
Journal of Algorithms and Optimization  Apr. 2014, Vol. 2 Iss. 2, PP. 28-42 

- 28 - 

Solving Multi-depot, Heterogeneous,  
Site Dependent and Asymmetric VRP 

Using Three Steps Heuristic  
Ismail Yusuf *1,2,3 

1Faculty of Computer Science and Information Technology, University of Malaya, Malaysia 
2Lamintang Education and Training (LET) Centre, Batam, Indonesia 

3Prodi Teknik Informatika, Sekolah Tinggi Teknik (STT) Ibnu Sina, Batam, Indonesia 
* ariel_ismail@yahoo.com 

 

 

Abstract-Vehicle Routing Problem (VRP) relates to the problem of providing optimum service with a fleet of vehicles to customers. It 
is a combinatorial optimization problem. The objective is usually to maximize the profit of the operation. However, for public 
transportation owned and operated by government, accessibility takes priority over profitability. Accessibility usually reduces profit, 
while increasing profit tends to reduce accessibility. In this research, it was explored how accessibility can be increased without 
penalizing the profitability. This requires the determination of routes with minimum fuel consumption, maximum number of ports 
of call and maximum load factor satisfying a number of pre-determined constraints: hard and soft constraints. To solve this problem, 
a heuristic algorithm was proposed. The results from this experiment show that the algorithm proposed had better performance 
compared to the partitioning set. 
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I. INTRODUCTION 

The vehicle routing problem (VRP) is a general combinatorial optimization problem that has become a key component of 
transportation management. The VRP was first introduced in [1]. The general VRP consists of determining several vehicle 
routes with minimum cost for serving a set of customers, whose geographical coordinates and demands are known in advance. 
Each customer is required to be visited only once by one vehicle. Typically, vehicles are homogeneous and have the same 
capacity restrictions.  

General VRP is defined on a connected graph G. G = (V, A) is a graph where V is a set of nodes (vertices) and A is the set 
of arcs (edges). C = (cij) is a cost matrix associated with A, and it is said to be symmetric when cij = cji and asymmetric 
otherwise. The vehicle must start and finish its tour at the depot and the objective is to construct routes at minimum travel cost. 

VRP lies between travelling salesman problem (TSP) and the bin packing problem (BPP). The travelling salesman needs to 
visit each city exactly once, starting and ending his travel in his/her home town. The objective is to find the shortest tour 
through all cities. In a graph model, TSP is required to find the shortest tour which visits all specified disjointed subsets of the 
vertices of a graph. In combinatorial optimization, the TSP is a NP-hard. The BPP is described as follows: With a given finite 
set of numbers (the item sizes) and a constant specifying the capacity of the bin, determine the minimum number of bins 
needed where all items have to be inside exactly one bin and the total capacity of items in each bin has to be within the 
capacity limits of the bin. In BPP, objects of different volumes must be packed into a finite number to suit the bins vehicle 
capacity in a way that minimizes the number of bins used. In computational complexity theory, the BPP is a combinatorial NP-
hard problem.  

The abbreviation NP-hard refers to nondeterministic polynomial time hard. That means that it is not guaranteed that there is 
a known algorithm that solves all cases to optimality in a reasonable execution time. So in addition of an appropriate solution 
approach, a number of heuristics and meta-heuristics have been developed to find a solution to the problem.  

To describe the TSP as a VRP, an instance of the VRP was taken with one depot, one vehicle with an unlimited capacity 
(or set all demands to zero), a cost function proportional to only the distance, and an arbitrary number of customers (cities). 
Similarly, to describe the BPP as a VRP, the variant of the VRP with one depot and a cost matrix of all zero’s was considered. 
Literature reviews of TSP and BPP can be referred to in [2-8]. 

II. PAGE LAYOUT 

This section briefly discusses the ship routing problem, and methods to solve the problem have been proposed for VRP in 
earlier research. 

A. Ship Routing Problem 

The VRP may actually be considered a broad class of routing problems and it is an important research in the area of 
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transportation. The geographic location of a region will affect the efficiency of the transportation system. In archipelagic 
countries with long shorelines or many wide rivers, ship transportation plays a significant role in domestic trade. For the wider 
situation, ship transportation is the major conduit of international trade.  

