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Abstract- Observing that nature also works as a group, a reinterpretation for field theory is given by taking the fields set �𝐆𝐆𝛍𝛍𝐈𝐈 � 𝐚𝐚s 
origin. Based on this assumption a whole abelian gauge theory is developed. It includes the usual abelian case and incorporates new 
structures as non-linearity and renormalizable mass without requiring spontaneous symmetry breaking. A next step for this 
systemic symmetry is to introduce an abelian internal structure. To propose an invariant action under the transformation law 
𝐆𝐆𝛍𝛍𝐈𝐈

′ = 𝐀𝐀𝐉𝐉𝐈𝐈𝐆𝐆𝛍𝛍
𝐉𝐉 + 𝐤𝐤𝐈𝐈𝛛𝛛𝛍𝛍𝛂𝛂  where 𝐀𝐀𝐉𝐉𝐈𝐈  means a generic fields rotation matrix. This motivates to investigate on 𝐀𝐀𝐉𝐉𝐈𝐈  possibilities, understand on 

its possible physicities, as consider SO(N) symmetry and introduce charged fields through SO(2) symmetry. So given such systemic 
gauge symmetry based on a common gauge parameter, this work builds up a systemic abelian pattern of type 𝐔𝐔(𝟏𝟏)𝐥𝐥𝐥𝐥𝐥𝐥𝐚𝐚𝐥𝐥 × 𝐒𝐒𝐒𝐒(𝟐𝟐)𝐠𝐠𝐥𝐥𝐥𝐥𝐠𝐠𝐚𝐚𝐥𝐥  
for embracing 𝛄𝛄, 𝐙𝐙𝟎𝟎, 𝐖𝐖+, 𝐖𝐖− or charged particles like that. 
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I. INTRODUCTION 

Unification has been the primary motivation for doing physics. Physics have been guided by this concept. Under such 
theme we have been opening space for doing research in physics. Great achievements have been done by this unification need 
mainly through electromagnetism and relativity. Under this compromise, nowadays physics is proposing the so-called Theory 
of Everything which is firstly proposed by Oscar Klein in 1939 [1-3]. 

Our viewpoint is that before adopting great lines of research through unification concept, one should focus on the meaning 
of parts. Instead of instantaneously looking to the Theory of Everything, the greatest moment of the reductionist view, there is 
another approach for making particles get together. Complexity and confinement are showing on possibilities for an 
antireductionist view being implemented. They are saying that physics is not necessarily ruled by isolated parts. 

Thus, there are two ways to involve the parts. There are two distinct methods for particles comprehension: the reductionist 
and the antireductionist. In the first one, they are defined in terms of themselves, following the building block approach from 
molecules, protons to quarks. In the second one, inversely, following the totality arrangement, that is, instead of being 
constituted by quarks, parts that are derived as functions of a determined whole. It appears the principle of wholeness [4]. It 
says that given a group of particles there is something more than simple interactions to be considered. It rules that the 
phenomena happen in terms of systemic behaviours. 

There is still something on the parts meaning to be understood. Following such second parts approach, there is a systemic 
physics to be derived from gauge symmetry. For this, one takes a fields set {𝐺𝐺𝜇𝜇𝐼𝐼} as origin. Then, taking such wholeness 
principle, our initial effort has being to develop the so-called whole abelian gauge theory [5, 6]. It proposes as starting point a 
fields set {𝐺𝐺𝜇𝜇𝐼𝐼} transforming as 

 𝐺𝐺𝜇𝜇𝐼𝐼 → 𝐺𝐺𝜇𝜇𝐼𝐼 ′ = 𝐺𝐺𝜇𝜇𝐼𝐼 + (Ω−1)1
𝐼𝐼 𝜕𝜕𝜇𝜇𝛼𝛼, (1) 

where α(x) means a systemic gauge parameter. Notice that every field transformation is specified by a weight (Ω−1)1
I  factor, 

where I varies from 1 to N. 

Eq. (1) shows another physics approach. It expresses that there is also a nature manifestation which is to be understood in 
systemic terms. Differently from the reductionist meaning of unification, it does not depend on the ultimate elementary 
particles. It says that the origin is in the group. Our emphasis is that confinement and complexity support this reason. This is 
because while one does not allow the ultimate matter to be observed experimentally, the other shows a physics behaviour does 
not depend on individual properties. 

Thus, given Eq. (1), firstly, it is basic to demonstrate how this systemic gauge model contains gauge invariance. For this, 
the simplest procedure is to derive it from the constructor basis {Dμ, Xμi } written at Appendix A. Taking the Ω matrix rotation, 
which means that one diagonalizes the transverse sector, one gets 

 𝐷𝐷𝜇𝜇 = Ω𝐼𝐼1𝐺𝐺𝜇𝜇𝐼𝐼 ,     𝑋𝑋𝜇𝜇𝑖𝑖 = Ω𝐼𝐼𝑖𝑖𝐺𝐺𝜇𝜇𝐼𝐼  (2) 

where the physical fields {Gμ
I } are a diagonalized spin 1 sector [5], [6]. Notice that the invertibility condition 

 Ω𝐾𝐾𝐼𝐼 (Ω−1)𝐽𝐽𝐾𝐾 = 𝛿𝛿𝐼𝐼𝐽𝐽 ,   (3) 

is enough for proving on the model gauge invariance. 
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The corresponding field strengths are 

 𝐺𝐺𝜇𝜇𝜇𝜇𝐼𝐼 = 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼 − 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼 ,  𝑆𝑆𝜇𝜇𝜇𝜇𝐼𝐼 = 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼 + 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼 ,   𝑧𝑧[𝜇𝜇𝜇𝜇 ] = 𝛾𝛾[𝐼𝐼𝐽𝐽 ]𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇
𝐽𝐽 ,   𝑧𝑧(𝜇𝜇𝜇𝜇 ) = 𝛾𝛾(𝐼𝐼𝐽𝐽 )𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇

𝐽𝐽 ,   𝜔𝜔𝜇𝜇𝜇𝜇 = 𝜏𝜏(𝐼𝐼𝐽𝐽 )𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇
𝐽𝐽 . (4) 

Obviously, the SμνI  tensor is not gauge invariant, however the combination aISμνI  is. Similarly from Eq. (3), zμν  tensors are 
gauge invariants. 

Thus one derives the following gauge invariant Lagrangian written in terms of the physical fields Gμ
I  

 𝐿𝐿(𝐺𝐺) = 𝐿𝐿0 + 𝐿𝐿𝐼𝐼 , (5) 

where L0 = LK + Lm + LGF ,   LI = L3 + L4. 

The kinetic term can be expressed as the sum of its transversal and longitudinal parts,  LK = LK
A + LK

S . Then, the kinetic 
sector is given by 

 𝐿𝐿𝐾𝐾𝐴𝐴 = 𝑎𝑎𝐼𝐼𝐺𝐺𝜇𝜇𝜇𝜇𝐼𝐼 𝐺𝐺𝜇𝜇𝜇𝜇𝐼𝐼 ,   𝐿𝐿𝐾𝐾𝑆𝑆 = 𝑏𝑏(𝐼𝐼𝐽𝐽 )𝑆𝑆𝜇𝜇𝜇𝜇𝐼𝐼 𝑆𝑆𝜇𝜇𝜇𝜇𝐼𝐼 + 𝑐𝑐(𝐼𝐼𝐽𝐽 )𝑆𝑆𝛼𝛼𝛼𝛼𝐼𝐼𝑆𝑆𝛽𝛽
𝛽𝛽𝐽𝐽 , (6) 

where aI can be arbitrary and b(IJ), c(IJ) must have, for attain gauge invariance, the following forms: 

 𝑏𝑏(𝐼𝐼𝐽𝐽 ) = 𝑑𝑑(𝑖𝑖𝑖𝑖 )Ω𝐼𝐼𝑖𝑖Ω𝐽𝐽
𝑖𝑖 ,   𝑐𝑐(𝐼𝐼𝐽𝐽 ) = 𝑒𝑒(𝑖𝑖𝑖𝑖 )Ω𝐼𝐼𝑖𝑖Ω𝐽𝐽

𝑖𝑖 ,  (7) 

where d(ij), e(ij) are free coefficients stipulated at constructor basis {Dμ, Xμi } as in (A2). Taking Ω matrix invertibility condition 
notice as the term b(IJ)SμνI SμνI is gauge invariant. 

The gauge invariant mass term is 

 𝐿𝐿𝑚𝑚 = 𝑚𝑚(𝐼𝐼𝐼𝐼)
2 𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇𝐼𝐼 , (8) 

where m(IJ)
2  takes the form 

 𝑚𝑚(𝐼𝐼𝐽𝐽 )
2 = 𝑚𝑚(𝑖𝑖𝑖𝑖 )

2 Ω𝐼𝐼𝑖𝑖Ω𝐽𝐽
𝑖𝑖 , (9) 

which shows its gauge invariance from Eq. (3). 

