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Abstract- Controlling disease like HIV/AIDS is a serious concern today. Mathematical modeling with control therapeutic approach for 
understanding the extinction of disease is quite significant. But under deterministic model this approach is not viable. With a view to 
obtain the feasibility, stochasticity might play an escalating role in estimating the expected time to extinction of the disease in 
epidemiological system. In this research article, we consider a deterministic model with therapeutic control approach to find out recovery 
of the disease after a certain period. Additionally, by incorporating stochasticity we also estimated the expected time to extinction of the 
disease. 
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I. INTRODUCTION 

In the last few years, HIV/AIDS spreads among young adults dreadfully in most parts of the world, which ultimately causes 
morbidity and mortality. The number of people suffering due to HIV and AIDS are enormous and nowadays it has become a global 
problem. One of the main causes of HIV/AIDS is the declining nature of CD4+ T cells by HIV and finally results failure of body 
immune system after a certain period of time. Researchers mainly clinicians and experimentalists are paying their attention 
enormously towards control of the disease using drug like HAART (Highly Active Antiretroviral Therapy). Different approaches 
have been developed for the drug treatment of HIV but most widely used drugs are inhibitors like Reverse Transcriptase Inhibitor 
(RTIs) and Protease Inhibitor (PIs), which are enzymes responsible for replication of HIV in human body. Mathematicians also 
made a significant contribution in this approach by formulating mathematical models to predict the way of control of the disease 
[1-4]. Roy and Chatterjee [5] also proposed a mathematical model to investigate the effect of HAART on immune cells to an HIV 
infected patients. Different control measures have also been adopted in different stages of the disease progression for remediation. 
Optimal control therapeutic approach on the used drugs has added a new dimension in this aspect. Chatterjee and Roy [6] studied a 
control based mathematical approach with immune activator IL-2, which showed that applying of RTIs for sufficient intervals are 
more effective than fixed intervals of IL-2 therapy by impulsive differential equations. However, researchers fail to achieve full 
immune reconstitution of the patient at the end of treatment and also fail to exert their action in case of rapidly mutating viruses. 

Recently, a new class of molecules, chemokine analogs, has been designed to control the entry of viruses, even if they undergo 
spontaneous mutation [7]. On that outlook, Roy et al. [8] introduced a novel concept establishing the pivotal role of chemokine 
analogs and fixing optimum dosage regimen in AIDS prevention strategy. 

So, recovery of the infected individuals by perfect drug adherence and ultimately expected time to extinction of the disease 
have become a challenge at this moment. In this research article, we enrich the mathematical model suggested by Zhou et al. [9] by 
the introduction of control parameters on the adherence of drug dose, which is more realistic from the biological point of view. In 
his deterministic version, Zhou showed that the recovery of the disease can be achieved by the immune system of our body, which 
is much more time dependent. Our research work explores that by applying control measures with perfect drug adherence using in 
implicit way, time of recovery is much lesser than advised by Zhou. But in this case, extinction of the disease is not possible. 

It is well known to us that the deterministic version is nothing but an approximation of stochastic model and hence it is difficult 
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to find the time to extinction through deterministic version. Nasell [10] was the pioneer to derive such approximation for expected 
time to extinction. The quasi-stationary distribution is exceptionally essential owing to epidemic context. Hence it has its curiosity 
in its own precise as an approximation of the allotment of states before extermination. The time to extinction from quasi-stationary 
is a frequent as well as natural measure of the perseverance of an infection, which has been going on for an elongated time usually. 
In this research article, we derive the quasi-stationary distribution of infected individuals and expected time to extinction is 
estimated by this approach. Analytical and Numerical results provide excellent approximation for the true density and time to 
extinction. 

In the present work, the deterministic model of HIV infection is described in section 2. Section 3 is devoted for the necessity of 
optimal control in the deterministic model and section 4 explains about the optimal control problem. Stochastic version of the 
model formulation is described in section 5. This section also includes the description of the transition states and Kolmogorov’s 
forward equation. Time to extinction of the infected CD4+T cells, distribution of the time to extinction and diffusion approximation 
are discussed in section 5. Discussion on estimation of expected time to extinction of infected cells and formation of theorem are 
elaborately explained in this section also. Section 6 includes results from numerical illustration from the model and finally 
discussions and conclusions are given in section 7. 

