the slew rate at any ending point of an RC network. 
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Fig. 7 d1 computation 

 

Fig. 8 d2 computation 

The above two-step delay estimation method is popular and is used by the industry leading commercial static timing 

analysis tools. However we have found that the two-step approach is not accurate enough in many cases. Breaking the single 

delay calculation of Fig. 5 into the two-step approach of Fig. 6 doubles the error accumulation steps. First, converting a 

complex extracted net in contemporary technology to a single π -model is substantially error-prone, especially when the wire 

delay tends to dominate the total delay in Fig. 5. Second, we have observed that the edge rate at node A‟ in Fig. 6 is not close to 

linear, which is what is used by the leading methods such as by Agarwal [10]. In fact, the simulated edge rates at A‟ in Fig. 6 

for significant wire loads are observed to be best modeled as multi-slope piecewise linear fits, with a set of rather different 

slopes. Prior work has simply tried to model the input edge at A‟ with a single slope and we have found that this is a significant 

source of error.  

We believe it would be best to entirely avoid having to deal with computing the waveform at A‟ and instead seek a gate 

plus wire delay model that captures in one step the entire delay from A to B in Fig. 5. We developed this new model and the 

algorithms for computing accurately the delay from A to B in Fig. 5, including the slew rate at B.  

Our proposed algorithm accurately estimates the delay and slew rate at each wire endpoint based on arbitrary RC 

extractions, regardless of the number of RC sections. The new method avoids the error-prone two-step approach and instead 

computes d1 + d2 in one step. Moreover, we developed a new algorithm to estimate the effective capacitance (Ceff) seen at the 

output of a gate. In addition, we developed an improved slew rate estimation metric for an endpoint such as B. Our delay and 

edge rate results compare favourably with respect to SPICE simulation results. 

II. EQUIVALENT DRIVER RESISTANCE AND CEFF 

Referring to Fig. 11, if an RC network is driven by a voltage source with a step input or single slope, there have been 

reports of effective algorithms for accurately estimating the delay and slope at endpoint D, as well as endpoints A, B and C [9]. 

In Fig. 11, Rd can be viewed as the Thevenin equivalent resistance of the driver (voltage source).  

Therefore, our key idea is to leverage this body of prior work for computing endpoint delays and slopes by finding an 

effective approach for computing the equivalent resistance of the driver or Rd. This is nontrivial since Rd for a static CMOS 

gate is highly nonlinear and we wish to select one value for Rd that yields accurate endpoint delays and slopes. Because of the 

nonlinearities, we find it necessary to find distinct Rd values for each of the following for an endpoint: rise delay (dr), fall delay 

(df), rise slope (sr), and fall slope (sf). If we are successful in finding such a set of four Rd‟s, we can leverage and extend prior 

work to accurately compute endpoint delays and slopes in one step. 
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The time constant at A in Fig. 9 must match the time constant at A in Fig. 11. However, as the explicit resistance is not 

known for the gate in Fig. 9 and in addition the load consists of multiple  stages, it is not trivial to form this match. Instead, 

we iteratively compute a Ceff, as shown in Fig. 10, while seeking to match the time constant at the output of the gate in Fig. 10 

with the time constant at point A in Fig. 11. The time constant at point A in Fig. 11 is given by: A = Rd Ctotal, where Ctotal = C1 

+ C2 + C3 + C4. 

 

Fig. 9 A gate driving an extracted wire load 

 

Fig. 10 Gate of Fig. 9 driving Ceff instead of the π-model, where the time constant at A in Fig. 9 must match the time constant at  

Ceff here. Shown are the rise delay (dr), fall delay (df), rise slope (sr), and fall slope (sf) 

 

Fig. 11 Pure RC network with step function input, where the time constant at A in Fig. 9 must match the time constant at A in Fig. 11 

The time constant ( at the output of the gate in Fig. 10 cannot be explicitly determined, but certainly is proportional to Ceff. 