The interaction sector is given by 

 𝐿𝐿3 = 𝑎𝑎𝐼𝐼[𝐽𝐽𝐾𝐾 ]𝐺𝐺𝜇𝜇𝜇𝜇𝐼𝐼 𝐺𝐺𝜇𝜇𝐽𝐽 𝐺𝐺𝜇𝜇𝐾𝐾 + 𝑏𝑏𝐼𝐼(𝐽𝐽𝐾𝐾 )𝑆𝑆𝜇𝜇𝜇𝜇𝐼𝐼 𝐺𝐺𝜇𝜇
𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾 + 𝑐𝑐𝐼𝐼(𝐽𝐽𝐾𝐾 )𝑆𝑆𝜇𝜇

𝜇𝜇𝐼𝐼 𝐺𝐺𝜇𝜇
𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾 , (10) 

where 

 𝑎𝑎𝐼𝐼[𝐽𝐽𝐾𝐾 ] = 1
2{𝑎𝑎[𝑖𝑖𝑗𝑗 ]Ω𝐼𝐼1Ω𝐽𝐽

𝑖𝑖Ω𝐾𝐾𝑗𝑗 + 𝑎𝑎𝑖𝑖[𝑖𝑖𝑗𝑗 ]Ω𝐼𝐼𝑖𝑖Ω𝐽𝐽
𝑖𝑖Ω𝐾𝐾𝑗𝑗 },   𝑎𝑎𝐼𝐼(𝐽𝐽𝐾𝐾 ) = 1

2𝑎𝑎𝑖𝑖(𝑖𝑖𝑗𝑗 )Ω𝑖𝑖𝑖𝑖Ω𝐽𝐽
𝑖𝑖 Ω𝑗𝑗𝑗𝑗 ,   𝑐𝑐𝐼𝐼(𝐽𝐽𝐾𝐾 ) = 1

2𝑏𝑏𝑖𝑖(𝑖𝑖𝑗𝑗 )Ω𝐼𝐼𝑖𝑖Ω𝐽𝐽
𝑖𝑖Ω𝐾𝐾𝑗𝑗 , (11) 

and 

 𝐿𝐿4 = 𝑎𝑎𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿 𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇
𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾𝐺𝐺𝜇𝜇𝐿𝐿 , (12) 

aIJKL  must have the following form, to satisfy gauge invariance: 

 𝑎𝑎𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖 Ω𝐼𝐼𝑖𝑖Ω𝐽𝐽
𝑖𝑖Ω𝐾𝐾𝑗𝑗 Ω𝐿𝐿𝑖𝑖 , (13) 

where the free coefficients aijkl  have the property: aijkl = ajilk = aklij , and, consequently, aIJKL = aJILK = aKLIJ . 

A second way to write the physical Lagrangian L(G) is directly in terms of their field strengths. It gives 

 𝐿𝐿(𝐺𝐺, 𝑆𝑆, 𝑧𝑧,𝜔𝜔) = 𝑎𝑎𝐼𝐼𝐺𝐺𝜇𝜇𝜇𝜇𝐼𝐼 𝐺𝐺𝜇𝜇𝜇𝜇𝐼𝐼 + 𝑏𝑏(𝐼𝐼𝐽𝐽 )𝑆𝑆𝜇𝜇𝜇𝜇𝐼𝐼 𝑆𝑆𝜇𝜇𝜇𝜇𝐼𝐼 + 𝑐𝑐(𝐼𝐼𝐽𝐽 )𝑆𝑆𝛼𝛼𝛼𝛼𝐼𝐼𝑆𝑆𝛽𝛽
𝛽𝛽𝐽𝐽 + 𝑑𝑑𝐼𝐼𝐺𝐺𝜇𝜇𝜇𝜇𝐼𝐼 𝑧𝑧[𝜇𝜇𝜇𝜇 ] + 𝑒𝑒𝐼𝐼𝑆𝑆𝜇𝜇𝜇𝜇𝐼𝐼 𝑧𝑧(𝜇𝜇𝜇𝜇 ) 

+𝑓𝑓𝐼𝐼𝑆𝑆𝛼𝛼𝛼𝛼𝐼𝐼𝑧𝑧(𝛽𝛽
  𝛽𝛽) + 𝑔𝑔𝐼𝐼𝑆𝑆𝛼𝛼𝛼𝛼𝐼𝐼𝜔𝜔(𝛽𝛽

  𝛽𝛽) + 𝑧𝑧[𝜇𝜇𝜇𝜇 ]𝑧𝑧[𝜇𝜇𝜇𝜇 ] + 𝑧𝑧(𝜇𝜇𝜇𝜇 )𝑧𝑧(𝜇𝜇𝜇𝜇 ) + 2𝑧𝑧(𝜇𝜇
  𝜇𝜇)𝜔𝜔(𝜇𝜇

  𝜇𝜇) + 4𝜔𝜔(𝜇𝜇
  𝜇𝜇)𝜔𝜔(𝜇𝜇

  𝜇𝜇), 

(13) 

where 

 𝑎𝑎𝐼𝐼[𝐽𝐽𝐾𝐾 ] = 𝑑𝑑𝐼𝐼𝛾𝛾[𝐽𝐽𝐾𝐾 ],   𝑏𝑏𝐼𝐼(𝐽𝐽𝐾𝐾 ) = 𝑒𝑒𝐼𝐼𝛾𝛾(𝐽𝐽𝐾𝐾 ),   𝑐𝑐𝐼𝐼(𝐽𝐽𝐾𝐾 ) = 𝑓𝑓𝐼𝐼𝛾𝛾(𝐽𝐽𝐾𝐾 ) + 𝑔𝑔𝐼𝐼𝜏𝜏(𝐽𝐽𝐾𝐾 ), 
𝑎𝑎𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿 = 𝛾𝛾[𝐼𝐼𝐽𝐽 ]𝛾𝛾[𝐾𝐾𝐿𝐿] + 𝛾𝛾(𝐼𝐼𝐽𝐽 )𝛾𝛾(𝐾𝐾𝐿𝐿) + 2𝛾𝛾(𝐼𝐼𝐾𝐾)𝜏𝜏(𝐽𝐽𝐿𝐿 ) + 4𝜏𝜏(𝐼𝐼𝐾𝐾)𝜏𝜏(𝐽𝐽𝐿𝐿 ). (15) 

L(G) introduces new aspects. It produces a non-linear abelian gauge model [5, 6] and a gauge invariant mass term 
preserving renormalizability [7, 8]. Consequently, it develops a model alternative to Born-Infeld [9] and to spontaneous 
symmetry breaking [10-13]. 
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II. ABELIAN INTERNAL STRUCTURE 

L(G) has developed a non-linear whole abelian model. It works as the first bridge between usual abelian and non-abelian 
models. The second one should provide them with an abelian internal structure. It is built up by the following gauge 
transformation 

 𝐺𝐺𝜇𝜇𝐼𝐼 ′ = 𝐴𝐴𝐼𝐼𝐽𝐽𝐺𝐺𝜇𝜇
𝐽𝐽 + 𝑗𝑗𝐼𝐼𝜕𝜕𝜇𝜇𝛼𝛼, (16) 

where 𝐴𝐴𝐼𝐼𝐽𝐽  means a generic rotation matrix between flavours fields and 𝑗𝑗𝐼𝐼 ≡ (Ω−1)1
𝐼𝐼  correspond to their local systemic 

transformation. 𝐴𝐴𝐼𝐼𝐽𝐽  represents a global symmetry which is expected to be added to Eq. (1). It can depend on the gauge 
parameter or not. Its importance is on incorporating internal properties on this systemic model. Provide new associative 
relationships. Our effort here is to unify 𝐴𝐴𝐼𝐼𝐽𝐽  and 𝑗𝑗𝐼𝐼 under the same gauge parameter. 

III. INTERNAL SYMMETRIES 

In order to study such abelian internal symmetry given by matrix AIJ , let us firstly consider the most general global 
symmetry 

 𝛿𝛿𝐺𝐺𝜇𝜇𝐼𝐼 = 𝐴𝐴𝐼𝐼𝐽𝐽𝐺𝐺𝜇𝜇
𝐽𝐽 , (17) 

where AIJ  means a generic matrix. Its corresponding Ward identity is 

 
�𝑑𝑑4𝑥𝑥 𝐴𝐴𝐼𝐼𝐽𝐽𝐺𝐺𝜇𝜇

𝐽𝐽 𝛿𝛿𝑆𝑆
𝛿𝛿𝐺𝐺𝜇𝜇𝐼𝐼

= 0 = �𝑑𝑑4𝑥𝑥 𝜕𝜕𝜇𝜇 𝐽𝐽𝜇𝜇 . 
(18) 

Calculating it explicitly, one gets the following relationship from L(G) 

 ∫𝑑𝑑4𝑥𝑥 {𝜕𝜕𝜇𝜇�𝜔𝜔𝐼𝐼𝐽𝐽
(1)𝐺𝐺𝜇𝜇𝐼𝐼 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐽𝐽 + 𝜔𝜔𝐼𝐼𝐽𝐽

(2)𝐺𝐺𝜇𝜇𝐼𝐼𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐽𝐽 + 𝜔𝜔𝐼𝐼𝐽𝐽𝐾𝐾
(1)𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇

𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾� + 𝜔𝜔𝐼𝐼𝐽𝐽
(3)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼 �(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐽𝐽 ) 

+𝜔𝜔𝐼𝐼𝐽𝐽
(4)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐽𝐽 ) + 𝜔𝜔𝐼𝐼𝐽𝐽

(5)𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇𝐽𝐽 + 𝜔𝜔𝐼𝐼𝐽𝐽𝐾𝐾
(2)𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇𝐽𝐽 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐾𝐾 + 𝜔𝜔𝐼𝐼𝐽𝐽𝐾𝐾

(3)𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇
𝐽𝐽 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐾𝐾  

+𝜔𝜔𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿 𝐺𝐺𝜇𝜇𝐼𝐼𝐺𝐺𝜇𝜇𝐽𝐽 𝐺𝐺𝜇𝜇𝐾𝐾𝐺𝐺𝜇𝜇𝐿𝐿 } = 0, 

(19) 

where 

 𝜔𝜔𝐼𝐼𝐽𝐽
(1) = 2𝐴𝐴  𝐼𝐼

𝐾𝐾 (𝑏𝑏(𝐽𝐽𝐾𝐾 ) + 𝑐𝑐(𝐽𝐽𝐾𝐾 )),   𝜔𝜔𝐼𝐼𝐽𝐽
(2) = 2𝐴𝐴  𝐼𝐼

𝐾𝐾 𝑎𝑎(𝐽𝐽𝐾𝐾 ),   𝜔𝜔𝐼𝐼𝐽𝐽
(3) = −2𝐴𝐴  𝐽𝐽

𝐾𝐾 (𝑏𝑏(𝐼𝐼𝐾𝐾) + 𝑐𝑐(𝐼𝐼𝐾𝐾)), 

𝜔𝜔𝐼𝐼𝐽𝐽
(4) = −2𝐴𝐴  𝐽𝐽

𝐾𝐾 𝑎𝑎(𝐼𝐼𝐾𝐾),   𝜔𝜔𝐼𝐼𝐽𝐽
(5) = −2𝐴𝐴𝐽𝐽𝐼𝐼𝑚𝑚𝐽𝐽

2,   𝜔𝜔𝐼𝐼𝐽𝐽𝐾𝐾
(1) = 𝐴𝐴  𝐼𝐼

𝐿𝐿 𝑏𝑏𝐿𝐿(𝐽𝐽𝐾𝐾 ) + 𝐴𝐴  𝐽𝐽
𝐿𝐿 𝑎𝑎𝐿𝐿𝐼𝐼𝐾𝐾 , 

𝜔𝜔𝐼𝐼𝐽𝐽𝐾𝐾
(2) = −2𝐴𝐴  𝐼𝐼

𝐿𝐿 𝑏𝑏𝐾𝐾(𝐽𝐽𝐿𝐿 ) − 𝐴𝐴  𝐾𝐾
𝐿𝐿 𝑏𝑏𝐿𝐿(𝐼𝐼𝐽𝐽 ),   𝜔𝜔𝐼𝐼𝐽𝐽𝐾𝐾

(3) = −𝐴𝐴  𝐼𝐼
𝐿𝐿 𝑎𝑎𝐾𝐾𝐿𝐿𝐽𝐽 − 𝐴𝐴  𝐽𝐽

𝐿𝐿 𝑎𝑎𝐾𝐾𝐼𝐼𝐿𝐿 − 𝐴𝐴  𝐾𝐾
𝐿𝐿 𝑎𝑎𝐿𝐿𝐽𝐽𝐼𝐼 , 

𝜔𝜔𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿 = −2𝐴𝐴  𝐼𝐼
𝑀𝑀(𝑎𝑎(𝐽𝐽𝑀𝑀 )(𝐾𝐾𝐿𝐿) + 𝑎𝑎(𝐾𝐾𝐿𝐿)(𝐽𝐽𝑀𝑀 ) + 𝑏𝑏(𝐽𝐽(𝐾𝐾𝑀𝑀)𝐿𝐿) + 𝑏𝑏(𝐾𝐾(𝐽𝐽 𝐿𝐿)𝑀𝑀 )). 

(20) 

Consequently, for this unknown symmetry to be implemented, the last six parameters that are not connected with a total 
derivative must vanish. A necessary condition is det A ≠ 0. However, the implementation condition will also depend on 
relationships between the global parameters. This means that this implementation of this global symmetry must be studied 
specifically for every number of flavours being introduced. A further investigation is to write down AIJ  in terms of a generators 
set as AIJ = αM (QM )IJ Gμ

J . 

Another case is to consider a set of symmetries as 

 
�𝑑𝑑4𝑥𝑥 𝐴𝐴𝐼𝐼𝐽𝐽𝐾𝐾 𝐺𝐺𝜇𝜇

𝐽𝐽 𝛿𝛿𝑆𝑆
𝛿𝛿𝐺𝐺𝜇𝜇𝐾𝐾

= 0 = �𝑑𝑑4𝑥𝑥 𝜕𝜕𝜇𝜇 𝐽𝐽𝜇𝜇𝐼𝐼 . 
(21) 

It yields, 

 �𝑑𝑑4𝑥𝑥 { 𝜕𝜕𝜇𝜇�𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾
(1)𝐺𝐺𝜇𝜇𝐽𝐽 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐾𝐾 + 𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾

(2)𝐺𝐺𝜇𝜇
𝐽𝐽 𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐾𝐾 + 𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿

(1) 𝐺𝐺𝜇𝜇𝐽𝐽 𝐺𝐺𝜇𝜇𝐾𝐾𝐺𝐺𝜇𝜇𝐿𝐿� + 𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾
(3)(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐽𝐽 )(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐾𝐾 ) 

+𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾
(4)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇

𝐽𝐽 �(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐾𝐾 ) + 𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾
(5)𝐺𝐺𝜇𝜇

𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾 + 𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿
(2) 𝐺𝐺𝜇𝜇

𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐿𝐿 + 𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿
(3) 𝐺𝐺𝜇𝜇

𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐿𝐿  

+𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿𝑀𝑀 𝐺𝐺𝜇𝜇
𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾𝐺𝐺𝜇𝜇𝐿𝐿𝐺𝐺𝜇𝜇𝑀𝑀 } = 0, 

(22) 

where 
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 𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾
(1) = 2𝐴𝐴𝐼𝐼   𝐽𝐽  𝐿𝐿 (𝑏𝑏(𝐾𝐾𝐿𝐿) + 𝑐𝑐(𝐾𝐾𝐿𝐿)),   𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾

(2) = 2𝐴𝐴𝐼𝐼   𝐽𝐽  𝐿𝐿 𝑎𝑎(𝐾𝐾𝐿𝐿),   𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾
(3) = −2𝐴𝐴𝐼𝐼   𝐾𝐾

  𝐿𝐿 (𝑏𝑏(𝐽𝐽𝐿𝐿 ) + 𝑐𝑐(𝐽𝐽𝐿𝐿 )), 

𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾
(4) = −2𝐴𝐴𝐼𝐼   𝐾𝐾

  𝐿𝐿 𝑎𝑎(𝐽𝐽𝐿𝐿 ),   𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾
(5) = −2𝐴𝐴𝐼𝐼   𝐽𝐽  𝐿𝐿 𝑑𝑑𝐾𝐾𝐿𝐿 ,   𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿

(1) = 𝐴𝐴𝐼𝐼   𝐽𝐽  𝑀𝑀 𝑏𝑏𝑀𝑀(𝐾𝐾𝐿𝐿) + 𝐴𝐴𝐼𝐼   𝐾𝐾  𝑀𝑀 𝑎𝑎𝑀𝑀𝐽𝐽𝐿𝐿 , 

𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿
(2) = −2𝐴𝐴𝐼𝐼   𝐽𝐽  𝑀𝑀 𝑏𝑏𝐿𝐿(𝐾𝐾𝑀𝑀) − 𝐴𝐴𝐼𝐼   𝐿𝐿  𝑀𝑀 𝑏𝑏𝑀𝑀(𝐽𝐽𝐾𝐾 ),   𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿

(3) = −𝐴𝐴𝐼𝐼   𝐽𝐽  𝑀𝑀 (𝑎𝑎𝐿𝐿𝑀𝑀𝐾𝐾 + 𝑎𝑎𝐿𝐿𝐾𝐾𝑀𝑀) − 𝐴𝐴𝐼𝐼   𝐿𝐿  𝑀𝑀 𝑎𝑎𝑀𝑀𝐾𝐾𝐽𝐽 , 

𝑟𝑟𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿𝑀𝑀 = −2𝐴𝐴𝐼𝐼   𝐽𝐽  𝑁𝑁 �𝑎𝑎(𝐾𝐾𝑁𝑁)(𝐿𝐿𝑀𝑀) + 𝑎𝑎(𝐿𝐿𝑀𝑀)(𝐾𝐾𝑁𝑁) + 𝑏𝑏(𝐾𝐾(𝐿𝐿𝑁𝑁)𝑀𝑀 ) + 𝑏𝑏(𝐿𝐿(𝐾𝐾𝑀𝑀)𝑁𝑁)�. 

