
Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 1 -

A New Algorithm for Accurate Wire Endpoint

Delay Estimation
Zhao Wang

1
, Carl Sechen

2

The University of Texas at Dallas, TX, 75080, U.S
1
wangzhao1984@hotmail.com;

2
carl.sechen@utdallas.edu

Abstract-This paper proposes a new estimation algorithm that accurately predicts the delay, slew rate at each wire endpoint based on

an RC extraction, regardless of the number of RC sections and the effective capacitance (Ceff) seen by a gate. In addition, an

improved slew rate estimation metric based on prior work is introduced. The delay and edge rate results compare favourably with

respect to HSPICE simulation results and are more accurate than those from the leading commercial static timing analysis tool.

Keywords- Delay Estimation; RC Networks; Equivalent Resistor

I. INTRODUCTION

The propagation delays of interconnect lines, and particularly the delays to specific wire endpoints, play an increasingly

important role for today‟s submicron technologies. The chip sizes and wire lengths have not reduced much due to current

elaborate levels of integration, while interconnect wires have become narrower, thicker and more tightly packed. For quite

some time it was sufficient to consider only the effects of interconnect capacitance when performing static timing analysis

(STA). However, with current technologies, the impact of wire resistances on gate and path delays is critically important for

many wires. Thus, an accurate gate-plus-wire delay model is necessary in order to in turn achieve accurate STA results.

A variety of wire-modeling methods have been proposed, including the lumped capacitance model, pi-model (or π-model),

lumped RLC network model, lumped RC network model, and distributed transmission line model [1]. The lumped capacitance

model (Fig. 1) simply sums up all extracted capacitances, ignoring resistances and inductances, saving computation time but

underestimating path delays. The single π -model (Fig. 2) contains two resistors and one capacitor (in a π configuration).

Instead of analyzing the entire network, the π -model only converts the network to a single π -structure and analyzes it [2, 3].

This is the simplest model that captures some of the effects of resistive shielding. The distributed transmission line model (a

lumped version of this is shown in Fig. 3) fully represents the interconnect, including all resistor, capacitor and inductor effects,

yielding good accuracy. However, this model is usually overly complex, leading to unacceptable computation times, unless the

signal ramp time, and the corresponding propagation distance for that duration, approaches the length of a portion of the net [1,

3]. The lumped RC network model shown in Fig. 4 is currently the mostly widely used model in industry for STA, where it is

specified in a Standard Parasitic Exchange Format (SPEF) file. The lumped RC model normally uses a number of RC

segments to represent a wire so that a tolerable runtime is achieved with sufficient accuracy.

Fig. 1 Lumped capacitance model

Fig. 2 Single π-model

Gate 3

Gate 2

Gate 1

C2 C1

R

Gate 3

Gate 2

Gate 1

Ctotal

mailto:carl.sechen@utdallas.edu

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 2 -

Fig. 3 Lumped RLC network model

Fig. 4 Lumped RC network model

As illustrated in Fig. 5, STA requires an accurate computation of the delay from A to B based on the lumped RC network

model, that is, the delay of a gate as well as the delay of interconnect it drives. A popular method to solve this problem is to

decompose the problem into two steps [2], as illustrated in Fig. 6. In this approach, the whole RC network is replaced by an

effective capacitance Ceff attached directly to the gate output, which enables table look-up to compute the delay d1 at point A‟.

Then the wire delay d2 from A‟ to B is computed using an approximated ramp input acquired from the previous step.

Fig. 5 Delay from A to B

Fig. 6 Two-step approach

The d1 computation usually comprises two steps: converting the RC network to a single π -model and then converting the

single π -model to an effective capacitance, as shown in Fig. 7 [3-8, 15, 16]. O‟Brien proposed a method in [3] to obtain the

converted π -model parameters by matching the driving point admittance function of the actual gate load to the driving point

admittance of the π -model up to 3
rd

 order. Ceff is converted from the single π -model based on the Thevenin gate model by

matching the currents flowing into Ceff and the actual load.