The VRP is composed of many specific variants, i.e. multi depot VRP, capacitated VRP, symmetric VRP etc. For many 
cases, a combination of two or more of these variants for solving a real world problem is needed. The varieties of VRP with 
similarities in the ship routing problem are as shown in Table 1.  

TABLE 1 VARIETY VRP WITH SIMILARITIES IN SHIP ROUTING PROBLEM 

Variety VRP Description 
Heterogeneous fleet VRP (HVRP) Ships operate with different sizes, types and capacity. 

Site dependent capacitated VRP (SDCVRP) Sea depth of each port may be different; the ship draft should not be equal to or 
greater than the sea depth. 

Multi depot VRP (MDVRP) Each ship serves exactly one route and the route must include at least one fuel port 
where the number of fuel ports is more than one. 

Asymmetric VRP (AVRP) Distance for sailing from port i to port j and port j to port i may be different. 

A MDVRP is a general VRP with multiple depots. A company may have several depots by which it can serve its customers. 
If the customers are clustered around depots, it is possible to model this distribution problems a set of MDVRP. The objective 
of the MDVRP is to serve all customers while minimizing the number of vehicles and the sum of travel time. The feasible 
solution of MDVRP would be to make each route satisfy the VRP constraints while beginning from and returning to the same 
depot.  

Lau et al. [9] proposed MDVRP as follows, as each depot stores and supplies various products, and has a number of 
identical vehicles with the same capacity to serve customers who demand different quantities of various products. Each vehicle 
starts the tour from its resided depot, delivers products to a number of customers, and returns to the same depot. The objective 
of the VRP in their paper is to minimize the total cost due to the total distance travelled of all vehicles and due to the total time 
required for all vehicles to serve customers, subject to a number of constraints. 

Lau et al. [9] proposed to use a stochastic search technique while Salhi & Sari [10] and Nagy & Salhi [11] used a heuristic 
method to solve MDVRP. Salhi & Sari [10] presented a multi-level composite heuristic and introduced two reduction tests, i.e. 
within depot reduction test and between depot reduction tests to enhance the efficiency of the proposed heuristic. Nagy and 
Salhi [11] proposed an integrated heuristic method which includes four phases: (i) find a weakly feasible initial solution; (ii) 
improve the solution while maintaining weak feasibility; (iii) make the solution strongly feasible; (iv) improve the solution 
while maintaining strong feasibility. 

Renaud et al. [12] and Cordeau et al. [13] proposed to solve MDVRP using tabu search. Renaud et al. [12] solved the 
problem by using a tabu search algorithm that comprised of three phases, i. e. fast improvement, intensification, and 
diversification. Each of these phases utilized some or all of the three basic procedures, 1-route, 2-route, and 3-route 
mechanisms. While Cordeau et al. [13] proposed a tabu search heuristic consisting of the GENI heuristic, which was used to 
insert unrouted customers or remove customers from their current routes and then reinsert them into different routes. 

Skok et al. [14] and Jeon et al. [15] used a metaheuristic method to solve MDVRP. Skok et al. [14] used general GA with 
roulette wheel selection in which six crossover operations and three mutation operations were examined. Their researches 
found that the cycle crossover and fragment reordering crossover are superior to the others while scramble mutation 
outperform other mutation operations.  

Jeon et al. [15] proposed a hybrid GA with features including: (i) produce the initial population by using both a heuristic 
and a random generation method; (ii) minimize infeasible solutions instead of elimination; (iii) gene exchange process after 
mutation; (iv) flexible mutation rate; and (v) route exchange process at the end of GA. 

The CVRP is the most common and basic variant of the VRP. CVRP is a generic name given to a whole class of problems 
in which each vehicle has the same loading capacity, starts from only one depot and then routes through to customers. A set of 
routes for a fleet of vehicles based a depot must be determined for a number of geographically dispersed customers, and 
vehicles have the maximal loading capacity. All customers have known demands for a single commodity and each customer 
can only be visited by one vehicle, and each vehicle has to return to the depot. The service time unit can be transformed into 
the distance unit. The loading and travelling distance of each vehicle cannot exceed the loading capacity and the maximum 
travelling distance of the vehicle. 