(23) 

IV. U(1)×SO(N) SYMMETRY 

Given Eq. (16) internal symmetry, the next step to be considered is the case where the rotation depends on the gauge 
symmetry, AIJ = RJ

I (α). For this, we are going to incorporate SO(N) symmetry to the original Lagrangian at Eq. (5). 

A new physical aspect for this systemic Lagrangian research is to introduce charged vector fields on the original fields set 
{Gμ

I }. Expanding the Eq. (6) for LK, in terms of Gμ
I , and rearranging appropriately, we obtain 

 𝐿𝐿𝐾𝐾𝐴𝐴 = 2𝑎𝑎𝐼𝐼�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼 ) − 2𝑎𝑎𝐼𝐼(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼)(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼 ), 

𝐿𝐿𝐾𝐾𝑆𝑆 = 𝛼𝛼(𝐼𝐼𝐽𝐽 )�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐽𝐽 ) + 𝛽𝛽(𝐼𝐼𝐽𝐽 )(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼)(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐽𝐽 ), 
(24) 

where 𝛼𝛼(𝐼𝐼𝐽𝐽 ) = 2𝑏𝑏(𝐼𝐼𝐽𝐽 ),  𝛽𝛽(𝐽𝐽𝐾𝐾 ) = 2𝑏𝑏(𝐼𝐼𝐽𝐽 ) + 4𝑐𝑐(𝐼𝐼𝐽𝐽 ). 

The trilinear term of the interaction sector, given by Eq. (10), can be written as 

 𝐿𝐿3 = 𝛼𝛼𝐼𝐼𝐽𝐽𝐾𝐾 �𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼�𝐺𝐺𝜇𝜇𝐽𝐽 𝐺𝐺𝜇𝜇𝐾𝐾 + 𝛽𝛽𝐼𝐼(𝐽𝐽𝐾𝐾 )(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇𝐼𝐼 )𝐺𝐺𝜇𝜇
𝐽𝐽𝐺𝐺𝜇𝜇𝐾𝐾 , (25) 

with 𝛼𝛼𝐼𝐼𝐽𝐽𝐾𝐾 = 2𝑎𝑎𝐼𝐼[𝐽𝐽𝐾𝐾 ] + 2𝑏𝑏𝐼𝐼(𝐽𝐽𝐾𝐾 ),  𝛽𝛽𝐼𝐼(𝐽𝐽𝐾𝐾 ) = 2𝑐𝑐𝐼𝐼(𝐽𝐽𝐾𝐾 ), and for the quadrilinear term of the interaction sector we must refer to Eqs. 
(12) and (13). 

Then, these equations mean a systemic model where Gμ
I  are real fields. A further development is to introduce on possible 

internal symmetries. They will configure the presence of charged fields through this whole concept. 

The global SO(N) symmetry corresponding to L(G) is given by 

 𝐺𝐺𝜇𝜇𝐼𝐼   
𝑆𝑆𝑆𝑆(𝑁𝑁)
�⎯⎯�   𝐺𝐺𝜇𝜇𝐼𝐼 ′ = 𝑅𝑅𝐽𝐽𝐼𝐼𝐺𝐺𝜇𝜇

𝐽𝐽 , (26) 

where RJ
I  is the I-th row and J-th column of a well defined matrix R, representing SO(N) group on its vectorial representation. 

It characterizes the SO(N) transformation given by the parameter αa , R = eiαa ta , which makes L(G)
SO (N)
�⎯⎯� L(G′). Inserting Eq. 

(26) in Eq. (24), 

 𝐿𝐿𝐾𝐾 = �𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇�
𝑡𝑡𝑅𝑅𝑡𝑡𝐴𝐴𝑅𝑅(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇 ) + (𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇 )𝑡𝑡𝑅𝑅𝑡𝑡𝐵𝐵𝑅𝑅(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇), (27) 

one has the conditions 

 𝑅𝑅𝑡𝑡𝐴𝐴𝑅𝑅 = 𝐴𝐴,   𝑅𝑅𝑡𝑡𝐵𝐵𝑅𝑅 = 𝐵𝐵,   𝑅𝑅𝑡𝑡𝑀𝑀𝑅𝑅 = 𝑀𝑀, (28) 

which trivial solution is with matrices A, B, M be diagonal. See Appendix A. 

Eq. (26) also imposes constraints on the coupling constants written at Eqs. (25) and (12). It implies that they must be 
invariant tensor under SO(N) group. It gives, 

 𝑎𝑎′𝑃𝑃𝑃𝑃𝑅𝑅 = 𝑅𝑅𝑃𝑃𝐼𝐼 𝑅𝑅𝑃𝑃
𝐽𝐽 𝑅𝑅𝑅𝑅𝐾𝐾𝑎𝑎𝐼𝐼𝐽𝐽𝐾𝐾 = 𝑎𝑎𝑃𝑃𝑃𝑃𝑅𝑅 ,   𝑎𝑎′𝑃𝑃𝑃𝑃𝑅𝑅𝑆𝑆 = 𝑅𝑅𝑃𝑃𝐼𝐼 𝑅𝑅𝑃𝑃

𝐽𝐽 𝑅𝑅𝑅𝑅𝐾𝐾𝑅𝑅𝑆𝑆𝐿𝐿𝑎𝑎𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿 = 𝑎𝑎𝑃𝑃𝑃𝑃𝑅𝑅𝑆𝑆 , (29) 

where the generic expressions written above are representing the coupling constants aIJK , bI(JK ), a(IJ)(KL ), b(I(J K)L). 

Considering an infinitesimal rotation, we obtain the following relationships 

 (𝑡𝑡𝑎𝑎)𝑝𝑝𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖𝑟𝑟 + (𝑡𝑡𝑎𝑎)𝑖𝑖𝑖𝑖 𝑎𝑎𝑝𝑝𝑖𝑖𝑟𝑟 + (𝑡𝑡𝑎𝑎)𝑟𝑟𝑖𝑖 𝑎𝑎𝑝𝑝𝑖𝑖𝑖𝑖 = 0,   (𝑡𝑡𝑎𝑎)  𝑝𝑝
𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖 + (𝑡𝑡𝑎𝑎)  𝑖𝑖

𝑖𝑖 𝑎𝑎𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖 + (𝑡𝑡𝑎𝑎)  𝑟𝑟
𝑖𝑖 𝑎𝑎𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 + (𝑡𝑡𝑎𝑎)  𝑖𝑖

𝑖𝑖 𝑎𝑎𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖 = 0, (30) 

were Eqs. (30) are relating the constraints between the coupling constants and the associated SO(N)generators. 

The corresponding Ward identities for this SO(N) global symmetry, δGμ
I = αa(ta )IJ Gμ

J , are derived from the generating 
functional invariance, δZ[JI] = 0. It gives the generic expression JI(ta )IJ

δZ

δGμ
J = 0. The first relationship defined from it is 

(𝑡𝑡𝑎𝑎)𝐼𝐼𝐽𝐽 < 𝐺𝐺𝜇𝜇
𝐽𝐽 > ,˃  which is trivially zero. For a two point Green’s functions, it results in 
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 (𝑡𝑡𝑎𝑎)𝐼𝐼𝑀𝑀 < 𝐺𝐺𝜇𝜇𝑀𝑀  𝐺𝐺𝜇𝜇
𝐽𝐽 > +(𝑡𝑡𝑎𝑎)𝐽𝐽𝑀𝑀 < 𝐺𝐺𝜇𝜇𝑀𝑀  𝐺𝐺𝜇𝜇𝐼𝐼 >= 0 (31) 

where < 𝐺𝐺𝜇𝜇𝐼𝐼  𝐺𝐺𝜇𝜇
𝐽𝐽 >= δ2Z

δμI δν
J ≡ 𝒢𝒢IJ

(2). Eq. (31) can be integrated in the group sense and expressed as 

 𝒢𝒢𝐼𝐼𝐽𝐽
(2)′ = 𝑅𝑅𝐼𝐼𝑀𝑀(𝜔𝜔)𝑅𝑅𝐽𝐽𝑁𝑁 (𝜔𝜔)𝒢𝒢𝑀𝑀𝑁𝑁

(2) . (32) 

Eq. (32) is showing that fields rotations correspond to the same Green’s functions rotations. This result can be generalized 
for a n-point Green’s function 𝒢𝒢IJ…R

(n)  [14] 

 𝒢𝒢𝐼𝐼𝐽𝐽…𝑅𝑅
(𝑛𝑛) ′ = 𝑅𝑅𝐼𝐼𝐴𝐴𝑅𝑅𝐽𝐽𝐵𝐵 …𝑅𝑅𝑅𝑅𝑆𝑆𝒢𝒢𝐴𝐴𝐵𝐵…𝑆𝑆

(𝑛𝑛) . (33) 

V. FOUR FIELDS 

A further step concerning L(G) is to introduce charged vector fields. Given the fields set {Gμ
0, Gμ

1, Gμ
2, Gμ

3} associate to the 
last two ones a global SO(2) symmetry. 