After the d1 computation, the slew rate at A‟ and the delay from A to A‟ are obtained. The d2 computation solves for the

delay from A‟ to B based on a purely RC network, as shown in Fig. 8. Alpert demonstrates an accurate delay metric in [9] to

compute the delay from the source of an RC network to any ending point. Agarwal gives slew rate metrics in [10] for

computing the slew rate at any ending point of an RC network.

Gate 2

Gate 3

Gate 1

R3

C6 C5

C3

R2

C2 C1

R1
C4

C1
Gate 3

Gate 2

Gate 1

L3 R3

C6 C5

C3

L2 R2

C2

R1 L1 C4

Cload

d2 d1

Ceff

A‟ B A

B A

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 3 -

Fig. 7 d1 computation

Fig. 8 d2 computation

The above two-step delay estimation method is popular and is used by the industry leading commercial static timing

analysis tools. However we have found that the two-step approach is not accurate enough in many cases. Breaking the single

delay calculation of Fig. 5 into the two-step approach of Fig. 6 doubles the error accumulation steps. First, converting a

complex extracted net in contemporary technology to a single π -model is substantially error-prone, especially when the wire

delay tends to dominate the total delay in Fig. 5. Second, we have observed that the edge rate at node A‟ in Fig. 6 is not close to

linear, which is what is used by the leading methods such as by Agarwal [10]. In fact, the simulated edge rates at A‟ in Fig. 6

for significant wire loads are observed to be best modeled as multi-slope piecewise linear fits, with a set of rather different

slopes. Prior work has simply tried to model the input edge at A‟ with a single slope and we have found that this is a significant

source of error.

We believe it would be best to entirely avoid having to deal with computing the waveform at A‟ and instead seek a gate

plus wire delay model that captures in one step the entire delay from A to B in Fig. 5. We developed this new model and the

algorithms for computing accurately the delay from A to B in Fig. 5, including the slew rate at B.

Our proposed algorithm accurately estimates the delay and slew rate at each wire endpoint based on arbitrary RC

extractions, regardless of the number of RC sections. The new method avoids the error-prone two-step approach and instead

computes d1 + d2 in one step. Moreover, we developed a new algorithm to estimate the effective capacitance (Ceff) seen at the

output of a gate. In addition, we developed an improved slew rate estimation metric for an endpoint such as B. Our delay and

edge rate results compare favourably with respect to SPICE simulation results.

II. EQUIVALENT DRIVER RESISTANCE AND CEFF

Referring to Fig. 11, if an RC network is driven by a voltage source with a step input or single slope, there have been

reports of effective algorithms for accurately estimating the delay and slope at endpoint D, as well as endpoints A, B and C [9].

In Fig. 11, Rd can be viewed as the Thevenin equivalent resistance of the driver (voltage source).

Therefore, our key idea is to leverage this body of prior work for computing endpoint delays and slopes by finding an

effective approach for computing the equivalent resistance of the driver or Rd. This is nontrivial since Rd for a static CMOS

gate is highly nonlinear and we wish to select one value for Rd that yields accurate endpoint delays and slopes. Because of the

nonlinearities, we find it necessary to find distinct Rd values for each of the following for an endpoint: rise delay (dr), fall delay

(df), rise slope (sr), and fall slope (sf). If we are successful in finding such a set of four Rd‟s, we can leverage and extend prior

work to accurately compute endpoint delays and slopes in one step.

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 4 -

The time constant at A in Fig. 9 must match the time constant at A in Fig. 11. However, as the explicit resistance is not

known for the gate in Fig. 9 and in addition the load consists of multiple stages, it is not trivial to form this match. Instead,

we iteratively compute a Ceff, as shown in Fig. 10, while seeking to match the time constant at the output of the gate in Fig. 10

with the time constant at point A in Fig. 11. The time constant at point A in Fig. 11 is given by: A = Rd Ctotal, where Ctotal = C1

+ C2 + C3 + C4.

Fig. 9 A gate driving an extracted wire load

Fig. 10 Gate of Fig. 9 driving Ceff instead of the π-model, where the time constant at A in Fig. 9 must match the time constant at

Ceff here. Shown are the rise delay (dr), fall delay (df), rise slope (sr), and fall slope (sf)

Fig. 11 Pure RC network with step function input, where the time constant at A in Fig. 9 must match the time constant at A in Fig. 11

The time constant (at the output of the gate in Fig. 10 cannot be explicitly determined, but certainly is proportional to Ceff.