Fig. 12 shows the charging and discharging curves for node A in Fig. 11. 
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Fig. 12 Rising and falling delay match 

Assuming an exponential charging waveform for node A, we expect Vout to obey the following relationship, where τA = Rd 

Ctotal: 
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Rearranging: 
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Now solving (3) for Rd: 

 



Rd _ rise_ delay 
output dr

Ctotal ln0.5

output dr

0.69315Ctotal
 (4) 

The output rise delay in the numerator is identified from the .lib data for the load (Ceff) and Eq. (4) then yields the relevant 

Rd for the output rising case. Note that the initial guess for Ceff is Ctotal. 

For delay matching when discharging the wire load (falling curve in Fig. 11): 
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Solving (3) for Rd yields: 
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Likewise, the output fall delay in the numerator is identified from the .lib data for the load (Ceff) and Eq. (8) then yields the 

relevant Rd for the output falling case. Again, the initial guess for Ceff is Ctotal. 
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With respect to edge or slew rates, this is the time between 0.3Vdd and 0.7Vdd (or vice versa for falling edges). Fig. 12 marks 

the two time points where 0.3Vdd and 0.7Vdd are reached in the voltage transitions for node A in Fig. 11. We match the time 

duration between those two time points for the two circuits (Figs. 10 and 11). 

For the charging waveform in Fig. 13, for Vout1 and Vout2: 

 

Fig. 13. Rising and falling slope match 
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Solving for t1 and t2 yields: 
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The duration from t1 to t2 is: 

  3.0ln7.0ln12  Att   (11) 

Since τA = Rd Ctotal and t2 to t1 is the slope, using (11) we obtain: 
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The result is the same for the discharging waveform slope: 
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total

f

slopefalld
C
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R

8473.0

 
__   (13) 

For the previous two equations, the output rising and falling slopes are identified from the .lib data for the load (the initial 

guess for Ceff is Ctotal.) and the equations then yield the relevant Rd for the rising and falling slopes.  

Given that we have computed Rd, albeit with an overly large initial estimate for Ceff (equal to Ctotal) we now refine our 

approximation of Ceff by using the Rd just computed. We developed a closed-form expression for Ceff for this purpose. Separate 

Ceff‟s are calculated for each of rise delay, rise slope, fall delay and fall slope since there is a different Rd for each case. 

As mentioned earlier, we seek to match the time constant at the output of the gate in Fig. 10 (with load Ceff) with the time 

constant at point A in Fig. 11. That is, we require  = A, and therefore  = A = RdCtotal. 

Consider a charging event at the endpoints (A, B, C and D) in Fig. 11, starting from a completely discharged state. Ceff is 

correctly identified when the total charge amount accumulated at endpoints A, B, C, D equals the charge accumulated on the 

capacitor Ceff in Fig. 10 when the voltage on Ceff reaches the 50% point, occurring at time t1 = ln2 = Aln2. 

The charge accumulated at each endpoint in Fig. 11 is illustrated in Fig. 14, where the sum of the Ci * Vi‟s must equal the 

charge accumulated on the capacitor Ceff in Fig. 10 at time t1, and is governed by the following equations: 

 

Fig. 14 Charging curve for each point in Fig. 11 
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where: 
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where  was replaced by A since they are to be made equal. Note that the ratio of t1 to  in (16) is ln2. In order to match the 

charge accumulated: 
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where t1/A = ln2. 

The effective capacitance is then given by: 
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which simplifies to: 
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For the discharging case in Fig. 15, the effective capacitance is derived similarly. 
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Fig. 15 Discharging curve for each point in Fig. 11 

Solving Eq. (21) the effective capacitance is: 
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which simplifies to: 
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Note that (20) and (23) are the same, and as expected, the effective capacitance is the same for both the charging and 

discharging cases. 

Using this new Ceff we again look to the .lib data to identify the new delay at the output of the gate for this load. That in 

turn allows us to compute a more accurate Rd using (4), the formula for Rd (in this situation, for the rising case), where the 

numerator is extracted from the .lib data. After obtaining the new Rd value, (20) or (23) is once again used to extract an 

improved estimate for Ceff. 