From Eq. (6), choosing a2 = a3 = a, we have 

 𝐿𝐿𝐾𝐾𝐴𝐴 = 𝑎𝑎0𝐺𝐺𝜇𝜇𝜇𝜇0 𝐺𝐺𝜇𝜇𝜇𝜇 0 + 𝑎𝑎1𝐺𝐺𝜇𝜇𝜇𝜇1 𝐺𝐺𝜇𝜇𝜇𝜇 1 + 𝑎𝑎{𝐺𝐺𝜇𝜇𝜇𝜇2 𝐺𝐺𝜇𝜇𝜇𝜇 2 + 𝐺𝐺𝜇𝜇𝜇𝜇3 𝐺𝐺𝜇𝜇𝜇𝜇 3} (34) 

which produces the global SO(2) symmetry 

 𝐺𝐺𝜇𝜇2
′ = cos(𝑖𝑖𝛼𝛼)𝐺𝐺𝜇𝜇2 + sin(𝑖𝑖𝛼𝛼)𝐺𝐺𝜇𝜇3,   𝐺𝐺𝜇𝜇3

′ = − sin(𝑖𝑖𝛼𝛼)𝐺𝐺𝜇𝜇2 + cos(𝑖𝑖𝛼𝛼)𝐺𝐺𝜇𝜇3, (35) 

whose complexification, 

 𝐺𝐺𝜇𝜇2 = 1
√2

(𝑊𝑊𝜇𝜇+ + 𝑊𝑊𝜇𝜇−),   𝐺𝐺𝜇𝜇3 = 𝑖𝑖
√2
�𝑊𝑊𝜇𝜇+ −𝑊𝑊𝜇𝜇−�, (36) 

results in the transverse kinetic Lagrangian 

 𝐿𝐿𝐾𝐾𝐴𝐴 = 𝑎𝑎0𝐺𝐺𝜇𝜇𝜇𝜇0 𝐺𝐺𝜇𝜇𝜇𝜇 0 + 𝑎𝑎1𝐺𝐺𝜇𝜇𝜇𝜇1 𝐺𝐺𝜇𝜇𝜇𝜇 1 + 2𝑎𝑎𝑊𝑊𝜇𝜇𝜇𝜇+𝑊𝑊𝜇𝜇𝜇𝜇−,   𝑊𝑊𝜇𝜇𝜇𝜇± = 𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
± − 𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇±, (37) 

with a global symmetry 𝑊𝑊𝜇𝜇±′ = 𝑒𝑒±𝑖𝑖𝑖𝑖𝛼𝛼𝑊𝑊𝜇𝜇±, ±𝑖𝑖 being the charge of 𝑊𝑊𝜇𝜇± field in response to U(1) global symmetry. At this way 

a global internal symmetry depending on the gauge parameter is introduced. It is proportional to � cos𝑖𝑖𝛼𝛼 sin 𝑖𝑖𝛼𝛼
− sin 𝑖𝑖𝛼𝛼 cos 𝑖𝑖𝛼𝛼� =

𝑒𝑒𝑖𝑖𝑖𝑖𝛼𝛼 �
0 −𝑖𝑖
𝑖𝑖 0 � 

Similarly, under this SO(2) symmetry the longitudinal part of the kinetic sector takes the form 

 𝐿𝐿𝐾𝐾𝑆𝑆 = 𝑏𝑏(00)𝑆𝑆𝜇𝜇𝜇𝜇0 𝑆𝑆𝜇𝜇𝜇𝜇 0 + 𝑏𝑏(11)𝑆𝑆𝜇𝜇𝜇𝜇1 𝑆𝑆𝜇𝜇𝜇𝜇 1 + 𝑐𝑐(00)𝑆𝑆𝜇𝜇
𝜇𝜇0𝑆𝑆𝜇𝜇𝜇𝜇0 + 𝑐𝑐(11)𝑆𝑆𝜇𝜇

𝜇𝜇1𝑆𝑆𝜇𝜇𝜇𝜇1 

+𝑏𝑏(22)�𝑆𝑆𝜇𝜇𝜇𝜇2 𝑆𝑆𝜇𝜇𝜇𝜇 2 + 𝑆𝑆𝜇𝜇𝜇𝜇3 𝑆𝑆𝜇𝜇𝜇𝜇 3� + 𝑐𝑐(22){𝑆𝑆𝜇𝜇
𝜇𝜇2𝑆𝑆𝜇𝜇𝜇𝜇2 + 𝑆𝑆𝜇𝜇

𝜇𝜇3𝑆𝑆𝜇𝜇𝜇𝜇3}. 
(38) 

Thus, Eq. (35) endows L(G) with an internal abelian structure provided by the SO(2) symmetry. It generates the expression  

 𝐺𝐺𝜇𝜇𝐼𝐼 → 𝐺𝐺𝜇𝜇𝐼𝐼
′ = 𝑅𝑅𝐾𝐾𝐼𝐼 (𝛼𝛼)𝐺𝐺𝜇𝜇𝐾𝐾 + 𝑗𝑗𝐼𝐼𝜕𝜕𝜇𝜇𝛼𝛼(𝑥𝑥), (39) 

with a rotation matrix RI
K(α) containing the following systemic transformation 

 

⎝

⎜
⎛
𝐺𝐺𝜇𝜇0′
𝐺𝐺𝜇𝜇1′
𝐺𝐺𝜇𝜇2′
𝐺𝐺𝜇𝜇3′⎠

⎟
⎞

= �

1 0
0 1

0           0
0           0

0 0
0 0

cos𝑖𝑖𝛼𝛼 sin 𝑖𝑖𝛼𝛼
− sin 𝑖𝑖𝛼𝛼 cos𝑖𝑖𝛼𝛼

�

⎝

⎜
⎛
𝐺𝐺𝜇𝜇0

𝐺𝐺𝜇𝜇1

𝐺𝐺𝜇𝜇2

𝐺𝐺𝜇𝜇3⎠

⎟
⎞

+ �

𝑗𝑗1 0
0 𝑗𝑗2

0   0
0   0

0   0
0   0

𝑗𝑗3 0
0 𝑗𝑗4

�𝜕𝜕𝜇𝜇𝛼𝛼, (40) 

what becomes possible to implement a charged whole model with four fields transforming under a common gauge parameter. 

Next, we rewrite L (G) in terms of {Gμ
0, Gμ

1, Wμ
+, Wμ

−}, after determining the necessary conditions for attain this global  SO(2) 
invariance. 

 𝐿𝐿𝐾𝐾 = 2𝑎𝑎0��𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0) − �𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0)� + 2𝑎𝑎1{�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1) − �𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1)} 

+4𝑎𝑎��𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
+�(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−) − �𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

+�(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−)� + 𝛼𝛼(00)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0) + 𝛽𝛽(00)(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0)(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0) 

+𝛼𝛼(11)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1) + 𝛽𝛽(11)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1) + 2𝛼𝛼(01)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1) 

+2𝛽𝛽(01)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1) + 2𝛼𝛼(22)�𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
+�(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−) + 2𝛽𝛽(22)�𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

+�(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−), 

(41) 
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where α(IJ) = 2b(IJ),  β(IJ) = 2b(IJ) + 4c(IJ). 

The mass term is 

 𝐿𝐿𝑚𝑚 = 𝑚𝑚(00)
2 𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0 + 𝑚𝑚(11)

2 𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1 + 2𝑚𝑚(22)
2 𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇−. (42) 

The trilinear term of the interaction sector is given by the following equation 

 𝐿𝐿3 = 𝛼𝛼000�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0 + 𝛼𝛼001�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1 + 𝛼𝛼010�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇0 + 𝛼𝛼100�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0 

+𝛼𝛼011�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1 + 𝛼𝛼101�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1 + 𝛼𝛼110�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇0 + 𝛼𝛼111�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1 

+𝛽𝛽0(00)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0 + 2𝛽𝛽0(01)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1 + 𝛽𝛽1(00)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0 + 𝛽𝛽0(11)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1 

+2𝛽𝛽1(01)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1 + 𝛽𝛽1(11)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1 + 2ℜ{(i𝛼𝛼023 + 𝛼𝛼022 )�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝑊𝑊𝜇𝜇−𝑊𝑊𝜇𝜇+} 

+2ℜ�(𝑖𝑖𝛼𝛼203 + 𝛼𝛼202 )𝐺𝐺𝜇𝜇0�𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
−�𝑊𝑊𝜇𝜇+� + 2ℜ{(𝑖𝑖𝛼𝛼230 + 𝛼𝛼220 )𝐺𝐺𝜇𝜇0�𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

−�𝑊𝑊𝜇𝜇+} 

+2ℜ{�(𝑖𝑖𝛼𝛼123 + 𝛼𝛼122 )�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1�𝑊𝑊𝜇𝜇−𝑊𝑊𝜇𝜇+� + 2ℜ{(𝑖𝑖𝛼𝛼213 + 𝛼𝛼212 )𝐺𝐺𝜇𝜇1�𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
−�𝑊𝑊𝜇𝜇+} 

+2ℜ�(𝑖𝑖𝛼𝛼231 + 𝛼𝛼221 )𝐺𝐺𝜇𝜇1�𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
−�𝑊𝑊𝜇𝜇+� + 2𝛽𝛽0(22)�𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0�𝑊𝑊𝜇𝜇

+𝑊𝑊𝜇𝜇− + 2𝛽𝛽1(22)(𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1)𝑊𝑊𝜇𝜇
+𝑊𝑊𝜇𝜇− 

+4ℜ��𝑖𝑖𝛽𝛽2(03) + 𝛽𝛽2(02)�𝐺𝐺𝜇𝜇0�𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−�𝑊𝑊𝜇𝜇+� + 4ℜ{�𝑖𝑖𝛽𝛽2(13) + 𝛽𝛽2(12)�𝐺𝐺𝜇𝜇1�𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−�𝑊𝑊𝜇𝜇+𝜇𝜇}, 

(43) 

where αIJK = 2aI[JK ] + 2bI(JK ),  βI(JK ) = 2cI(JK ), and ℜ means the real part of the corresponding complex expression. 