Fig. 12 shows the charging and discharging curves for node A in Fig. 11.

0

0.5Vdd

output dr

Vout

t

Ceff

INV

input sf

input_sr df/sf

 dr/sr

D C Rd B A

CD

R3

CC CB CA

R2

 dr/sr

R1

 df/sf

B

input sf

D C A

C4

R3

C3 C2 C1

R2 R1

input sr

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 5 -

Fig. 12 Rising and falling delay match

Assuming an exponential charging waveform for node A, we expect Vout to obey the following relationship, where τA = Rd

Ctotal:

A

t

inout eVV

1 (1)

When Vout reaches 50% of Vdd:

A

t

dddd eVV

15.0 (2)

Rearranging:

 5.0__

totaldelayrised

r

CR

doutput

e (3)

Now solving (3) for Rd:

Rd _ rise_ delay
output dr

Ctotal ln0.5

output dr

0.69315Ctotal
 (4)

The output rise delay in the numerator is identified from the .lib data for the load (Ceff) and Eq. (4) then yields the relevant

Rd for the output rising case. Note that the initial guess for Ceff is Ctotal.

For delay matching when discharging the wire load (falling curve in Fig. 11):

 A

t

inout eVV

 (5)

When Vout reaches 50% of Vdd:

 A

t

dddd eVV

5.0 (6)

 5.0__

totaldelayfalld

f

CR

doutput

e (7)

Solving (3) for Rd yields:

total

f

total

f

delayfalld
C

doutput

C

doutput
R

69315.05.0ln
__

 (8)

Likewise, the output fall delay in the numerator is identified from the .lib data for the load (Ceff) and Eq. (8) then yields the

relevant Rd for the output falling case. Again, the initial guess for Ceff is Ctotal.

0

Vdd

0.5Vdd

output df

Vout

t

t

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 6 -

With respect to edge or slew rates, this is the time between 0.3Vdd and 0.7Vdd (or vice versa for falling edges). Fig. 12 marks

the two time points where 0.3Vdd and 0.7Vdd are reached in the voltage transitions for node A in Fig. 11. We match the time

duration between those two time points for the two circuits (Figs. 10 and 11).

For the charging waveform in Fig. 13, for Vout1 and Vout2:

Fig. 13. Rising and falling slope match

A

A

t

dddd

t

dddd

eVV

eVV

2

1

17.0

13.0

 (9)

Solving for t1 and t2 yields:

3.0ln

7.0ln

2

1

A

A

t

t

 (10)

The duration from t1 to t2 is:

 3.0ln7.0ln12 Att (11)

Since τA = Rd Ctotal and t2 to t1 is the slope, using (11) we obtain:

total

r
sloperised

C

soutput
R

8473.0
__ (12)

The result is the same for the discharging waveform slope:

0.3Vdd

0.7Vdd
Vout1

0.3Vdd

0.7Vdd

Vout2

Vout1

Vout2

output sr

output sf

Vdd

Vout

t

Vout

t

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 7 -

total

f

slopefalld
C

soutput
R

8473.0

__ (13)

For the previous two equations, the output rising and falling slopes are identified from the .lib data for the load (the initial

guess for Ceff is Ctotal.) and the equations then yield the relevant Rd for the rising and falling slopes.

Given that we have computed Rd, albeit with an overly large initial estimate for Ceff (equal to Ctotal) we now refine our

approximation of Ceff by using the Rd just computed. We developed a closed-form expression for Ceff for this purpose. Separate

Ceff‟s are calculated for each of rise delay, rise slope, fall delay and fall slope since there is a different Rd for each case.

As mentioned earlier, we seek to match the time constant at the output of the gate in Fig. 10 (with load Ceff) with the time

constant at point A in Fig. 11. That is, we require = A, and therefore = A = RdCtotal.