II. THE DETERMINISTIC MODEL 

To generate a mathematical model of T-cell infection by HIV, we first consider the deterministic model originally created by 
Zhou et al. [9]. They proposed a mathematical demonstration involving a set of differential equations, relating to uninfected CD4+T 
cells or target cells T , virus producing CD4+T cells or infected cells I  and free virous V  as 

 
= (1 )1

=

= .

dT Ts d T aT TV I
dt Tmax
dI TV I I
dt
dV qI cV
dt

β ρ

β δ ρ

− + − − +

− −

−

 (1) 

Where s represents the constant growth rate of T-cells produced from bone marrow and mature in thymus. Death rate of uninfected 
CD4+T-cells is denoted by 1d . It should be mentioned here that in presence of HIV virus, antigen or mitogen stimulates T cells. At 

the time of stimulation, T cells multiply through mitosis with a rate a , i.e the growth or proliferation of T cells from existing T 
cells are governed by logistic fashion. Thus a  is denoted as the proliferation rate and Tmax  is the maximum density of the 
T-cell at which the proliferation shuts off [11]. Furthermore, ‘ β ’ is considered as the infection rate of uninfected CD4+T cells and 
‘δ ’ is the per capita rate of disappearance of infected cells I . Here, the recovery rate of infected cell is considered as ‘ ρ ’, 
whereas ‘ q ’, and‘ c ’ are denoted as the reproductive rate of the virus from infected cell and the clearance rate of the virus 
respectively. 

III. WHY OPTIMAL CONTROL STRATEGY SHOULD BE IMPROVISED? 

Various chemotherapies for patients with human immunodeficiency virus (HIV) are being examined to determine the optimal 
scheme for better treatment [12, 13]. The trickiest task is to decide when and how this treatment should be started so that we can 
get most cost effective results. In this section we present an optimal control problem in which the coefficient of the cellular 
infection rate is to be controlled. We seek to minimize the performance index, which is the benefit based on the suppression of 
infected CD4+T cell populations levels and reduces the systematic cost of chemotherapy. We characterize the optimal control using 
Pontryagin’s Minimum Principle [14]. Also it is to be examined whether any qualitative differences in treatment outcomes among 
the model have a significant impact on optimal therapeutic value. This control represents the percentage of effect of the therapy on 
the interaction term when uninfected CD4+T cells interrelate with infected cell population, and this interaction specially implies 
that the uninfected CD4+T cells are maximally infected at a rate of β  per day. 

IV. THE OPTIMAL CONTROL PROBLEM 

Here our main object is to minimize the level of infected CD4+ T cell population and maximize the level of healthy CD4+ T 
cells. From this understanding we wish to make relation where the immune response is also to be increased with the simultaneous 
occurrence of uninfected T cell population and depletion of infected cell population. Also, it is our object to keep in mind that, 
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cost- as measured in terms of chemotherapy strength which is a combination of time and efficacy - as low as possible. To reach our 
intention for cost effective better treatment of a HIV patient, we thus formulate an optimal control problem, and hence in the model 
Eq. (1) which was considered by Zhou et al. [9], we use a control variable ( )u t , which represents the drug dose at a time t  
satisfying 0 ( ) 1u t≤ ≤ . Here ( )u t  represents control input with values normalised to be between 0  and 1 [15]. Also 1=)(tu  
represents the maximal use of chemotherapy and ( ) = 0u t , which signifies no treatment. Since the control reduces viral replication 
rate, so after using control the infection rate becomes (1 ( ))u tβ − . It should be noted here that both cellular infection rate and viral 
production rate are represented by the same term, β , so that the drug RTI may be introduced for better treatment [11].  

On the above assumption our optimal control problem corresponding to the Eq. (1) [9] would be: 

 
= (1 ) (1 ( )) ,1

= (1 ( )) ,

= .

dT Ts d T aT u t TV I
dt Tmax
dI u t TV I I
dt
dV qI cV
dt

β ρ

β δ ρ

− + − − − +

− − −

−

 (2) 

satisfying the initial condition (0) = , (0) =0 0T T I I  and (0) = 0V V  . 