All vehicles in CVRP are homogeneous; having the same capacity while the size of the fleet is unlimited. There are many 
variants of the CVRP that relax one or both of these conditions. One variant of the CVRP is the heterogeneous fleet vehicle 
routing problem (HVRP). In HVRP, the fleet is composed of a fixed number of vehicles with differences in their equipment, 
capacity, age or cost and in which the number of available vehicles is fixed as a priori [16]. The problem is how to best utilize 
the existing fleet to serve customer demands. In the HVRP, the transportation cost of a vehicle is proportional to the distance 
travelled.  
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VRP intensifies in the real-life context when the vehicle fleet is heterogeneous. The use of a heterogeneous fleet of vehicles 
has multiple advantages. In some cases it is possible to service customers requiring small vehicles because of accessibility 
restrictions. Notable examples are size and weight constraints that may even vary over time, as exemplified by a ship’s 
physical dimension constraints, including ship draft restrictions that vary with tide, available berth space in ports and sea depth 
of ports. In the heterogeneous fleet, vehicles of different carrying capacities give the flexibility to allocate capacity according 
to the customer’s varying demands in a more cost effective way, by deploying the appropriate vehicle types to areas with the 
analogous concentration of customers. HVRP can be solved by mathematical methods, heuristic and meta-heuristic. Tarantilis 
et al. [17] solved HVRP by implementing a threshold accepting procedure where a worse solution is only accepted if it is 
within a given threshold, and they provided an improved version in [18]. Yaman [19] put forward six formulations which are 
enhanced by valid inequalities and lifting, Choi & Tcha [20] presented a linear programming relaxation which is solved by the 
column generation technique, Choi & [20] used a column generation technique which is enhanced by dynamic programming 
schemes, and Pessoa et al. [21] proposed a Branch-Cut-and-Price algorithm over an extended formulation that is capable for 
solving HVRP.  

Gendreau et al. [22] and Taillard [16] used a heuristics to solve HVRP. Taillard [16] proposed an algorithm based on tabu 
search, adaptive memory and column generation, a heuristic column generation method in which a tabu search requiring node 
coordinates was used to generate a large set of routes and a solution was obtained by solving a set partitioning problem whose 
columns correspond to these routes. Prins [23] developed an algorithm based on heuristics; the algorithm follows a local search 
procedure based on the steepest descent local search and tabu search, while Dondo & Cerda [24] developed a three- phase 
heuristic. Penna et al. [25] proposed an iterated local search based on a heuristic method. Subramanian et al. [26] proposed a 
hybrid algorithm that is composed of an iterated local search based on a heuristic method and a set partitioning formulation. 
The set partitioning model was solved by means of a mixed integer programming solution that interactively calls on the 
iterated local search heuristic during its execution. 

A metaheuristic method was used to solve HVRP by Ochi et al. [27] and Li et al. [28]. Ochi et al. [27] presented an 
evolutionary hybrid meta-heuristic which combines a parallel Genetic Algorithm with scatter search, while Li et al. [28] 
published a record-to-record travel metaheuristic. Prins [29] used a memetic algorithm to solve HVRP. 

SDCVRP is a variant of the HVRP where there exists a dependency between the type of vehicle and the customer, meaning 
that not every type of vehicle can serve every type of customer because of site-dependent restrictions [30, 31, 32, 33]. 

AVRP is a variant of the VRP where travel distance from i to j may be different with that from j to i. AVRP is related to the 
asymmetric travelling salesman problem (ATSP). ATSP is a generalized travelling salesman problem in which distance 
between a pair of cities need not be equal in the opposite direction. The ATSP is an NP-hard problem, thus many meta-
heuristic algorithms have been proposed to solve this problem, such as a hybrid genetic algorithm [34] and a tabu search [35]. 

The aim of the general VRP is to minimize total travel time or travel distance that contributes to the cost. In particular, fuel 
cost for different types and sizes of fleet is also studied to minimize the fuel consumption [36, 37]. 