Consider a charging event at the endpoints (A, B, C and D) in Fig. 11, starting from a completely discharged state. Ceff is

correctly identified when the total charge amount accumulated at endpoints A, B, C, D equals the charge accumulated on the

capacitor Ceff in Fig. 10 when the voltage on Ceff reaches the 50% point, occurring at time t1 = ln2 = Aln2.

The charge accumulated at each endpoint in Fig. 11 is illustrated in Fig. 14, where the sum of the Ci * Vi‟s must equal the

charge accumulated on the capacitor Ceff in Fig. 10 at time t1, and is governed by the following equations:

Fig. 14 Charging curve for each point in Fig. 11

dd

t

DDDD

dd

t

CCCC

dd

t

BBBB

dd

t

AAAA

VeCVCQ

VeCVCQ

VeCVCQ

VeCVCQ

D

C

B

A

1

1

1

1

1

1

1

1

 (14)

where:

 DdCdBdAdD

DCdBdAdC

DCBdAdB

DCBAdA

CRRRRCRRRCRRCR

CCRRRCRRCR

CCCRRCR

CCCCR

321211

211

1

 (15)

Also in Fig. 10:

∆V1

∆V2

Vout

t

∆V3

∆V4

t1 0

B:C2

C:C3

D:C4

A:C1

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 8 -

dd

t

effeffeffeff VeCVCQ A

1

1 (16)

where was replaced by A since they are to be made equal. Note that the ratio of t1 to in (16) is ln2. In order to match the

charge accumulated:

 ')(ADCBA QQ
 (17)

And thus:

 VeCVeCVeCVeCVeC ADCBA

t

effdd

t

Ddd

t

Cdd

t

Bdd

t

A

11111

11111 (18)

where t1/A = ln2.

The effective capacitance is then given by:

D

t

C

t

B

t

Aeff C
e

e
C

e

e
C

e

e
CC

DCB

2ln2ln2ln 1

1

1

1

1

1

111

 (19)

which simplifies to:

D

t

C

t

B

t

Aeff CeCeCeCC DCB

111

1112
 (20)

For the discharging case in Fig. 15, the effective capacitance is derived similarly.

ADCBA

t

ddeff

t

ddD

t

ddC

t

ddB

t

ddA eVCeVCeVCeVCeVC

11111

11111
 (21)

Fig. 15 Discharging curve for each point in Fig. 11

Solving Eq. (21) the effective capacitance is:

D

t

C

t

B

t

Aeff C
e

e
C

e

e
C

e

e
CC

DCB

2ln2ln2ln 1

1

1

1

1

1

111

 (22)

which simplifies to:

∆V1

∆V2

Vout

t

∆V2

∆V4

τ1 0

A:C1

D:C4

C:C3

B:C2

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 9 -

D

t

C

t

B

t

Aeff CeCeCeCC DCB

111

1112
 (23)

Note that (20) and (23) are the same, and as expected, the effective capacitance is the same for both the charging and

discharging cases.

Using this new Ceff we again look to the .lib data to identify the new delay at the output of the gate for this load. That in

turn allows us to compute a more accurate Rd using (4), the formula for Rd (in this situation, for the rising case), where the

numerator is extracted from the .lib data. After obtaining the new Rd value, (20) or (23) is once again used to extract an

improved estimate for Ceff.

This process iterates until both Ceff and Rd converge. Upon convergence, the identified Ceff when looked up in the .lib file

for the proper slope yields the correct delay at the output of the gate. The corresponding Rd yields exactly this Ceff. If one were

to replace the gate with a resistor of value Rd the delay at the near point of the wire would be matched with the delay at the

output of the gate. We use this notion to declare that we have found the most effective Rd to replace the gate in the netlist,

arriving at Fig. 16.

 Fig. 16 Pure RC network with accurate Rd

The four algorithms we developed for respectively rise delay, fall delay, rise slop and fall slop are shown next.

Algorithm: Compute Rd for Rise Delay

1. For the worst-case input to output rising arc delay, use the input slope information to extract the rise delay (dr) from

the .lib data using Ctotal.