The objective function is defined as, 

 
2( ) = [ ( ) ( ) ( )] .

t f
J u I t T t Ru t dt

ti
− +∫  (3) 

The parameter R  ( > 0R ) is the weight constants, on the benefit of the cost. The benefit is based on the minimization of cost 
and infected cell count together with maximisation of uninfected T cell count. Now, we want to find the optimal control u* such 
that 

*( ) = { ( ) : }J u min J u u U∈  subject to the system of ODE’s (2) where U  is the admissible control set defined by  

= { ( ) : ( )  ,0 ( ) 1, [ , ]}U u t u t is measurable u t t t ti f≤ ≤ ∈ , is the control set. 

To determine the optimal control, we use the “Pontryagin Minimum Principle” [14]. 

Let us consider the Hamiltonian given by  

 2= ( ) ( ) ( ) { (1 )1 1

(1 ( )) } {(1 ( )) }2
( ),3

TH I t T t Ru t s d T aT
Tmax

u t TV I u t TV I I

qI cV

ξ

β ρ ξ β δ ρ

ξ

− + + − + −

− − + + − − −

+ −

 (4) 

where , 1 2ξ ξ  and 3ξ  are the adjoint variables. 

Theorem 1: If the given optimal control *u  and the solutions * * *, ,T I V  of the corresponding state system (2) minimize 
( )J u  over U , then there exists the adjoint variables , ,1 2 3ξ ξ ξ  which satisfy the following equations  

 ( )21 = 1 { (1 ) (1 ( ))} 1 ( )1 1 2

2 = 1 ( )1 2 3

3 = (1 ( )) (1 ( ))1 2 3

d Td a V u t V u t
dt Tmax

d
q

dt
d

T u t T u t c
dt

ξ
ξ β ξ β

ξ
ξ ρ ξ δ ρ ξ

ξ
ξ β ξ β ξ

 
− − + − + − − − + − 
 

 − + − + + 

 − − − + − − 
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along with the transversality condition ( ) = 0   = 1,2,3t for ii fξ . Moreover, *u is represented by 

( )2 1* = max{0,min{ ,1}}
2

TV
u

R

β ξ ξ−
. 

Proof: The Hamiltonian (4) can be written as  

 2= ( ) ( ) ( ) ( )1 2H Ru t u t TV u t TV other term without u tξ β ξ β+ − +  (5) 

According to the Pontryagin Minimum Principal [14], the unconstrained optimal control variable *u  satisfies  

 
= 0,*

H

u

∂

∂
 (6) 

i.e ( )*= 2 ( ) = 0.1 2*
H Ru t TV
u

β ξ ξ∂
+ −

∂
 

Hence, we obtain from the above expression [16]  

 ( )2 1* = .
2

TV
u

R

β ξ ξ−
 (7) 

By applying the standard control arguments involving the bounds on the control [17, 18], we conclude for u :  

 ( )

( ) ( )

( )

2 10, 0;
2

2 1 2 1* = , 0 < < 1;
2 2

2 11, 1.
2

TV

R
TV TV

u
R R

TV

R

β ξ ξ

β ξ ξ β ξ ξ

β ξ ξ

 −
 ≤



− −


 −
 ≥


 (8) 

To ensure the positivity of u*, we use the following notation = max( ,0)u s+  [13, 16].   

Therefore, in compact notation,  

 ( )2 1* = min{ ,1}.
2

TV
u

R

β ξ ξ
+

−
 (8a) 

Now, according to the Pontryagin Minimum Principal [14], we can write  

 
= , = 1,2,3

d Hi i
dt x
ξ ∂

−
∂

 (9) 

where,  ( ), ,x T I V≡  and the necessary condition satisfying the optimal control ( )u t  are  

 ( ) ( )*( ), ( ), ( ), = ( ), ( ), ( ), , = 1,2,3.minH x t u t t t H x t u t t t ii iu U
ξ ξ

∈
 (10) 

So, the adjoint equation corresponding to the system (5) are 

31 2= , = , = .
dd dH H H

dt T dt I dt V

ξξ ξ∂ ∂ ∂
− − −
∂ ∂ ∂

 

Therefore,  
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( )21 = 1 (1 ) (1 ( )) 1 ( )1 1 2

2 = 1 ( )1 2 3

3 = (1 ( )) (1 ( )) .1 2 3

d Td a V u t V u t
dt Tmax

d
q

dt
d

T u t T u t c
dt

ξ
ξ β ξ β

ξ
ξ ρ ξ δ ρ ξ

ξ
ξ β ξ β ξ

  
− − + − + − − − + −  
   

 − + − + + 

 − − − + − − 

 (11) 

Where, ( ) = 0, = 1,2,3t ii fξ  are transversality conditions and (0) = 0T T , (0) = 0I I , (0) = 0V V  are initial conditions.  