B. Heuristic Algorithm for Solving VRP 

Many methods to solve the VRP have been proposed. Some research efforts were oriented towards the development and 
analysis of approximate heuristic techniques capable of solving real VRP problems. Bowerman et al. [38] classified the 
heuristic approaches to the VRP into five classes: 

1. Cluster first and route second; 
2. Route first and cluster second; 
3. Savings and insertion; 
4. Improvement and exchange; 
5. Simpler mathematical programming representations through relaxing some constraints. 

Novoa et al. [39] developed a heuristic algorithm based on the maximum insertion concept to solve VRP while Pertiwi [40] 
used a set covering heuristic to solve ship routing problem. The solution consists of two steps, the first step is generating ship 
routes and the second step is choosing the best ship routes. 

Pertiwi [39] adopted a nearest neighbour method for generating ship routes. The nearest neighbour method compares the 
distribution of distances that occur from a point to its nearest neighbour. Nearest neighbour starts with a randomly chosen port 
and adds the nearest but not yet visited port to the last port in the tour until all the ports are visited.  

III. PROBLEM DESCRIPTION 

This research focuses on a heterogeneous fleet of passenger ships. The ship starts the tour from the depot and visits all the 
ports assigned before returning to the depot. 
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A. Fuel Consumptions 

In this research a model was proposed for calculating total fuel consumption of route combinations for the heterogeneous 
fleet where the fuel consumption of each vehicle depends on the type of the vehicle. Generally, fuel consumption of a ship is 
related to the type of engine used.  The fuel consumption of a ship is given by Eq. (1) [41]. 
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where  
kf  = Fuel consumption of ship k  

k
ijt  = Voyage time for ship k sailing from port i to port j 
k
ijl  = Distance travelled for ship k sailing from port i to port j; lij may be different from  lji 

vk = Speed of ship k 
η  = Constant (0.16) 
Pk   = Engine power of ship k (HP) 
Φk = Number of engine 
μ = Efficiency (0.8) 

The following is an example. Suppose a depot v0 serves three customers: 1, 2, 3 with two mix fleet k1 and k2. The total 
distance of the route: (0,1) (1,2) (2,3) (3,0) is 270 miles. The speed of k1 is 19 knots and that of k2 is 17 knots where the 
number of engines used is 1, respectively, whilst the power of k1 is 8,700 HP and k2 is 2,176 HP. Based on Eqs. 1 and 2, the 
fuel consumption of k1 is 15,825.18 litres and k2 is 4,424 litres. It shows that although the ships serve the same route, travel 
costs are not the same because their fuel consumptions are not equal. 

B. Constraints 

The vehicle fleet tends to be mixed as the vehicle types are slightly different. This implies that the ships are of different 
capacity, speed and cost. Basically, there are two types of constraints: soft and hard constraints. 

1)  Soft Constraints 

There are two soft constraints in the ship routing problem: 

• Ship draft and sea depth  

If the ship-draft is equal to or more than the sea depth then it is anchored a few miles from the port. This incurs additional 
cost to carry passengers and cargo from ship to port and from port to ship. Thus, the ship draft should not be equal or greater 
than the sea depth. 

• Load factor 

Ships with a large capacity should serve ports with more passengers to reduce costs due to the load factor. The load factor 
between two ports is calculated by Eq. (3). 
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where 
k
ijb

 = Load factor for ship k sailing from port i  to port j  
k
ijg  = Number of passengers in ship k sailing from port i  to port j  
kq

 = Capacity of ship k 

Soft constraint is dealt with by imposing a penalty if a route exceeds the limit. The penalties imposed are:  
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i. Ship draft and sea depth: 500 litres when ship draft is equal to or more than the sea depth; 
ii. Load factor: imposed penalty 5000 litres for load more than 100%, imposed penalty 1000 litres for load factor less than 

50% and imposed penalty 500 litres for load factor betweens 50% to 75%. 