This process iterates until both Ceff and Rd converge. Upon convergence, the identified Ceff when looked up in the .lib file 

for the proper slope yields the correct delay at the output of the gate. The corresponding Rd yields exactly this Ceff. If one were 

to replace the gate with a resistor of value Rd the delay at the near point of the wire would be matched with the delay at the 

output of the gate. We use this notion to declare that we have found the most effective Rd to replace the gate in the netlist, 

arriving at Fig. 16. 

 

 Fig. 16 Pure RC network with accurate Rd 

The four algorithms we developed for respectively rise delay, fall delay, rise slop and fall slop are shown next. 

Algorithm: Compute Rd for Rise Delay 

1. For the worst-case input to output rising arc delay, use the input slope information to extract the rise delay (dr) from 
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2. Insert dr found in Step 1 into Eq. (4) to find Rd. 

3. Compute Ceff using Eq. (20). 

4. Using this Ceff, find dr from the .lib data and use Eq. (4) to find Rd. 

5. Go to Step 3 until Rd converges. 

Algorithm: Compute Rd for Fall_Delay 

1. For the worst-case input to output falling arc delay, use the input slope information to extract the fall delay (df) from 

the .lib data using Ctotal. 

2. Insert df found in Step 1 into Eq. (8) to find Rd. 

3. Compute Ceff using Eq. (20). 

4. Using this Ceff, find df from the .lib data and use Eq. (8) to find Rd. 

5. Go to Step 3 until Rd converges 

Algorithm: Compute Rd for Rise_Slope 

1. Given the gate input slope, extract the output rising slope information (sr) from .lib data using Ctotal. 

2. Insert sr found in Step 1 into Eq. (12) to find Rd. 

3. Compute Ceff using Eq. (20). 

4. Using this Ceff, find sr from the .lib data and use Eq. (12) to find Rd.  

5. Go to Step 3 until Rd converges. 

Algorithm: Compute Rd for Fall_Slope 

1. Given the gate input slope, extract the output falling slope information (sf) from .lib data using Ctotal. 

2. Insert sf found in Step 1 into Eq. (13) to find Rd. 
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3. Compute Ceff using Eq. (20). 

4. Using this Ceff, find sf from the .lib data and use Eq. (13) to find Rd. 

5. Go to Step 3 until Rd converges. 

III. DELAY AND SLOPE CALCULATION 

The next step is to determine the delays and slopes at the various endpoints of the wire, such as A, B, C and D in Fig. 16. 

For the farthest endpoint of a wire, such as D in Fig. 16, the D2M metric method [12] is used to calculate the delay. The 

D2M delay metric equation is as follows: 

 2ln2

2

2
1

m

m
MD   (24) 

In Eq. (24) m1 is the first moment of the impulse response for node D and m2 is the second moment of the impulse response 

for node D.  The jth moment for one node in the RC sections is defined as: 

 



N

k

k
jkkij mCRm

1

)(
1  (25) 

Here 
)(k

jm is the j-th moment of the impulse response for the k-th node in the path (such as A, B, C or D in Fig. 16). 

In Fig. 16, m1 and m2 for node D are computed according to (25) as: 
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  









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
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1
CRCCR

CCCRCCCCR
m

d
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       4
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3
1321

2
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1
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In (26), 
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





 (28) 

Agarwal [10] provided slew rate metrics for computing the slew rate at any ending point of an RC network and complete 

the entire sentence, where a second-moment-based slope estimation empirical formula was proposed: 

  30ln70ln2
12

22/1 ..mmrslope   (29) 

where r is an empirically derived adjusting factor: 

 
21

m/mr   (30) 

Our experiments on actual net extractions from industrial chips show that (28) is accurate for wire endpoints that are among 

the farthest away from the driver (source). However, for endpoints relatively near to the source, (29) can be substantially 

inaccurate. We have found worst-case errors for near endpoints to be in the vicinity of 20% compared to Hspice simulation. 

Net topologies can assume a wide variety of shapes, so it is not obvious how to determine whether an endpoint is near-end 

(close to the source) or far-end (more towards the farthest endpoint from the source). In an attempt to quantify the relative 

nearness or farness from the source, we defined the notion of a location factor. 