V. STOCHASTIC VERSION OF THE MODEL 

In this we introduce stochasticity in deterministic model of HIV considered by Zhou et al. [9] and find the marginal distribution 
in quasi-stationary and the expected time to extinction keeping in mind that the infected class is to be extinct. We have performed 
the numerical simulation to confirm our analysis. 

Now we reduce the dimension of the system (1), by assuming a rapid time scale for the free  

virus dynamics, /V qI c≈  [19, 20]. Thus the reduced ODE model can be written in the form of 

= (1 ) ,1

= .

dT Ts d T aT kTI I
dt Tmax
dI kTI I I
dt

ρ

δ ρ

− + − − +

− −  

Where, = / ,k q cβ  all the parameters and variables are non negative. 

Before describing the stochastic formulation, the logistic term can be written as ( ) ( ) = (1 )TA T B T aT
Tmax

− − , where )(TA  

is the birth rate and ( )B T  is the death rate and ( )A T , ( )B T  can be written as 2( ) = 1 2A T a T a T−  and 2
21=)( TbTbTB +  

respectively, where ia  and ib  (i=1,2) are constants. So from the above relations we can state that = ( )1 1a a b−  and 

1 1= .
2 2

a b
Tmax a b

−

+
 

Therefore the above system of two equations can be written as  

 
= ( ) (1 ) ,1 1 1

1 1

2 2

= .

dT Ts d T a b T kTI I
a bdt
a b

dI kTI I I
dt

ρ

δ ρ

− + − − − +
−

+

− −  
(12) 

A. The Stochastic Model Formulation 

There are two state variables, namely the number of uninfected CD4+ T cells ( )T t  and the number of infected such cells ( )I t  
at time t . They jointly take values in the state space { }= ( , ) : = 0,1,2,.....; = 0,1,2,..... .S m n m n So, 

{ }( ) = ( ) = , ( ) =,p t P T t m I t nm n  is the joint distribution of ( ), ( )T t I t  at time t . If m  and/or n  are negative, ( ),p tm n  is 
then equal to 0. The model is based on the following four basic events, which are production of CD4+T cells primarily from bone 
marrow and secondarily antigen or mitogen stimulates T cells in presence of HIV virus, infection of CD4+ T cells, death of CD4+ T 



Biomedical Engineering Research                                                  Jun. 2014, Vol. 3 Iss. 2, PP. 47-63 

DOI:10.5963/BER0302003 
- 52 - 

cells and death of infected of such cells. Here we assume that the total population is N . Table 1 represents the hypothesized 
transition rates of the model 12. 

TABLE 1 HYPOTHESIZED TRANSITION RATES FOR THE STOCHASTIC VERSION 

 
 

B. Description of the Transition States 

The total number of population N is increased by unity. We can assume that in a infinitesimally small time interval t∆ , the 
probability of the production of uninfected CD4+T cells from precursors in the bone marrow and thymus are zero, but within the 
due time the constant rate of production of uninfected C4+ T cells is s . However, to make the population to be same, we should 
assume that there must be a natural death of uninfected CD4+ T cells. This phenomena is captured through the first two rows of the 
transition matrix. On the other hand if there is an infection in the uninfected CD4+ T cells it can be balanced by an increase of an 
infected CD4+ T cells. The infectible class is infected by direct infection with replication of virus generated within the infected 
population. This occurs one at a time and so the increases of the infected class are reflected by the rise of unity in the transition 
state. If there is an infected CD4+ T cells, the natural death should be reflected through a natural birth of uninfected CD4+ T cells. 
At the end, naturally the recovery of infected host must be reinstate to the uninfected CD4+T cells. 