2)  Hard Constraints 

Hard constraints are dealt with by removing unfeasible routes. Hard constraints in the ship routing problem include: 

• Travel time 

The maximum duration of each tour is called commission days, 
kT . Hence a ship must return to the depot within 

kT . If 
k

rT  is the ship’s travel time, then
kk

r TT ≤ . 
k

rT  is calculated by Eqs. (4)-(5). 
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where 
kT

 = Total voyage time by ship k   
k

ijT
 = Travel time by ship k sailing from port i to port j and stays in port i added travel time for sailing from port j to 

port i and stays in port j. 
k
ijl

 = Distance travelled by ship k sailing from port i to port j; lij may be different from  lji 
k
it  = Port time of ship k that stays in port i  
• Travel distance 

Each ship has a different fuel tank size, hence the maximum distance, Lk that is travelled is different. This distance must be 

equal to or greater than the total distance of the route r, 
k
rL , i.e. 
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kL  is calculated by Eq. (6) while k
rL  is calculated by Eq. (7) - (8). 
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where 
k
ijl  = Distance travelled by ship k sailing from port i to port j; lij may be different from  lji 

k
rL  = Total distance travelled for route r served by ship k   
kL  = Maximum allowed routing distance for ship k 
kθ  = Maximum capacity of the ship’s tank 
kv  = Speed of ship k 

η  =  Constant (0.16) 
kP  = Engine power of ship k (HP) 
kΦ  = Number of engines used in ship k 

μ = Efficiency (0.8) 

• Fuel port 
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A route must include at least one fuel port.  

IV. MATHEMATICAL MODEL 

Let, G = (P, A) be a graph, where P = {1, 2, ..., M+N}  is the index set of ports (nodes) and A = {(i, j) │ i, j; i < j} is the set 
of arcs (links), every arc (i, j) is associated with a distance matrix L= k

ijl , which represents the asymmetric travel distance 

from port i to port  j, i.e., lij is not necessarily equals to lji. 

The mathematical formulation of the model is presented below: 

A. Notations 

C is the index set of customer ports, C = {1, 2, …, M} 
D is the index set of fuel ports, D = {1, 2, …, N} 
K is the index set of ships, K = {1, 2, …, S} 

B. Parameters 

hi  = Sea depth of port i 
kv  = Speed of ship k 
kδ  = Ship draft of ship k 
k

ijf  = Fuel consumption for ship k sailing from port i  to port j 
kT  = Maximum allowed routing time (commission days) for ship k 

k
ijl  = Distance travelled by ship k sailing from port i to port j; lij not necessary equals to  lji 

k
ijb   = Load factor for ship k sailing from port i  to port j  
kq  = Seat capacity of ship k  
k
ijg  = Number of passengers in ship k, travelling from port i  to port j  
k

rY  = Number of ports of call of ship k when serving route r 

C. Decisions Variables 
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• α denotes the penalties when ship draft of ship k is equal to or more than the sea depth of port i 
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Problems arise to construct a route with minimum fuel consumption in a feasible set of routes for each vehicle. The feasible 
route for ship k is to serve ports without exceeding the constraints: 

1. Total travel time k
rT for any vehicle is no longer than kT  

2. Total travel distance k
rL  for any vehicle is no longer than kL  

3. The feasible route must include at least one fuel port 

The mathematical formulation is given in Eq. (9): 
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The objective is to minimize the sum of the fuel consumption on the routes travelled, the penalty cost for violations of the 
ship draft and sea depth, the penalty cost for violations of the load factor and the penalty cost for violations of the number of 
ports of call. 

Subject to: 

1. All ports (customer and fuel ports) i are serviced by ship k at least once 
 KkPix

Pi

k
ijr
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  ,    , 1  ,   (10) 

2. Travel time of ship k is not longer than the maximum allowed routing time 
kT

 
 kk

r
Kk

TT ≤∑
∈

  (11) 

3. Total distance travelled for route r served by ship k is not longer than the maximum allowed routing distance of ship k 
 kk

r
Kk
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∈

  (12) 

4. Ship draft of ship k must be less than the sea depth of port i 
 ∑ <∑

∈∈ Pi
i

Kk
h   kδ   (13) 

5. Route r served by ship k should possess a fuel-port 
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Fig. 1 Clustering 
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V. SOLUTION PROCEDURE 

This research proposes using a heuristic algorithm to find the optimal route and vehicle assignment. The goal is to 
minimize conflicts between accessibility and profitability. Accessibility is affected by maximum number of ports of call while 
profitability is affected by minimum fuel consumption and maximum load factor. The feasible route combination should meet 
the requirements:  

• Each route is served by one ship; 
• Each port is served at least once; 
• Each route has at least one fuel port; 
• Each ship has total travel time within 14 days; 
• Each ship does not exceed the allowed travel distance. 