The location factor for an endpoint x is defined as the ratio of x‟s first moment 



m1
x  

over the first moment of the endpoint 

(max) having the largest first moment (often but not always the endpoint farthest from the source) for this net. 
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max
1

1_
m

m
factorlocation

x

  (31) 

The smallest numerical value for the location factor we have seen for industrial circuits is approximately 0.6, so the range 

for the location factor is about [0.6, 1]. 

We have determined that (29) and (30) as proposed in [13, 14] work well for determining slopes for location factors in the 

upper half of this range, or [0.8, 1] and not well at all for the lower half of the range, or [0.6, 0.8]. As indicated in Table 1, we 

have found that much more accurate slopes are ascertained if the square root of the r proposed in (30) is used for location 

factors in the range of [0.6, 0.8]. In Fig. 16 we show a RC network without any branches but actually our algorithm works for 

all scenarios including networks with various branches. 

TABLE 1 ADJUSTING FACTORS ACCORDING TO LOCATION FACTORS 

Location factor 0.6~0.8 0.8~1 

Adjusting factor r1/2 [sq. rt. of (27)] r  [as in (27)] 

IV. RUN TIME REDUCTION 

We have noticed that for some gates in the layout the wire resistance is small enough that simply using the lumped 

capacitance model (i.e., only using Ctotal) is sufficient. However, it is necessary to determine specific criteria as to when the 

lumped capacitance model is sufficient. For example, we require less than 1% error compared with Hspice simulation. 

We introduced the notion of a “resistance limit” or Rlimit so that if the aggregate resistance of the net is less than Rlimit, then 

the lumped capacitance model is sufficient to assure 1% accuracy with respect to Hspice simulation. We have observed that 

Rlimit not only depends on Ctotal but also the type (logical function) and size of the driving gate. We therefore built a three-

dimensional lookup table containing Rlimit values, depending on logical function (gate), size and Ctotal. 

To fill the table, we selected a 10-section RC -network to represent the wire load for each specific gate size. A 10-section 

network represented the smallest size for which there were diminishing returns from spending additional computation time. A 

range of Ctotal values were selected, and these were evenly distributed over the ten  sections. The Ctotal range selected is from 

approximately the smallest capacitive load seen on a chip to approximately the largest seen on a chip, typically a total of about 

7 or 8 values. 

For each capacitance value, using Hspice simulation, we find the largest total resistance (distributed evenly over the  

sections) termed the Rlimit for which the difference in delay or slope between the lumped capacitance model and the -section 

model is no more than 1%. Figs. 17 and 18 illustrate how Rlimit varies versus Ctotal for two inverter drive strengths, inv_1 and 

inv_8, from an industrial 45 nm library. 

 

Fig. 17 Rlimit versus Ctotal for INV_1 
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Fig. 18 Rlimit versus Ctotal for INV_8 

We generate tabular data of the type shown in Figs. 17 and 18 for each drive strength for each cell in the library. It is then 

straightforward to interpolate for any specific Ctotal value. 

Our procedure is as follows: Given a wire load for a specific gate, we sum the capacitances to obtain Ctotal. We use the Rlimit 

table (as in Figs. 17 and 18) to get Rlimit for this net, using interpolation or extrapolation as necessary. If the aggregate wire 

resistance for this net exceeds Rlimit, then we use our new one-step approach (using the four algorithms in Section II for the 

equivalent driver resistances (Rd‟s) as well as the equations in Section III) to obtain the delay and slope information. Otherwise, 

we simply use the lumped capacitance model for obtaining delay and slope for this net. 

For an industrial chip consisting of over 100,000 standard cells (and nets) and having a total of 513,223 wire endpoints, a 

total of 50,233 nets including 231,070 sinks had aggregate resistances, for the specified Ctotal, which fell below their respective 

Rlimit and were thus eligible for the simpler lumped capacitance analysis. Table 2 shows the results for these 50,233 nets. Note 

that the worst-case error can slightly exceed 1% due to interpolation and also since real net extractions do not consist of 10 -

sections with uniform R and C distributions. 

TABLE 2 SIMULATION RESULTS BASED ON LUMPED C MODEL 

 Mean Error vs. Hspice % endpoints with less than 1% or 1ps error vs. Hspice Worst error vs. Hspice 

Delay 0.85% 98.2% 1.2% 

Slope 0.91% 97.6% 1.5% 

Our delay and slope estimation algorithms are summarized here. 

