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Abstract-In many practical applications, continuous systems may interact with discrete damping elements. For example, discrete 

damping elements are routinely attached to structures for vibration control. In this article, wave propagation method is applied for 

the calculation of frequencies and mode shapes for one-dimensional waveguides with a discrete damping. 
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I. INTRODUCTION 

Vibration of uniform waveguides, like rods and beams, has been studied with different approaches, such as the approximate, 

the analytical, and the wave methods. Nikkhah-Bahrami [1] used a wave approach to calculate frequencies & mode shapes of 

rods and beams, of which analytical solution is available. Nikkhah-Bahrami et al [1] and Longhmani [2] used a wave approach 

to analyse the non-uniform 1D waveguides of which analytical solution is available, such as the polynomial or the exponential 

cross-section. Also khoshbayani and Nikkhah- Bahrami [3] used the modified wave approach for the calculation of natural 

frequencies and mode shapes in arbitrary non-uniform 1D waveguides. 

In all of the above studies, the conventional boundary condition is used. In this article, the wave propagation method is 

applied for the calculation of frequencies and mode shapes of 1D waveguides with a discrete damping. 

II. METHODOLOGY FOR THE CALCULATION OF NATURAL FREQUENCIES AND MODE SHAPES OF ROD 

The equation of motion for a rod is as follows: 

 
Fig. 1 Wave propagation in the rod 
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where  ,   and        are elasticity modulus, density and displacement along the rod respectively. 

Assume: 

                

then, 
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where, 
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The term    
     is for positive moving wave and the term    

    is for negative moving wave. 

With the assumptions below: 

       
     

      
    

(3) 

We have, 
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                    (4) 

Boundary condition for     with the presence of the damper is considered as below: 

   
       

  
   

       

  
 (5) 

where A and C are area cross section and damping ratio respectively. 
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Substituting  
  

  
  and 

  

  
  in Eq. (4) leads to equation 

                                              

     
      

       
       

(6) 

As a result, reflection number of the damper boundary is as below: 

                

   
      

       
 

(7) 

Boundary condition for     with the presence of the spring is considered as below: 

   
       

  
           (8) 

where K is the spring stiffness. 

With Substituting  
       

  
 and         in Eq. (4) leads to equation 

     (            )        (           ) 

      
      

       
      

(9) 

As a result, reflection number of the springer boundary is as below: 

                

   
      

       
 

(10) 

When the spring stiffness coefficient goes to infinity, the support is in the form of clamped-clamped and the reflection 

number on the boundary is equal to -1. In result 

       (11) 

By calculating transmission number, we have [4]: 

                          (12) 

                          (13) 

After Substituting Eq. (12) in Eq. (4), the result leads to 

                   (14) 

Satisfying the boundary conditions will yield the characteristic equation for wave numbers by which the wave numbers can 

be found. Thereby, using the relationship between the natural frequencies and wave number, the natural frequencies are 

calculated. 

For Fig. 1 with writing Eqs. (7), (10), (12) and (13) in matrix form, we have 
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}    (15) 

This equation has non-trivial solution, if the determinant of coefficients equals zero and leads to 

          -1 =0 (16) 

Substituting Eqs. (7), (11), (12) and (13) into Eq. (16), leads to:  

            -1=0 (17) 

or 
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  √   
  

Applying Ln function on both sides of Eq. (17) 
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(18) 

For preferred angle, two conditions are possible 

A. The term 
  √   

  √   
  is equal to a real positive value 

B. The term 
  √   

  √   
  is equal to a real negative value 

In the first condition, angle value is equal to      in the second condition this angle is equal to           Result to 

below equation: 
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(19) 

Substituting    √
 

 
 , the equations are simplified as: 
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(20) 

Now, we can assume that        

  is the imaginary part of the eigenvalue   and represents the damped natural frequency of the damped system, while   is 

the real part of   and is equal to the decay ratio     of the free vibration amplitude with   denoting damping ratio 

corresponding to undamped  natural frequency     of the system. 

According to Eq. (20), when there is no damping in the boundary, the value of c is zero and the free clamped condition is 

obtained and reflection matrix on the boundary is equal to 1 and natural frequency from Eq. (20) is obtained as 

 

    
 

  
√

 

 
        (21) 

When the damping coefficient goes to infinity, the support is in the form of clamped-clamped and the reflection matrix on 

the boundary equal to -1, and the natural frequency of the system is described as  
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When   √   , according to Eq. (20), the solution goes to infinity and consequently there is no eigenvalue. The reason 

is that when  √   , the wave striking to boundary doesn’t reflect. On the other hand the reflection number equals to zero 

which is obvious from Eq. (7). Thus, the results are exactly coincident with analytical solution [1]. 

III. ANALYTICAL METHOD FOR THE CALCULATION OF NATURAL FREQUENCIES 

Motion equation of a bar is written as: 

  

 

        

   
 

        

   
 (23) 

Using variables separation method, the equation is solved as below: 

                  (24) 

Substituting Eq. (24) into Eq. (23): 

  

 

 

    

      

   
 

 

    

      

   
   (25) 

Equalling this value to Eigen value  , two equation systems are obtained and solving them results U(x) & g(t): 

       

   
                    

√      
 √   (26) 

It is necessary to limit the time to infinitive in order to obtain limited displacement for achieving system stability. To reach 

that, the term    
√   needs to be zero as well as equalling time function values to: 

         
 √   (27) 

Solving the equation of displacement function: 
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Imposing boundary conditions, b1 and b2 are obtained: 

                (29) 

Boundary condition for     in the presence of a damper is: 
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Substituting 
       

  
 and 

       

  
 in Eq. (23): 
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Eliminating g(t) from two sides of equations and substituting U(x) in equation: 
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Factoring logarithmic term of equation: 
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It is obtained from Eq. (33): 
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The left side logarithmic term can be written in two ways: 
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Because 
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So: 
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Imposing Ln function to both sides of Eq. (37): 
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As a result: 
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As it is seen, the results obtained from both wave propagation technique and Analytical method (Eq. (20) & Eq. (39)) are in 

a good agreement with each other. Considering       system natural frequencies can be calculated. 

IV. METHODOLOGY FOR THE CALCULATION OF MODE SHAPES OF ROD 

In order to calculate mode shapes, it is sufficient that the moving positive and negative waves are summed together. 

            

      
     

      
    

(40) 

Substituting the value of obtained natural frequency in Eq. (20), the mode shapes are calculated. 
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Substituting the value of   into eq.41, it leads to one complex number for each     . The real part of this number equals to 

vibration amplitude, and its imaginary part is equal to phase difference of various moving points. In this situation, there is no 

possible way to demonstrate the mode shapes without damper. Generally, system coordinate doesn’t move in the same phase 

or out of phase any more. Therefore, phase concept is used. The behaviour of different parts of rod can be deducted from phase 

plots. The phase plots for two states   √     and   √    are shown in Figs. 2, 3, 4 and 5. 

State 1: Phase plot for   √    

 

Fig. 2 Phase plot for first mode shape for   √    

 

Fig. 3 Phase plot for second mode shape for   √    

State2: Phase plot for   √    

 

Fig. 4 Phase plot for first mode shape for   √    
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Fig. 5 Phase plot for second mode shape for   √    

The point (0, 0) of the phase diagram corresponds the left rod boundary condition. The end point corresponds to the rod 

which the damper is connected.  

CONCLUSION 

The paper shows the capability of wave approach for handling frequencies & mode shapes of wave guides with non-

conventional boundary conditions. 
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