2. Insert dr found in Step 1 into Eq. (4) to find Rd.

3. Compute Ceff using Eq. (20).

4. Using this Ceff, find dr from the .lib data and use Eq. (4) to find Rd.

5. Go to Step 3 until Rd converges.

Algorithm: Compute Rd for Fall_Delay

1. For the worst-case input to output falling arc delay, use the input slope information to extract the fall delay (df) from

the .lib data using Ctotal.

2. Insert df found in Step 1 into Eq. (8) to find Rd.

3. Compute Ceff using Eq. (20).

4. Using this Ceff, find df from the .lib data and use Eq. (8) to find Rd.

5. Go to Step 3 until Rd converges

Algorithm: Compute Rd for Rise_Slope

1. Given the gate input slope, extract the output rising slope information (sr) from .lib data using Ctotal.

2. Insert sr found in Step 1 into Eq. (12) to find Rd.

3. Compute Ceff using Eq. (20).

4. Using this Ceff, find sr from the .lib data and use Eq. (12) to find Rd.

5. Go to Step 3 until Rd converges.

Algorithm: Compute Rd for Fall_Slope

1. Given the gate input slope, extract the output falling slope information (sf) from .lib data using Ctotal.

2. Insert sf found in Step 1 into Eq. (13) to find Rd.

D

C4

R3

C3 C2

Rd

C1

R1 R2 A B C

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 10 -

3. Compute Ceff using Eq. (20).

4. Using this Ceff, find sf from the .lib data and use Eq. (13) to find Rd.

5. Go to Step 3 until Rd converges.

III. DELAY AND SLOPE CALCULATION

The next step is to determine the delays and slopes at the various endpoints of the wire, such as A, B, C and D in Fig. 16.

For the farthest endpoint of a wire, such as D in Fig. 16, the D2M metric method [12] is used to calculate the delay. The

D2M delay metric equation is as follows:

 2ln2

2

2
1

m

m
MD (24)

In Eq. (24) m1 is the first moment of the impulse response for node D and m2 is the second moment of the impulse response

for node D. The jth moment for one node in the RC sections is defined as:

N

k

k
jkkij mCRm

1

)(
1 (25)

Here
)(k

jm is the j-th moment of the impulse response for the k-th node in the path (such as A, B, C or D in Fig. 16).

In Fig. 16, m1 and m2 for node D are computed according to (25) as:

43432

43214321

1
CRCCR

CCCRCCCCR
m

d
 (26)

 4
14321

3
1321

2
121

1
112 mCRRRRmCRRRmCRRmCRm dddd (27)

In (26),

 4321321211
4
1

3221211
3
1

43211
2
1

1
1
1

CRRRRCRRRCRRCRm

CCRRRCRRCRm

CCCRRCRm

mm

dddd

ddd

dd

 (28)

Agarwal [10] provided slew rate metrics for computing the slew rate at any ending point of an RC network and complete

the entire sentence, where a second-moment-based slope estimation empirical formula was proposed:

 30ln70ln2
12

22/1 ..mmrslope (29)

where r is an empirically derived adjusting factor:

21

m/mr (30)

Our experiments on actual net extractions from industrial chips show that (28) is accurate for wire endpoints that are among

the farthest away from the driver (source). However, for endpoints relatively near to the source, (29) can be substantially

inaccurate. We have found worst-case errors for near endpoints to be in the vicinity of 20% compared to Hspice simulation.

Net topologies can assume a wide variety of shapes, so it is not obvious how to determine whether an endpoint is near-end

(close to the source) or far-end (more towards the farthest endpoint from the source). In an attempt to quantify the relative

nearness or farness from the source, we defined the notion of a location factor.

The location factor for an endpoint x is defined as the ratio of x‟s first moment

m1
x

over the first moment of the endpoint

(max) having the largest first moment (often but not always the endpoint farthest from the source) for this net.

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 11 -

max
1

1_
m

m
factorlocation

x

 (31)

The smallest numerical value for the location factor we have seen for industrial circuits is approximately 0.6, so the range

for the location factor is about [0.6, 1].