C. Kolmogorov’s Forward Equation 

The Kolmogorov’s forward equation for the model can be written as  

( ) = ( ) ( 1, ) ( ) ( 1, ), 1, 1 1, 1
( ) ( 1, 1) ( ) ( , 1)1, 1 2 , 1 2

( )(1 ( , ) ) ( ),,

p t t p t m n t p t m n tm n m n m n
p t m n t p t m n tm n m n
p t K m n t o tm n

λ µ

λ µ

+ ∆ − ∆ + + ∆− +
+ + − ∆ + + ∆+ − +
+ − ∆ + ∆

 

where, ( , ) = ( , ) ( , ) ( , ) ( , ).1 1 2 2K m n m n m n m n m nλ µ λ µ+ + +  It is considered here that events consisting of more than one birth or 

more than one death are included in the ( )o t∆  term. Thus,  

( ) ( ), , = ( ) ( 1, ) ( ) ( 1, )1, 1 1, 1
( )( ) ( 1, 1) ( ) ( , 1) ( ) ( , ) .,1, 1 2 , 1 2

p t t p tm n m n p t m n p t m nm n m nt
o tp t m n p t m n p t K m nm nm n m n t

λ µ

λ µ

+ ∆ −
− + +− +∆

∆
+ + − + + − ++ − + ∆

 

( ) ( ), ,, '( ) = .lim, 0

p t t p tm n m nNow p tm n tt

+ ∆ −

∆∆ →
 

Therefore the Kolmogorov’s Forward Equation for the model can be written as :  

 '( ) = ( ) ( 1, ) ( ) ( 1, ), 1, 1 1, 1
( ) ( 1, 1) ( ) ( , 1) ( ) ( , ).,1, 1 2 , 1 2

p t p t m n p t m nm n m n m n
p t m n p t m n p t K m nm nm n m n

λ µ

λ µ

− + +− +
+ + − + + −+ − +

 (13) 

D. Time to Extinction of the Infected T-Cells 

The distribution of the time to extinction is an important measure in epidemiological perceptive which can be determined from 
the solution of the Kolmogorov’s Forward Eq. (13). 

Here time to extinction of the infected T-cells representing as τ  is less than or equal to t , when the number of infected 

individuals equals to zero, i.e., when we have { },t τ≤  infected T-cells will exist. So we can write ( ) = { ( ) > 0}P t P I tτ≤  and 

Event (CD4 + T-cells) Transition Transition rates 

Birth of an uninfected ( , ) ( 1, )m n m n→ +  ( , ) =1 m n sλ + ( )1 2m a a m mρ− +  

Death of an uninfected ( , ) ( 1, )m n m n→ −  ( , )1 m nµ = ( )1 2 1m b b m d+ +  

Infection of an uninfected ( , ) ( 1, 1)m n m n→ − +  ( , ) =2 m n kmnλ  

Recovery or Death of infected ( , ) ( , 1)m n m n→ −  ( , ) = ( )2 m n nµ ρ δ+  
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( ) = { ( ) = 0} = ( ),.0P t P I t p tτ ≤  where, ( ) = ( ).,=0.0
Np t p tm nm∑  

Thus the marginal probability of infected T-cells equals to zero at time t  equals to the cumulative distribution function of the 
time to extinction at time t . Let the c.d.f and p.d.f of τ  be denoted by F and f respectively. 

Therefore, ( ) = { ( ) = 0} = { ( ) = , ( ) = 0} = ( )=0 =0 ,0
N NF t P I t P T t m I t p tm m m∑ ∑   

So, ( ) = '( ) = '( ).=0 ,0 .0
Nf t p t p tm m∑  

Putting = 0n  in the Eq. 13, we have,  

'( ) = ( ) ( 1,0) ( ) ( 1,0),0 1,0 1 1,0 1
( ) ( 1, 1) ( ) ( ,1) ( ) ( ,0).1, 1 2 ,1 2 ,0

= ( ( 1)( ( 1))) ( ) (( 1)( ( 1)) )1 2 1,0 1 2 1
( ) ( ) ( ) ( )( ( ) ((1,0 ,1 ,0 1 2 1

p t p t m p t mm m m
p t m p t m p t K mm m m
s m a a m p t m b b m dm

p t p t p t s m a a m m bm m m

λ µ

λ µ

ρ δ

− + +− +
+ + − + −+ −

+ − − − + + + + +−
+ + − + − + ++ ) ).2 1b m d+

 