The quadrilinear term of the interaction sector is 

 𝐿𝐿4 = 𝑎𝑎0000 (𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0)2 + 𝑎𝑎1111 (𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1)2 + 4𝑎𝑎0001�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0�(𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1) + 4𝑎𝑎0111�𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1�(𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1) 

+2(𝑎𝑎0011 + 𝑎𝑎0110 )(𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1)2 + 2𝑎𝑎0101 (𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0)(𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1) 

+8ℜ{[(𝑎𝑎0122 + 𝑎𝑎2012 ) + 𝑖𝑖(𝑎𝑎0123 − 𝑎𝑎2013 )]�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1�𝑊𝑊𝜇𝜇−𝑊𝑊𝜇𝜇+} 

+4𝑎𝑎0202�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0�𝑊𝑊𝜇𝜇
+𝑊𝑊𝜇𝜇− + 4𝑎𝑎1212�𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1�𝑊𝑊𝜇𝜇

+𝑊𝑊𝜇𝜇− + 8𝑎𝑎0212 (𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇1)𝑊𝑊𝜇𝜇
+𝑊𝑊𝜇𝜇− 

+4(𝑎𝑎0022 + 𝑎𝑎0220 )�𝐺𝐺𝜇𝜇0𝐺𝐺𝜇𝜇0�𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇− + 4(𝑎𝑎1122 + 𝑎𝑎1221 )(𝐺𝐺𝜇𝜇1𝐺𝐺𝜇𝜇1)𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇− 

+2(𝑎𝑎2222 − 𝑎𝑎2323 )�𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇
−�(𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇−) + 2(𝑎𝑎2222 + 𝑎𝑎2323 )(𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇−)2. 

(44) 

Thus Eq. (40) introduces a systemic abelian model containing the {γ ≡ G0, Z0 ≡ G1, W+, W−} particles. It shows that based 
on only one gauge parameter it is possible to build up a whole Lagrangian with renormalizable mass and charged fields. 

VI. NOETHER IDENTITIES 

Considering this systemic interpretation for the gauge parameter three Noether’s identities are consequently derived. They 
are  

 𝜕𝜕𝜇𝜇 𝐽𝐽𝜇𝜇 = 0,   𝐽𝐽𝜇𝜇 = 𝑊𝑊𝜇𝜇
+ 𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

+ −𝑊𝑊𝜇𝜇
− 𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

− , (45) 

 
𝜕𝜕𝜇𝜇 �𝑗𝑗0

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0

+ 𝑗𝑗1
𝜕𝜕𝐿𝐿

𝜕𝜕𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1
+ 𝑗𝑗+

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

+ + 𝑗𝑗−
𝜕𝜕𝐿𝐿

𝜕𝜕𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
−�+ 𝐽𝐽𝜇𝜇 = 0, (46) 

 
𝑗𝑗0

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇0

+ 𝑗𝑗1
𝜕𝜕𝐿𝐿

𝜕𝜕𝜕𝜕𝜇𝜇𝐺𝐺𝜇𝜇1
+ 𝑗𝑗+

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

+ + 𝑗𝑗−
𝜕𝜕𝐿𝐿

𝜕𝜕𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
− = 0, (47) 

where the above equations yield the following Gauss’s law 

 𝜕𝜕𝜇𝜇𝑍𝑍[𝜇𝜇𝜇𝜇 ] = 𝐽𝐽𝜇𝜇 , (48) 

where Zμν  means an antisymmetric field strength composed as 

 𝑍𝑍[𝜇𝜇𝜇𝜇 ] = 𝑎𝑎𝐺𝐺𝜇𝜇𝜇𝜇0 + 𝑏𝑏𝐺𝐺𝜇𝜇𝜇𝜇1 + 𝑐𝑐𝑊𝑊𝜇𝜇𝜇𝜇+ + 𝑑𝑑𝑊𝑊𝜇𝜇𝜇𝜇− + 𝑧𝑧[𝜇𝜇𝜇𝜇 ].  
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VII. CONCLUSION 

A systemic unification is introduced. While the usual unification plays properties as space and time, electric and magnetic 
fields, this study focuses on the fields interdependence meaning. Its wholeness principle provides interconnected fields. It 
considers that interdependent fields associated in a same whole works as a new approach for the unification principle. 

Under this view, Eq. (16) is introduced as a closer frontier between the abelian and the non-abelian structures. It 
incorporates two symmetry types: the local gauge symmetry and the global symmetry (which can have gauge origin or not). 
Both are expressing ways for collecting {Gμ

I } fields set. Consequently, through Eq. (39) it is introduced a gauge rotation and 
translation. It allows charged fields to be introduced under SO(2) symmetry. 

Thus based on such whole unification viewpoint, this work associates the intermediate {γ, Z0, W+, W−} in a same whole 
expressed by Eq. (40). It proposes an abelian scenario for a whole family of self-interacting vector bosons. Also, Eqs. (41-44) 
are expressing a renormalizable abelian model that introduces mass and interactions without requiring spontaneous symmetry 
breaking and Yang-Mills approach. 

We are under a new context, which says that instead of individualized particles as in the Standard Model, these fields 
should act as parts in an interconnected whole. Considering that LHC energy will compose a high number of γ, Z0, W± 
particles, a new fact is that, perhaps it will require a model able to express the association between these concentrated number 
of particles. Perhaps points out that the Standard Model reductionist view is more propitious when a small number of particles 
is considered. However, in cases with a high concentration we probably should take the antireductionist approach. 

Thus considering this whole unification view, it is possible to open up a new investigation for the phenomena involving 
γ, Z0, W±  particles. It is through the interconnected fields meaning. Differently from Standard Model it does not require 
spontaneous symmetry breaking and SU(2)⊗U(1) symmetry for introducing mass and electric charge respectively. Based just 
on only one gauge parameter it is possible to build up a four-field interconnected whole model. It is a study under development. 

Appendix A SO(N) symmetry on constructor basis {𝐷𝐷,𝑋𝑋𝑖𝑖} 

Given such whole symmetry and its collection of fields the appropriated platform for studying the associated systemic 
symmetry is the so-called constructor basis {D, Xi }. It is defined through fields reparametrizations where one field is a genuine 
gauge field Dμ transforming as Dμ′ = Dμ + ∂μα and the others (N − 1) fields are Proca fields transforming as Xμi

′ = Xμi . 

The corresponding gauge invariant Lagrangian is 

 𝐿𝐿(𝐷𝐷,𝑋𝑋𝑖𝑖) = 𝑍𝑍[𝜇𝜇𝜇𝜇 ]𝑍𝑍[𝜇𝜇𝜇𝜇 ] + 𝑍𝑍(𝜇𝜇𝜇𝜇 )𝑍𝑍(𝜇𝜇𝜇𝜇 ) − 1
2
𝑚𝑚𝑖𝑖𝑖𝑖

2 𝑋𝑋𝜇𝜇𝑖𝑖 𝑋𝑋𝜇𝜇𝑖𝑖 + 𝐿𝐿𝐺𝐺𝐺𝐺 ,    (A1) 

where  

 𝑍𝑍𝜇𝜇𝜇𝜇 ≡ 𝑑𝑑𝐷𝐷𝜇𝜇𝜇𝜇 + 𝛼𝛼𝑖𝑖𝑋𝑋𝜇𝜇𝜇𝜇𝑖𝑖 + 𝛾𝛾[𝑖𝑖𝑖𝑖 ]𝑋𝑋𝜇𝜇𝑖𝑖 𝑋𝑋𝜇𝜇
𝑖𝑖 + 𝛽𝛽𝑖𝑖Σ𝜇𝜇𝜇𝜇𝑖𝑖 + 𝜌𝜌𝑖𝑖𝑔𝑔𝜇𝜇𝜇𝜇 Σ𝛼𝛼𝑖𝑖𝛼𝛼 + 𝛾𝛾(𝑖𝑖𝑖𝑖 )𝑋𝑋𝜇𝜇𝑖𝑖 𝑋𝑋𝜇𝜇

𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖 𝑔𝑔𝜇𝜇𝜇𝜇 𝑋𝑋𝛼𝛼𝑖𝑖 𝑋𝑋𝛼𝛼𝑖𝑖 ,  

 𝐷𝐷𝜇𝜇𝜇𝜇 ≡ 𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 − 𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 ,     𝑋𝑋𝜇𝜇𝜇𝜇𝑖𝑖 ≡ 𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 − 𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 ,     Σ𝜇𝜇𝜇𝜇𝑖𝑖 ≡ 𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 + 𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 .    (A2) 

The associated gauge fixing term is 

 
𝐿𝐿𝐺𝐺𝐺𝐺 =

1
2𝜉𝜉

(𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 + 𝜎𝜎𝑖𝑖𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 )2. 
 