A route is considered optimal when: there is low fuel consumption, the number of ports of call is high and the load factor is 
about 65%-100%. 

 
Fig. 2 Assigning vehicle 
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This research uses heuristic method which adopted ‘cluster first and route second’ for solving four VRP variants. It 
involves three phases for the method, i.e. clustering, assigning of vehicle and finding the best routes by combining feasible 
solution. 

The three phases for the algorithm are: 

(i) Phase I: Clustering 

Routes are clustered to solve the problem based on the constraint: travel time and travel distance allowed for each route. 
Travel time is less or equal to the maximum travel time allowed and the travel distance is less or equal to the maximum travel 
distance allowed. The output is a feasible route set for the solution candidate. The complete process of this phase is shown in 
Fig. 1. 

(ii) Phase II: Assigning vehicle 

Vehicles are assigned in a cluster to ensure each route has at least one fuel port and route is removed if this condition is 
violated.  In this phase, fuel consumption is calculated with a penalty α imposed if the ship’s draft is equal to or greater than 
the sea depth, penalty β is imposed for the load factor conditions while penalty γ is imposed for the number of ports of call 
conditions. The complete process of this phase is shown in Fig. 2. 

(iii) Phase III: Finding best routes 

A robust algorithm was developed based on the maximum-insertion concept where the heuristic model with the maximum-
insertion concept is modified and the idea is to successively insert a route into the best combination of routes with minimum 
fuel consumption.  

The output is a set of optimum routes with minimum fuel consumption and the selected routes must satisfy the following 
conditions: 

• All ports are served at least once; 
• All ships are used; 
• Each route must be serviced only by one ship;  
• Total fuel consumption is the lowest possible.  

VI. EXPERIMENTS 

All computational experiments were carried out using an Intel(R) Core(TM) i5 CPU M430 @2.27GHz. 

A. Benchmark Problem 

The experiment described herein examined the performance of the proposed algorithms compared to the partitioning sets 
heuristic in 11 benchmarks. Benchmarks were generated based on Yusuf [41]. All the benchmarks can be seen in Table 2. 

TABLE 2 BENCHMARKS GENERATED BASED ON THE YUSUF [41] 

Benchmarks 
Number of 

Represent of 
Customer Ports Fuel Ports Vehicles 

40c-9d-8k 40 9 8 Routes served by ships where capacity is 1000 - 1500 seats 

28c-9d-9k 28 9 9 Routes where the number of ports of call is 10 - 15 

45c-11d-11k 45 11 11 Routes where the number of ports of call is 16 - 20 

32c-4d-8k 32 4 8 Routes where the number of ports of call is 20 and above 

34c-11d-11k 34 11 11 Routes where the number of ports of call is 16 and less 

63c-14d-11k 63 14 11 Routes where the number of ports of call is 17 and above 

18c-6d-8k 18 6 8 Routes where the number of ports of call is 13 ports 

28c-6d-11k 28 6 11 Routes with the highest number of fuel ports (8 ports) 

12c-4d-8k 12 4 8 Routes where the number of fuel ports is more than the number of 
customer ports  

53c-12d-11k 53 12 11 Routes where the number of fuel port is 6 or less  

24c-5d-10k 24 5 10 Routes where the number of fuel port is 7 

Table 3 shows the performance of the best known solution using partitioning sets in 11 benchmarks.  
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TABLE 3 BEST KNOWN SOLUTION USING PARTITIONING SETS IN 11 BENCHMARKS 

Benchmarks 
Number of Best known solution (Partitioning sets) 