Taking summation on the both side from = 0m →∞ , we get  

'( ) = ( ) ( 1)( ( 1)),0 1,0 1 2=0 =0 =0

( ) ( 1)( ( 1)) ( 1) ( )1,0 1 2 1,0 1 1,0=0 =0

( ) ( ) ( ),1 ,1 ,0=0 =0 =0

( ) ( ) ( ) ( )1 2 ,0 1 2 ,0=0 =0

p t s p t m a a mm mm m m

p t m b b m p d m p tm m mm m

p t p t s p tm m mm m m

m a a m p t m b b m p t dm mm m

δ ρ

∞ ∞ ∞
+ − − −∑ ∑ ∑−

∞ ∞
+ + + + + +∑ ∑− + +

∞ ∞ ∞
+ + −∑ ∑ ∑

∞ ∞
− − − + −∑ ∑ ( ).1 ,0=0

mp tmm

∞
∑

 

= ( ) ( ). = ( ) ( ( ) = , ( ) = 1).,1 ,1=0 =0 =0
p t p t P T t m I tm mm m m

δ ρ δ ρ
∞ ∞ ∞

+ +∑ ∑ ∑
 

 ).()(=)(.,. .1.0 tptpei ρδ +′  (14) 

So we can write, ( ) = ( ) = ( ) { ( ) = 1} = ( ) ( ),.0 .1f t p t P I t p tδ ρ δ ρ′ + +  

where, ( ) = ( ).=0.1 ,1p t p tm m
∞∑  

To find the expected time to extinction, we need to compute ( )..1p t  

E. The Distribution of the Time to Extinction 

To find the absorption of ( )I t  at 0 , the distribution of ( )( ), ( ) , .1 0T t I t int∀ ≥  is necessary but is not possible. So, we look 

for the process that will give more detailed information regarding eventual absorption in the class ( ){ ,0 : = 1,2,.....}m m , which is 
assured in this perspective. Thus, we try to find out the quasi-limiting distribution. The process { ( ), ( )}, 0T t I t t ≥  has a unique 
conditional distribution (conditioned on being not absorbed) ,qm n , where,  

( ),( ) = { ( ) = , ( ) = | ( ) 0} = ,, 1 ( ).0
= 0,1,2,.....; = 1,2.....

p tm nq t P T t m I t n I tm n p t

m n

≠
−  

Now we derive a system of differential equation for ( ),q tm n . Differentiating the expression for ( ),q tm n  and using the 
relation (14), we obtain  
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'( )'( ) ,0, =0'( ) = ( 1) ( ), ,2(1 ( ))1 ( ) .0,0=0
'( ) ( ), ,= ( ) ( )..121 ( ) (1 ( )).0 .0

p tp t mm n mq t p tm n m n
p tp tmm

p t p tm n m n p t
p t p t

δ ρ

∞
− ∑

+ −∞
−− ∑

+ +
− −

 

The distribution of the random variable τ  depends upon the initial distribution of the infected T-cell population. If at time t , 
the infection exists and if it exists for a long time, then it can be assured that the distribution of the number of infected T-cell 
population ( )I t  can be described by the quasi-stationary distribution. On this standpoint we are assuming that the initial 
distribution is quasi-stationary. 

Let us consider Qτ  be the time to extinction of infected T-cells. We can write '( ),q tm n  as:  

'( ) ( ), ,'( ) = ( ) ( ) ., .1 21 ( ) (1 ( )).0 .0

p t p tm n m nq t p tm n p t p t
δ ρ+ +

− −
 

Also we can write  

'( ) ( ), ,'( ) = ( ) ( ) ., .11 ( ) (1 ( )).0 .0

p t q tm n m nq t p tm n p t p t
δ ρ+ +

− −
 

Since the initial distribution is assumed to be quasi-stationary 

. .   (0) = ,, ,i e p qm n m n  So we can write,  

 '( ) ( ), ,'( ) = ( ) ( ) ., .11 ( ) (1 ( )).0 .0

p t p tm n m nq t q tm n p t p t
δ ρ+ +

− −
 (15) 

Putting '( ) = 0,,q tm n  in the Eq. 15, we get  

 '( ) = ( ) ( ), ,.1p t q p tm n m nδ ρ− +  (16) 

i.e., 
( ) .1( ) = ., ,

q t
p t q em n m n

δ ρ− +
 

So, 
( ) .1( ) = ..1 .1

q t
p t q e

δ ρ− +
 

Using the above form of ( ).1p t  in Eq. 14, we have,  

( )( ) = '( ) = ( ) (( ) ) , > 0..0 .1 .1f t p t q e q t tδ ρ δ ρ−+ +  

Thus the expected time to extinction of the infected T-cells has an exponential distribution and is equal to 
1( ) = .