We have determined that (29) and (30) as proposed in [13, 14] work well for determining slopes for location factors in the

upper half of this range, or [0.8, 1] and not well at all for the lower half of the range, or [0.6, 0.8]. As indicated in Table 1, we

have found that much more accurate slopes are ascertained if the square root of the r proposed in (30) is used for location

factors in the range of [0.6, 0.8]. In Fig. 16 we show a RC network without any branches but actually our algorithm works for

all scenarios including networks with various branches.

TABLE 1 ADJUSTING FACTORS ACCORDING TO LOCATION FACTORS

Location factor 0.6~0.8 0.8~1

Adjusting factor r1/2 [sq. rt. of (27)] r [as in (27)]

IV. RUN TIME REDUCTION

We have noticed that for some gates in the layout the wire resistance is small enough that simply using the lumped

capacitance model (i.e., only using Ctotal) is sufficient. However, it is necessary to determine specific criteria as to when the

lumped capacitance model is sufficient. For example, we require less than 1% error compared with Hspice simulation.

We introduced the notion of a “resistance limit” or Rlimit so that if the aggregate resistance of the net is less than Rlimit, then

the lumped capacitance model is sufficient to assure 1% accuracy with respect to Hspice simulation. We have observed that

Rlimit not only depends on Ctotal but also the type (logical function) and size of the driving gate. We therefore built a three-

dimensional lookup table containing Rlimit values, depending on logical function (gate), size and Ctotal.

To fill the table, we selected a 10-section RC -network to represent the wire load for each specific gate size. A 10-section

network represented the smallest size for which there were diminishing returns from spending additional computation time. A

range of Ctotal values were selected, and these were evenly distributed over the ten sections. The Ctotal range selected is from

approximately the smallest capacitive load seen on a chip to approximately the largest seen on a chip, typically a total of about

7 or 8 values.

For each capacitance value, using Hspice simulation, we find the largest total resistance (distributed evenly over the

sections) termed the Rlimit for which the difference in delay or slope between the lumped capacitance model and the -section

model is no more than 1%. Figs. 17 and 18 illustrate how Rlimit varies versus Ctotal for two inverter drive strengths, inv_1 and

inv_8, from an industrial 45 nm library.

Fig. 17 Rlimit versus Ctotal for INV_1

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 12 -

Fig. 18 Rlimit versus Ctotal for INV_8

We generate tabular data of the type shown in Figs. 17 and 18 for each drive strength for each cell in the library. It is then

straightforward to interpolate for any specific Ctotal value.

Our procedure is as follows: Given a wire load for a specific gate, we sum the capacitances to obtain Ctotal. We use the Rlimit

table (as in Figs. 17 and 18) to get Rlimit for this net, using interpolation or extrapolation as necessary. If the aggregate wire

resistance for this net exceeds Rlimit, then we use our new one-step approach (using the four algorithms in Section II for the

equivalent driver resistances (Rd‟s) as well as the equations in Section III) to obtain the delay and slope information. Otherwise,

we simply use the lumped capacitance model for obtaining delay and slope for this net.

For an industrial chip consisting of over 100,000 standard cells (and nets) and having a total of 513,223 wire endpoints, a

total of 50,233 nets including 231,070 sinks had aggregate resistances, for the specified Ctotal, which fell below their respective

Rlimit and were thus eligible for the simpler lumped capacitance analysis. Table 2 shows the results for these 50,233 nets. Note

that the worst-case error can slightly exceed 1% due to interpolation and also since real net extractions do not consist of 10 -

sections with uniform R and C distributions.

TABLE 2 SIMULATION RESULTS BASED ON LUMPED C MODEL

 Mean Error vs. Hspice % endpoints with less than 1% or 1ps error vs. Hspice Worst error vs. Hspice

Delay 0.85% 98.2% 1.2%

Slope 0.91% 97.6% 1.5%

Our delay and slope estimation algorithms are summarized here.

Algorithm: Compute Endpoint Delays for Gate (g)

1. Note the logic function of g and its size, also compute Rtotal and Ctotal for the extracted net driven by g.

2. Compute Rlimit based on information gathered in Step 1.

3. If Rtotal is less than Rlimit, use the lumped capacitance model to determine the endpoint delays.

4. Otherwise use Algorithm Compute Rd for Rise Delay or Algorithm Compute Rd for Fall Delay from Section II

(depending on whether rise or fall delay, respectively, is desired for g) to obtain Rd.