 
We rewrite the Lagrangian as 

 𝐿𝐿 = 𝐿𝐿0 + 𝐿𝐿1,     𝐿𝐿0 = 𝐿𝐿𝐾𝐾 + 𝐿𝐿𝐺𝐺𝐺𝐺 + 𝐿𝐿𝑚𝑚 ,     𝐿𝐿𝐼𝐼 = 𝐿𝐿𝐼𝐼3 + 𝐿𝐿𝐼𝐼4,  

where 

 𝐿𝐿𝐾𝐾 = 𝑎𝑎𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇(𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 − 𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 ) + 𝑐𝑐𝑖𝑖𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 (𝜕𝜕𝜇𝜇𝑋𝑋𝜐𝜐𝑖𝑖 − 𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 ) + 𝑒𝑒𝑖𝑖𝑖𝑖 (𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 )(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 ) 

(A3) 

+𝑓𝑓𝑖𝑖𝑖𝑖 �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 �(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 ) + 𝑖𝑖𝑖𝑖𝑖𝑖 �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 �(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 ), 

𝐿𝐿𝑚𝑚 = −
1
2
𝑚𝑚𝑖𝑖𝑖𝑖

2 𝑋𝑋𝜇𝜇𝑖𝑖 𝑋𝑋𝜇𝜇𝑖𝑖 , 

𝐿𝐿𝐼𝐼3 = 𝑎𝑎[𝑖𝑖𝑗𝑗 ]�𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇�𝑋𝑋𝜇𝜇𝑖𝑖 𝑋𝑋𝜇𝜇𝑗𝑗 + 𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗 �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 �𝑋𝑋𝜇𝜇𝑖𝑖 𝑋𝑋𝜇𝜇𝑗𝑗 + 𝑏𝑏𝑖𝑖(𝑖𝑖𝑗𝑗 )�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇𝑖𝑖 �𝑋𝑋𝜇𝜇
𝑖𝑖𝑋𝑋𝜇𝜇𝑖𝑖 , 

𝐿𝐿𝐼𝐼𝐾𝐾 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖 𝑋𝑋𝜇𝜇𝑖𝑖 𝑋𝑋𝜇𝜇
𝑖𝑖𝑋𝑋𝜇𝜇𝑗𝑗 𝑋𝑋𝜇𝜇𝑖𝑖 , 

with the relationships 

 𝑎𝑎 = 2𝑑𝑑2,   𝑐𝑐𝑖𝑖 = 4𝑑𝑑𝛼𝛼𝑖𝑖 ,   𝑒𝑒𝑖𝑖𝑖𝑖 = 2�𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝛽𝛽𝑖𝑖 �,   𝑓𝑓𝑖𝑖𝑖𝑖 = 2�𝛽𝛽𝑖𝑖𝛽𝛽𝑖𝑖 − 𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖 �,   𝑖𝑖𝑖𝑖𝑖𝑖 = 8�𝛽𝛽𝑖𝑖𝜌𝜌𝑖𝑖 + 2𝜌𝜌𝑖𝑖𝜌𝜌𝑖𝑖 �, (A4) 
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𝑎𝑎[𝑖𝑖𝑖𝑖 ] = 4𝑑𝑑𝛾𝛾[𝑖𝑖𝑖𝑖 ],   𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗 = 4�𝛼𝛼𝑖𝑖𝛾𝛾[𝑖𝑖𝑗𝑗 ] + 𝛽𝛽𝑖𝑖𝛾𝛾(𝑖𝑖𝑗𝑗 )�,   𝑏𝑏𝑖𝑖(𝑖𝑖𝑗𝑗 ) = 4�𝜌𝜌𝑖𝑖𝛾𝛾(𝑖𝑖𝑗𝑗 ) + 4𝜌𝜌𝑖𝑖𝜏𝜏(𝑖𝑖𝑗𝑗 ) + 𝛽𝛽𝑖𝑖𝜏𝜏(𝑖𝑖𝑗𝑗 )�, 

𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖 = 𝛾𝛾[𝑖𝑖𝑖𝑖 ]𝛾𝛾[𝑗𝑗𝑖𝑖 ] + 𝛾𝛾(𝑖𝑖𝑖𝑖 )𝛾𝛾(𝑗𝑗𝑖𝑖 ) + 𝛾𝛾(𝑖𝑖𝑗𝑗 )𝜏𝜏(𝑖𝑖𝑖𝑖 ) + 𝜏𝜏(𝑖𝑖𝑗𝑗 )𝛾𝛾(𝑖𝑖𝑖𝑖 ) + 4𝜏𝜏(𝑖𝑖𝑗𝑗 )𝜏𝜏(𝑖𝑖𝑖𝑖 ), 

where the coefficients aijkl  displays the symmetry: aijkl = ajilk = aklij . 

Notice that although being a non-linear abelian Lagrangian, Eq. (A1) is gauge invariant. Under this constructor basis 
{Dμ, Xμi } is immediate to understand on mass presence without Higgs mechanism. 

Denoting Vμ = (Dμ, Xμi )t , one gets the matricial form for the kinetic sector L0 . After some algebraic manipulation and 
making use of the transversal and longitudinal projectors, θμν  and ωμν , we obtain, L0 = −1

2Vμt𝒪𝒪μνVν , where 𝒪𝒪μν =
𝒪𝒪𝐾𝐾𝑇𝑇𝜕𝜕

𝛼𝛼𝜕𝜕𝛼𝛼𝜃𝜃𝜇𝜇𝜇𝜇 + �𝒪𝒪𝐾𝐾𝐿𝐿 + 𝒪𝒪𝐺𝐺𝐺𝐺�𝜕𝜕𝛼𝛼𝜕𝜕𝛼𝛼𝜔𝜔𝜇𝜇𝜇𝜇 + 𝑀𝑀2𝜂𝜂𝜇𝜇𝜇𝜇 , with 

 

𝒪𝒪𝐾𝐾𝑇𝑇 = �

2𝑎𝑎     𝑐𝑐1
𝑐𝑐1    2𝑒𝑒11

⋯ 𝑐𝑐𝑁𝑁−1
⋯ 2𝑒𝑒1,𝑁𝑁−1

   ⋮ ⋮
  𝑐𝑐𝑁𝑁−1 2𝑒𝑒𝑁𝑁−1,1

   ⋱ ⋮
    ⋯ 2𝑒𝑒𝑁𝑁−1,𝑁𝑁−1

� ,     𝒪𝒪𝐾𝐾𝐿𝐿 = �

0   0
0    2𝑡𝑡11

⋯ 0
⋯ 2𝑡𝑡1,𝑁𝑁−1

    ⋮ ⋮
   0 2𝑡𝑡𝑁𝑁−1,1

   ⋱ ⋮
    ⋯ 2𝑡𝑡𝑁𝑁−1,𝑁𝑁−1

�, 

(A5) 

𝒪𝒪𝐺𝐺𝐺𝐺 =
1
𝜉𝜉
�

1     𝜎𝜎1
𝜎𝜎1       𝜎𝜎1

2  
 ⋯ 𝜎𝜎𝑁𝑁−1
 ⋯ 𝜎𝜎1𝜎𝜎𝑁𝑁−1

  ⋮ ⋮
  𝜎𝜎𝑁𝑁−1 𝜎𝜎1𝜎𝜎𝑁𝑁−1

⋱ ⋮
⋯ 𝜎𝜎𝑁𝑁−1

2

� ,     𝑀𝑀2 = �

0 0
0   𝑚𝑚11

2
⋯ 0
⋯ 𝑚𝑚1,𝑁𝑁−1

2

   ⋮ ⋮
   0 𝑚𝑚𝑁𝑁−1,1

2   
  ⋱ ⋮
  ⋯ 𝑚𝑚𝑁𝑁−1,𝑁𝑁−1

2

�. 

where tij = eij + fij + sij . 