Customer 
Ports Fuel Ports Vehicles Fuel 

Consumption 
Number of Ports of 

Call Load Factor 

40c-9d-8k 40 9 8 1,275,883 154 3.60 
28c-9d-9k 28 9 9 2,375,323 119 5.41 
45c-11d-11k 45 11 11 3,868,567 203 5.35 
32c-4d-8k 32 4 8 1,036,758 95 5.57 
34c-11d-11k 34 11 11 2,743,105 142 5.30 
63c-14d-11k 63 14 11 4,755,085 282 3.75 
18c-6d-8k 18 6 8 1,491,149 81 4.22 
28c-6d-11k 28 6 11 2,134,324 104 4.14 
12c-4d-8k 12 4 8 1,263,833 55 4.42 
53c-12d-11k 53 12 11 2,945,322 194 3.54 
24c-5d-10k 24 5 10 1,267,387 87 3.95 

B. Result 

Table 4 shows the performance of the routes generated by the proposed algorithm. The proposed algorithm consists of three 
steps, i.e. clustering, assigning vehicle and choosing route with minimum fuel consumption. The computational result is given 
in Table 4. 

TABLE 4 SOLUTION OF 11 BENCHMARKS SOLVED BY PROPOSED ALGORITHM 

Benchmarks 
Number of Proposed Algorithm 

Customer 
Ports Fuel Ports Vehicles Fuel 

Consumption 
Number of Ports 

of Call Load Factor 

40c-9d-8k 40 9 8 1,067,352 49 17.13 

28c-9d-9k 28 9 9 1,900,067 40 26.01 

45c-11d-11k 45 11 11 3,029,397 58 23.16 

32c-4d-8k 32 4 8 888,475 41 24.02 

34c-11d-11k 34 11 11 2,177,213 49 26.47 

63c-14d-11k 63 14 11 3,699,584 76 9.81 

18c-6d-8k 18 6 8 1,231,551 28 21.03 

28c-6d-11k 28 6 11 1,716,760 41 25.11 

12c-4d-8k 12 4 8 1,060,131 21 42.45 

53c-12d-11k 53 12 11 2,328,848 67 18.79 

24c-5d-10k 24 5 10 1,061,950 36 24.74 

C. Analysis 

Summaries of the fuel consumption of each algorithm can be seen in Table 5. The minimum fuel consumption used to 
serve all ports in 11 benchmarks is by the routes generated by the proposed algorithm. Increased fuel consumption efficiency 
of the hybrid genetic algorithm compared to the PELNI method was (PELNI, 2010) calculated by Eq. (15). 

 100  x  
25,007,233

  |25,007,233  -  20,161,328|   Efficiency =   (15) 

Efficiency = 19.37% 

Based on Eq. 15, increased fuel consumption efficiency of the routes generated by the proposed algorithms compared to the 
routes generated by partitioning sets is 19.37%. Based on fuel consumption, the performance of the proposed algorithm is 
better than that of the partitioning sets.  

Summaries of the number of ports of call of each algorithm can be seen in Table 6. The percentage of the solution obtained 
by the proposed algorithm compared to partitioning sets algorithm was calculated using Eq. (16). 
 100  x  

1516
  |1516  -  506|   Efficiency =   (16) 

Efficiency = 66.62% 
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TABLE 5 FUEL CONSUMPTION OF 11 BENCHMARKS 

Benchmarks 
Fuel Consumption 

Partitioning Sets Proposed Algorithm 

40c-9d-8k 1,275,883 1,067,352 

28c-9d-9k 2,375,323 1,900,067 

45c-11d-11k 3,868,567 3,029,397 

32c-4d-8k 1,036,758 888,475 

34c-11d-11k 2,743,105 2,177,213 

63c-14d-11k 4,755,085 3,699,584 

18c-6d-8k 1,491,149 1,231,551 

28c-6d-11k 2,134,324 1,716,760 

12c-4d-8k 1,114,330 1,060,131 

53c-12d-11k 2,945,322 2,328,848 

24c-5d-10k 1,267,387 1,061,950 

TOTAL 25,007,233 20,161,328 

Based on Eq.(16), the decreased number of ports of call of the proposed algorithm compared to the partitioning sets 
algorithm is 66.62%. Based on the number of ports of call, the performance of the routes generated by partitioning sets is better 
than that of the routes generated by the proposed algorithm. 