5. For any desired endpoint of this extracted net, use (24) to estimate the delay (rise or fall).

Algorithm: Compute Endpoint Slopes for Gate (g)

1. Note the logic function of g and its size, also compute Rtotal and Ctotal for the extracted net driven by g.

2. Compute Rlimit based on information gathered in Step 1.

3. If Rtotal is less than Rlimit, use the lumped capacitance model to determine the endpoint slopes.

4. Otherwise use Algorithm Compute Rd for Rise Slope or Algorithm Compute Rd for Fall Slope from Section II

(depending on whether rise or fall slope, respectively, is desired for g) to obtain Rd.

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 13 -

5. For any desired endpoint of this extracted net, use (29), (30) and Table 1 to estimate the slope (rise or fall).

The Rd convergence requirement is set as 0.1% in our program. In such a criteria Rd is converged within three iterations for

all nets. And the average CPU time is 0.08 ms. The algorithm complexity is O(n).

V. DELAY AND EDGE RATE RESULTS

We selected an industrial chip consisting of over 100,000 standard cells (and nets) and having a total of 513,223 wire

endpoints to evaluate our new approach, which was implemented in C. In Table 3 we compare our results for each of the 513k

endpoints versus those obtained by Hspice simulation, which yields the precise results. We also show the leading commercial

STA tool‟s results versus Hspice.

TABLE 3 SIMULATION RESULTS BASED ON LUMPED C MODEL

 Mean error vs. Hspice % endpoints with error: <1% or 1ps vs. Hspice Max. error vs. Hspice

Delay (ours) 0.49% 93.6% 9.4%

Delay (PrimeTime) 1.35% 42.2% 11.3%

Slope (ours) 1.88% 39.1% 9.8%

Slope (PrimeTime) 2.51% 33.6% 10.6%

The mean errors for our results versus Hspice are shown in the first column of Table 3. The second column shows the

percentage of the endpoints whose error was less than one percent or less than one picosecond, either of which could be

considered as sufficiently accurate. The third column indicates the maximum error found among the 513k endpoints.

Note that our new algorithm substantially outperforms the leading commercial STA tool for delay, and gets about 94% of

the sinks to within very good accuracy. Our algorithm also outperforms the commercial STA tool for edge rate determination.

The worst-case slope error for our algorithm is 9.8% whereas we found that using previous work [13, 14], the worst-case error

was 20%.

VI. CONCLUSIONS

We have proposed new algorithms to accurately estimate the delay and slew rate at wire endpoints of an extracted RC

network. The algorithm calculates an equivalent resistance to replace the driving gate of the extracted net so that the delay and

slew rate at each endpoint can be estimated using established techniques (or metrics). Furthermore, we appreciably improved

these delay and slope metrics. We also developed an approach that quickly determines whether or not the lumped capacitance

model is sufficient for determining the delays and slopes for the endpoints of an extracted RC network. The delays and slopes

produced by our new estimation algorithms are quite accurate with respect to Hspice simulation results, while substantially

outperforming previously published work as well as the leading commercial tool (Synopsys‟ PrimeTime). Finally, the newly

developed algorithm also estimates the effective capacitance (Ceff) seen by a gate. The future work includes improving the

algorithm for providing a more accurate modelling of slope estimation and proving the proposed effective capacitance (Ceff)

estimation methodology in this paper is a better one compared to commercial tools.

REFERENCES

[1] H. Kaeslin, “Digital Integrated Circuit Design”, Cambridge University Press, 2008, pp. 612-613.

[2] M. Celik, L. Pileggi and A. Odabasioglu, “IC Interconnect Analysis”, Kluwer Academic Publishers, 2002, pp. 276-285.

[3] A. Kahng and S. Muddu, “Gate Load Delay Computation Using Analytical Models”, Proceedings of IEEE Asia Pacific Conference on

Circuits and Systems, 1996, pp. 433-436.