Algorithm: Compute Endpoint Delays for Gate (g) 

1. Note the logic function of g and its size, also compute Rtotal and Ctotal for the extracted net driven by g. 

2. Compute Rlimit based on information gathered in Step 1. 

3. If Rtotal is less than Rlimit, use the lumped capacitance model to determine the endpoint delays. 

4. Otherwise use Algorithm Compute Rd for Rise Delay or Algorithm Compute Rd for Fall Delay from Section II 

(depending on whether rise or fall delay, respectively, is desired for g) to obtain Rd. 

5. For any desired endpoint of this extracted net, use (24) to estimate the delay (rise or fall). 

Algorithm: Compute Endpoint Slopes for Gate (g) 

1. Note the logic function of g and its size, also compute Rtotal and Ctotal for the extracted net driven by g. 

2. Compute Rlimit based on information gathered in Step 1. 

3. If Rtotal is less than Rlimit, use the lumped capacitance model to determine the endpoint slopes. 

4. Otherwise use Algorithm Compute Rd for Rise Slope or Algorithm Compute Rd for Fall Slope from Section II 

(depending on whether rise or fall slope, respectively, is desired for g) to obtain Rd. 
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5. For any desired endpoint of this extracted net, use (29), (30) and Table 1 to estimate the slope (rise or fall). 

The Rd convergence requirement is set as 0.1% in our program. In such a criteria Rd is converged within three iterations for 

all nets. And the average CPU time is 0.08 ms. The algorithm complexity is O(n). 

V. DELAY AND EDGE RATE RESULTS 

We selected an industrial chip consisting of over 100,000 standard cells (and nets) and having a total of 513,223 wire 

endpoints to evaluate our new approach, which was implemented in C. In Table 3 we compare our results for each of the 513k 

endpoints versus those obtained by Hspice simulation, which yields the precise results. We also show the leading commercial 

STA tool‟s results versus Hspice.  

TABLE 3 SIMULATION RESULTS BASED ON LUMPED C MODEL 

 Mean error vs. Hspice % endpoints  with error: <1% or 1ps vs. Hspice Max. error vs. Hspice 

Delay (ours) 0.49% 93.6% 9.4% 

Delay (PrimeTime) 1.35% 42.2% 11.3% 

Slope (ours) 1.88% 39.1% 9.8% 

Slope (PrimeTime) 2.51% 33.6% 10.6% 

The mean errors for our results versus Hspice are shown in the first column of Table 3. The second column shows the 

percentage of the endpoints whose error was less than one percent or less than one picosecond, either of which could be 

considered as sufficiently accurate. The third column indicates the maximum error found among the 513k endpoints. 

Note that our new algorithm substantially outperforms the leading commercial STA tool for delay, and gets about 94% of 

the sinks to within very good accuracy. Our algorithm also outperforms the commercial STA tool for edge rate determination. 

The worst-case slope error for our algorithm is 9.8% whereas we found that using previous work [13, 14], the worst-case error 

was 20%. 

VI. CONCLUSIONS 

We have proposed new algorithms to accurately estimate the delay and slew rate at wire endpoints of an extracted RC 

network. The algorithm calculates an equivalent resistance to replace the driving gate of the extracted net so that the delay and 

slew rate at each endpoint can be estimated using established techniques (or metrics). Furthermore, we appreciably improved 

these delay and slope metrics. We also developed an approach that quickly determines whether or not the lumped capacitance 

model is sufficient for determining the delays and slopes for the endpoints of an extracted RC network. The delays and slopes 

produced by our new estimation algorithms are quite accurate with respect to Hspice simulation results, while substantially 

outperforming previously published work as well as the leading commercial tool (Synopsys‟ PrimeTime). Finally, the newly 

developed algorithm also estimates the effective capacitance (Ceff) seen by a gate. The future work includes improving the 

algorithm for providing a more accurate modelling of slope estimation and proving the proposed effective capacitance (Ceff) 

estimation methodology in this paper is a better one compared to commercial tools. 
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