TABLE 6 NUMBER PORTS OF CALL FOR 11 BENCHMARKS 

Benchmarks 
Number of Ports of Call  

Partitioning Sets Proposed Algorithm 
40c-9d-8k 154 49 
28c-9d-9k 119 40 
45c-11d-11k 203 58 
32c-4d-8k 95 41 
34c-11d-11k 142 49 
63c-14d-11k 282 76 
18c-6d-8k 81 28 
28c-6d-11k 104 41 
12c-4d-8k 55 21 
53c-12d-11k 194 67 
24c-5d-10k 87 36 

TOTAL 1,516 506 

The averages of the load factor results are tabulated in Table 7. From Table 7 it can be seen that the average of the load 
factors of routes generated by partitioning sets is about 4.48% while the average of the load factor of the routes generated by 
proposed algorithm is about 23.52%. Based on the load factor, the performance of the proposed algorithm shows better than 
that of the partitioning sets. 

TABLE 7 LOAD FACTOR OF 11 BENCHMARKS 

Benchmarks 
Load factor 

Partitioning Sets Proposed Algorithms 
40c-9d-8k 3.60 17.13 
28c-9d-9k 5.41 26.01 
45c-11d-11k 5.35 23.16 
32c-4d-8k 5.57 24.02 
34c-11d-11k 5.30 26.47 
63c-14d-11k 3.75 9.81 
18c-6d-8k 4.22 21.03 
28c-6d-11k 4.14 25.11 
12c-4d-8k 4.42 42.45 
53c-12d-11k 3.54 18.79 
24c-5d-10k 3.95 24.74 

TOTAL 4.48 23.52 

As aforementioned in the first chapter, the objective of this research was to minimize conflicts between accessibility and 
profitability. Accessibility is associated with the number of the ports of call while profitability is associated with the load factor. 
The goal of increasing profit contradicts the goal of greater accessibility. Since the objective was to minimize conflicts of 
interest between accessibility and profitability, a measurement tool called ‘quadrant scale’ was proposed. The quadrant scale 
consists of load factor for x axis and number of ports of call for y axis. There are 4 areas in the quadrant scale: 
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• I is the area for high accessibility but low profitability 
• II is the area for high accessibility and high profitability 
• III is the area for low accessibility but high profitability 
• IV is the area for low accessibility and low profitability   

Based on data presented in Tables 5, 6 and 7, the quadrant scale of each algorithm is shown in Fig. 4. As seen in Fig. 4, 
routes generated by partitioning sets is spread in quadrant I and IV, and 7 out of 11 benchmarks are in quadrant IV. This means 
that the number of ports of call and the load factor are low. The routes generated by partitioning sets showed the worst 
performance. 

 
Fig. 4 Quadrant scale of each algorithm in 11 benchmarks 

Fig.4 shows that the routes generated by the proposed algorithm are spread between quadrant III and IV. Generally, it can 
be concluded that the best performances in the 11 benchmarks are from the routes generated by the proposed algorithm. 

VII. CONCLUSIONS 

VRP is composed of many specific variants i.e. multi depot VRP, capacitated VRP, symmetric VRP, etc. Similarly, the 
variety VRPs in the ship routing problem in this case study were MDVRP, HVRP, SDVRP and AVRP, then it was called rich 
VRP. To solve this problem, an algorithm was proposed with three phases for the method, i.e. clustering, assigning of vehicle 
and finding the best routes by combining feasible solution.  

To evaluate the algorithm, an experiment was carried out. The experiment was to investigate the performance of the 
proposed algorithm over 11 benchmarks. The results from this experiment showed that the proposed algorithm had better 
performance compared to the partitioning sets algorithm. All results can be summarized as: 

• The increased fuel consumption efficiency of the routes generated by the proposed algorithm compared to the routes 
generated by partitioning sets was 19.37%. In terms of fuel consumption, the performance of the proposed algorithm was 
better than that of the partitioning sets.  
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• The decreased number of ports of call of the proposed algorithm compared to the partitioning sets algorithm was 66.62%. 
In terms of the number of ports of call; the routes generated by partitioning sets showed better performance than those 
generated by the proposed algorithm. 

• The average of the load factors of routes generated by partitioning sets was about 4.48% while the average of the load 
factors of the routes generated by the proposed algorithm was about 23.52%. In terms of the load factor, the performance of 
the proposed algorithm was better than that of the partitioning sets.  
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