( ) .1
E Q q
τ

δ ρ+
 

Therefore, we can say that the expected time to extinction from quasi-stationary distribution is inversely proportional to the 
probability .1q , It is also proportional to the sum of the recovery rate ρ  and the disappearance rate δ  of the infected T-cell 

population. From the above expression we say that for fixed parameter values ρ  and δ , Qτ  is determinable and 

quasi-stationary probability .1q , is the marginal distribution for one infected individual at time t  conditioned on not being 

absorb. 
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F. Diffusion Approximation: 

Let us consider the two-dimensional process (12):  

= ( ) 1 ,1 1 1
1 1

2 2

= .

dT Ts d T T a b kTI I
a bdt
a b

dI kTI I I
dt

ρ

δ ρ

 
 
 

− + − − − + − 
 + 

− −

 

If the total population N  is sufficiently large, the quasi-stationary distribution is approximated by a bivariate normal 
distribution. Here we consider =1y T , =2y I  and the process ( ) = ( ( ), ( ))1 2y t y t y t . 

The critical point of the deterministic model (1) is given by 
^ ^ ^

= ,1 2y y y
 
 
 

 where, 
^

= ,1y k
δ ρ+ and  

^ 1 ( )= [ (1 ) ].2
dy s a

k kT kmax

δ ρ δ ρ δ ρ
δ

+ + +
+ − −  

Now we want to find the mean change ( )E y∆  and the covariance matrix ( )( )TE y y∆ ∆  for the time interval t∆  

(neglecting the terms of order 2( ) ).t∆  In the time interval t  to t t+ ∆ , there are four possibilities of population change y∆  

neglecting multiple births and deaths in the time interval t  to t t+ ∆  which are of order 2( )t∆ . The possibilities of population 
change are given in Table 2 along with their corresponding probabilities. 

TABLE 2 POSSIBLE CHANGES IN THE TWO-POPULATION SYSTEM (12) WITH THE PROBABILITIES 

Changes Probability 

= [1, 0]1
Ty∆  = ( ( ) )1 1 1 2 1 2p s y a a y y tρ+ − + ∆  

= [ 1, 0]2
Ty∆ −  = ( )2 1 1 2 1 1p y b b y d t+ + ∆  

= [ 1,1]3
Ty∆ −  =3 1 2p ky y t∆  

= [0, 1]4
Ty∆ −  = ( )4 2p y tρ δ+ ∆  

Here, 4( ) = =1E y p yj jj∆ ∆∑   

2 2
1 1 2 1 2 1 1 2 1 1 1 1 2

= ( ) ( )1 2 2

s a y a y y b y b y d y ky y

ky y y t o t

ρ

ρ δ

 + − + − − − − 
 − + ∆ + ∆
 
 
 

 

= ( ) ( ).b y t o t∆ + ∆  
The Jacobian matrix of the vector ( )b y  with respect to y  is denoted by ( )B y , and it is defined by, 

( ) 2 ( )1 1 1 2 2 1 2 1( )( ) = = .2 1

a b y a b d ky ky
b yB y ky ky

y

ρ

δ ρ

− − + − − − 
 ∂

− − 
∂  

 

 

The approximated value of ( )B y  at the critical point 
^ ^ ^

= ,1 2y y y
 
 
 

 is  
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1 2^
( ) = .3 4

B B

B y B B

 
 
 
 
 

 

Where 

^^
2 1=1 ^

1

y as yB
Tmaxy

ρ− −
− , =2B δ− , 

^
= 23B k y , = 0.4B   

Now, ( ) 4.1 ( ) = ( ) = ( )=1
T TinEE y y p y y S yj j jj∆ ∆ ∆ ∆∑  

1 2
= .2 3

S S

S S

 
 
 
 
 

 

Where, = ( ) ( )1 1 1 2 1 2 1 1 2 1 1 1 2S s y a a y y y b b y d ky yρ+ − + + + + + , =2 1 2S ky y− , and = 2( ) .3 2S yδ ρ+  

At the critical point 
^
y , the value of ( )S y  is given by, 

^ ^ ^ ^ ^
2( ( ) )1 1 2 1 21 2

^ ^ ^ ^
( ) = 2( ) .1 2 2

s y a a y y k y y

S y k y y y

ρ

δ ρ

 
 + − + −
 
 

− + 
 
 
  
 

 