Then, similarly to Eq. (28), the SO(N) symmetry conditions are given by 

 𝑅𝑅𝑡𝑡𝒪𝒪𝐾𝐾𝑇𝑇𝑅𝑅 = 𝒪𝒪𝐾𝐾𝑇𝑇 ,     𝑅𝑅𝑡𝑡𝑀𝑀2𝑅𝑅 = 𝑀𝑀2,     𝑅𝑅𝑡𝑡�𝒪𝒪𝐾𝐾𝐿𝐿 + 𝒪𝒪𝐺𝐺𝐺𝐺�𝑅𝑅 = 𝒪𝒪𝐾𝐾𝐿𝐿 + 𝒪𝒪𝐺𝐺𝐺𝐺 .    (A6) 

Next, we study the case involving four fields Dμ, Xμ1, Xμ2, Xμ3, where we consider the SO(2) symmetry represented by the 
matrix 

 
𝑅𝑅 = �

1 0
0 1

0      0
0      0

0 0
0 0

cos𝛼𝛼 sin𝛼𝛼
− sin𝛼𝛼 cos𝛼𝛼

�. (A7) 

Then, from (A5) and (A6) we obtain: 

 

𝒪𝒪𝐾𝐾𝑇𝑇 = �

2𝑎𝑎 𝑐𝑐1
𝑐𝑐1 2𝑒𝑒11

0     0
0     0

0     0
0     0

2𝑒𝑒22 0
  0 2𝑒𝑒22

� , 𝒪𝒪𝐾𝐾𝐿𝐿 + 𝒪𝒪𝐺𝐺𝐺𝐺 = �

         1/𝜉𝜉 𝜎𝜎1/𝜉𝜉
       𝜎𝜎1/𝜉𝜉 2𝑡𝑡11 + 𝜎𝜎1

2/𝜉𝜉
0          0
0         0

0             0
0             0

2𝑡𝑡22 2𝑡𝑡23
−2𝑡𝑡23 2𝑡𝑡22

� 

(A8) 

   𝑀𝑀2 =

⎣
⎢
⎢
⎡
   0 0
   0 𝑚𝑚11

2
0      0
0      0

0   0
0   0

 𝑚𝑚22
2 𝑚𝑚23

2

−𝑚𝑚23
2 𝑚𝑚22

2 ⎦
⎥
⎥
⎤
,    

which rewrites under SO(2) the kinetic sector as 

 𝐿𝐿0(𝐷𝐷,𝑋𝑋𝑖𝑖) = 𝑎𝑎𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 (𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 − 𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 ) + 𝑐𝑐1𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 (𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1 − 𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1) + 𝑒𝑒11(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1)(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1) 

(A9) 
+𝑒𝑒22��𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2�(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2) + �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3�(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3)� + (𝑓𝑓11 + 𝑖𝑖11 )(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1)2 

+(𝑓𝑓22 + 𝑖𝑖22)�(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2)2 + (𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3)2� +
1

2𝜉𝜉
(𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 + 𝜎𝜎1𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1)2 −

1
2
𝑚𝑚11

2 𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1 

−
1
2
𝑚𝑚22

2 (𝑋𝑋𝜇𝜇2𝑋𝑋𝜇𝜇2 + 𝑋𝑋𝜇𝜇3𝑋𝑋𝜇𝜇3), 
and the interaction sector as 

 𝐿𝐿𝐼𝐼3 = 𝑎𝑎[23]�𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇�{𝑋𝑋𝜇𝜇2𝑋𝑋𝜇𝜇3 − 𝑋𝑋𝜇𝜇3𝑋𝑋𝜇𝜇2} + 𝑎𝑎111�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1 + 𝑎𝑎122�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�{𝑋𝑋𝜇𝜇2𝑋𝑋𝜇𝜇2 + 𝑋𝑋𝜇𝜇3𝑋𝑋𝜇𝜇3} 

(A10) 

+𝑎𝑎123�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�{𝑋𝑋𝜇𝜇2𝑋𝑋𝜇𝜇3 − 𝑋𝑋𝜇𝜇3𝑋𝑋𝜇𝜇2} + 𝑎𝑎212𝑋𝑋𝜇𝜇1{�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2�𝑋𝑋𝜇𝜇2 + �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3�𝑋𝑋𝜇𝜇3} 

+𝑎𝑎213𝑋𝑋𝜇𝜇1��𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2�𝑋𝑋𝜇𝜇3 − �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3�𝑋𝑋𝜇𝜇2� + 𝑎𝑎221𝑋𝑋𝜇𝜇1��𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2�𝑋𝑋𝜇𝜇2 + �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3�𝑋𝑋𝜇𝜇3� 

+𝑎𝑎231𝑋𝑋𝜇𝜇1��𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2�𝑋𝑋𝜇𝜇3 − �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3�𝑋𝑋𝜇𝜇2� + 𝑏𝑏1(11)�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1 + 𝑏𝑏1(22)�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�{𝑋𝑋𝜇𝜇2𝑋𝑋𝜇𝜇2 + 𝑋𝑋𝜇𝜇3𝑋𝑋𝜇𝜇3} 

+2𝑏𝑏2(12)𝑋𝑋𝜇𝜇1��𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2�𝑋𝑋𝜇𝜇2 + �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3�𝑋𝑋𝜇𝜇3� + 2𝑏𝑏2(13)𝑋𝑋𝜇𝜇1��𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇2�𝑋𝑋𝜇𝜇3 − �𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇3�𝑋𝑋𝜇𝜇2�, 
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Appendix B Charged fields from SO(2) 

Given the SO(2) symmetry stipulated at Eq. (A8) we are going to rewrite the fields set {Dμ, Xμ1, Xμ2, Xμ3} in terms of charged 
fields. Redefining the fields, 

 𝑋𝑋𝜇𝜇2 =
1
√2

�𝑊𝑊𝜇𝜇+ + 𝑊𝑊𝜇𝜇−�,     𝑋𝑋𝜇𝜇3 =
𝑖𝑖
√2

(𝑊𝑊𝜇𝜇+ −𝑊𝑊𝜇𝜇−). (B1) 

Thus through the constructor basis, and the SO(2) generator tA = �0 0
0 0� ⊕ �  0 1

−1 0� and the vertices coefficients are 
related through Eq. (A2), one derives the following Lagrangian invariant under U(1) and SO(2) 

 𝐿𝐿 = 𝐿𝐿0 + 𝐿𝐿1, (B2) 

with 

 𝐿𝐿0 = 𝐿𝐿𝐾𝐾
𝐷𝐷 ,𝑋𝑋1

+ 𝐿𝐿𝐾𝐾
𝑊𝑊+,𝑊𝑊−

+ 𝐿𝐿𝑚𝑚 + 𝐿𝐿𝐺𝐺𝐺𝐺 ,     𝐿𝐿𝐼𝐼 = 𝐿𝐿3 + 𝐿𝐿4, (B3) 

where 

 𝐿𝐿𝐾𝐾
𝐷𝐷 ,𝑋𝑋1

= 𝑎𝑎𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇(𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 − 𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 ) + 𝑐𝑐1𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 (𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1 − 𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1) 
(B4) 

+𝑒𝑒11�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1) + (𝑓𝑓11 + 𝑖𝑖11 )(𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1)2, 

 𝐿𝐿𝐾𝐾
𝑊𝑊+,𝑊𝑊−

= 2𝑒𝑒22(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇
+)(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−) + 2(𝑓𝑓22 + 𝑖𝑖22)(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇+)(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−), (B5) 

 
𝐿𝐿𝑚𝑚 = −

1
2
𝑚𝑚11

2 𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1 −𝑚𝑚22
2 𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇−, 

(B6) 

 
𝐿𝐿𝐺𝐺𝐺𝐺 =

1
2𝜉𝜉

(𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 + 𝜎𝜎1𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1)2, 
(B7) 

 𝐿𝐿3 = 𝑎𝑎111�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1 + 𝑏𝑏1(11)�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1 + 2ℜ��𝑖𝑖𝑎𝑎[23]𝜕𝜕𝜇𝜇𝐷𝐷𝜇𝜇 + (𝑎𝑎122 + 𝑖𝑖𝑎𝑎123 )𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�𝑊𝑊𝜇𝜇−𝑊𝑊𝜇𝜇+� 

(B8)  +2𝑏𝑏1(22)�𝜕𝜕𝜇𝜇𝑋𝑋𝜇𝜇1�𝑊𝑊𝜇𝜇
+𝑊𝑊𝜇𝜇− + 2ℜ�(𝑎𝑎212 + 𝑖𝑖𝑎𝑎213 )𝑋𝑋𝜇𝜇1(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

−)𝑊𝑊𝜇𝜇+� 
 +2ℜ�(𝑎𝑎221 + 𝑖𝑖𝑎𝑎231 )𝑋𝑋𝜇𝜇1(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇

−)𝑊𝑊𝜇𝜇+� + 2ℜ�(𝑏𝑏2(12) + 𝑖𝑖𝑏𝑏2(13))𝑋𝑋𝜇𝜇1(𝜕𝜕𝜇𝜇𝑊𝑊𝜇𝜇−)𝑊𝑊𝜇𝜇+�, 

 𝐿𝐿4 = 𝑎𝑎1111 (𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1)2 + 4(𝑎𝑎1122 + 𝑎𝑎1221 )𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇− + 4𝑎𝑎1212𝑋𝑋𝜇𝜇1𝑋𝑋𝜇𝜇1𝑊𝑊𝜇𝜇
+𝑊𝑊𝜇𝜇− 

(B9)  +2(𝑎𝑎2222 + 𝑎𝑎2323 )�𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇−�2 + 2(𝑎𝑎2222 − 𝑎𝑎2323 )𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇+𝑊𝑊𝜇𝜇
−𝑊𝑊𝜇𝜇−. 
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