[4] P. O‟Brien and T. L. Savarino, “Modeling the driving-point characteristic of resistive interconnect for accurate delay estimation,”

International Conference on CAD, 1989, pp. 512-515.

[5] F. Dartu, N. Menezes, J. Qian and L. T. Pillage, “A gate-delay model for high speed CMOS circuits,” Proc. Design Automation

Conference, 1994, pp. 576-580.

[6] F. Dartu, N. Menezes, and L. T. Pileggi, “Performance computation for precharacterized CMOS gates with RC loads,” IEEE Trans. on

Computer-Aided Design, vol. 15, iss. 5, 1996, pp. 544-553.

[7] J. Qian, S. Pullela, and L. Pillage, “Modeling the „Effective Capacitance‟ for the RC interconnect of CMOS gates,” IEEE Transaction

on CAD of Integrated Circuits and Systems, vol. 13, iss. 12, 1994, pp. 1526-1535.

[8] S. Fang, Z. Huang, A. Kurokawa, and Y. Inoue, “Calculating the effective capacitance for interconnect loads based on Thevenin

Model,” International Conference on Communications, Circuits and Systems, 2006, pp. 2474-2477.

[9] S. Fang, Z. Huang, A. Kurokawa, and Y. Inoue, “An advanced model for calculating the effective capacitance considering input

waveform effect,” International Conference on Communications, Circuits and Systems, 2008, pp. 1088-1092.

Journal of Algorithms and Optimization Jan. 2014, Vol. 2 Iss. 1, PP. 1-14

- 14 -

[10] K. Agarwal, D. Sylvester and D. Blaauw, “An effective capacitance based driver output model for on-chip RLC interconnects”, Design

Automation Conference, 2003, pp. 376-381.

[11] K. Agarwal, D. Sylvester and D. Blaauw, “A library compatible driver output model for on-chip RLC transmission lines”, IEEE

Transactions on CAD of Integrated Circuits and Systems, 2004, pp. 128-136.

[12] C. Alpert, A. Devgan, and C. V. Kashyap, “RC delay metrics for performance optimization,” IEEE Transaction on CAD of Integrated

Circuits and Systems, vol. 20, iss. 5, 2001, pp. 571-582.

[13] K. Agarwal, D. Sylvester and D. Blaauw, “Simple metrics for slew rate of RC circuits based on two circuits moments”, Proc. Design

Automation Conference, 2003, pp. 950-953.

[14] K. Agarwal, D. Sylvester and D. Blaauw, “A simple metric for slew rate of RC circuits based on two circuit moments”, IEEE

Transactions on CAD of Integrated Circuits and Systems, 2004, pp. 1346-1354.

[15] M. Jiang, Z. Huang, A. Kurokawa, S. Fang and Y. Inoue, “Accurate method for calculating the effective capacitance with RC loads

based on the Thevenin model”, IEICE Trans. Fundamentals, 2009, pp. 2531-2539.

[16] M. Jiang, Q. Li, Z. Huang and Y. Inoue, “A non-iterative effective capacitance model for CMOS gate delay computing”, ICCCAS, 2010,

pp. 896-900.

Zhao Wang acquired his Ph.D. in Electrical Engineering from The University of Texas at Dallas, TX in 2012. Before that he obtained his

master degree in Electrical Engineering from The University of Texas at Dallas, TX in 2009. His main research areas when pursuing Ph.D.

degree were circuit optimization and CAD algorithm development.

He is currently working at Apple Inc., Cupertino, CA as circuit designer. His current research interests are VLSI design, CAD algorithm

development and new emerging technology deployment.

Carl M. Sechen acquired his Ph.D. in Electrical Engineering from UC Berkeley, CA in 1987. Before that He obtained his master degree in

Electrical Engineering from MIT, MA in 1977 and bachelor degree in Electrical Engineering from University of Minnesota in 1975.

He is currently a professor at The University of Texas at Dallas, TX. His research areas include design and computer-aided design of

integrated circuits. Before joining UT Dallas he had been with University of Washington and Yale University.

Dr. Sechen was rewarded as IEEE fellow in 2002.