For large N , the process 
^1/2{ ( ) }N y t y−  is approximated by a bivariate Ornstein-Uhlenbeck process, with local drift matrix 

^
( )B y  and local covariance matrix 

^
( )S y . Thus its stationary distribution approximates the quasi-stationary distribution. The 

process 
^1/2{ ( ) }N y t y−  is approximately bivariate normal with mean 0  and covariance matrix C , where the matrix C  can be 

determined with the help of the local drift matrix 
^

( )B y  and local covariance matrix 
^

( )S y , through the relationship 

^ ^ ^
( ) ( ) = ( ),TB y C CB y S y+ −  where TB  is the transpose of B  . After solving the above equation we get, 

1 2
= 2 3

C C

C C C

 
 
 
 
 

.  

The above result leads to the conclusion that in quasi-stationarity the marginal distribution of the number of uninfected T-cells 
and infected T-cells are approximately ( , )

1 1
N y yµ σ  and ( , )

2 2
N y yµ σ  respectively, where  

^
= , = ( / )1 11 1

y C Ny yµ σ  

^
= , = ( / ).2 32 2

y C Ny yµ σ  
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Further, the covariance is approximated by ( )= =21 2
Cy y k

δ ρσ − + . 

Where,  

^^
1 21 2 3 1= , =   ,1 3

B C B C k y yAC C and
B δ

+ −
 

^ ^ ^ ( )= ( )1 1 21 2A s y a a y y
k

δ δ ρρ +
+ − + + ,   

^
^2= ( )1 2 2^

1

s y
B y a b

y

ρ+
+ + . 

Note that the parameters should also satisfy > 01C , > 03C . 

G.  Discussion on Estimation of Expected Time to Extinction of the Infected CD4+T Cells and Formation of Theorem 

In the deterministic version of the model, it is not possible to find out expected time to extinction of the disease by this 
approach recovery of the disease can be achieved by the immune system. Here, it is not sufficient to mention that recovery of the 
infected cells and extinction of the disease are both equally important. Stochastic approach is the only method by which expected 
time to extinction of the disease can be imagined, which is obviously related to the total number of cell populations.  

Theorem 2: The expected time to extinction of the infected cell is approximately 

( )
1/ 2

2

1 22= =
( ) ( ) 1.1 2

2

y

yy
E Q q y

y

µ
ϕ

σσ
τ

δ ρ δ ρ µ
φ

σ

 −
 
 
 

+ +  −
 
 
  .

 

Proof. From (16), the time to extinction ( )Qτ  in quasi-stationarity follows an exponential distribution with parameter 

( ) .1qδ ρ+ , where .1q  is the marginal quasi-stationary distribution of the number of infected cells, conditioned on not being 

absorbed (i.e, > 02y ). 

By using the diffusion approximation, the marginal distribution of the infected cells in quasi-stationarity will be univariate 
normal with mean 

2yµ  and standard deviation 
2yσ , (see Section 5.6). To achieve consistency with the fact that > 0,2y  the 

approximating normal distribution is modified by truncation at 0.5 . Hence we have the following approximation of .q n ,  

( )

( )

2

2
221 1 1 1 1 22. , 1/ 2 < < =. 1/ 2 0.52

2 2 22 21
2 2

n y
n yy

q e nn
y y yy y

y y

µ

µσ
φ

σ σ σµ µπ
ϕ ϕ ϕ

σ σ

 
 
 
 
−

−
 −
 ≈ ∞
    − −  
    ∞ − −
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i.e 

2

1 2 .. 0.5
2 2

2

n y

y
q n

y y

y

µ
φ

σ

σ µ
ϕ

σ

 −
 
 
 ≈
 −
 
 
 

 (17) 

where φ  and ϕ  are the standard normal c.d.f. and the standard normal p.d.f. respectively. 

Using approximation of (17), the expected time to extinction can be written as,  

( )
1/ 2

2

1 22= =
( ) ( ) 1.1 2

2

y

yy
E Q q y

y

µ
ϕ

σσ
τ

δ ρ δ ρ µ
φ

σ

 −
 
 
 

+ +  −
 
 
  .

 

VI. NUMERICAL SIMULATION 

The dynamics of the disease progression of HIV/AIDS along with control measures were analyzed using numerical methods. 
Here we build a computer simulation technique with a particular choices of parameter values that are reasonably realistic. The 
parameter values, considered here, are shown in Table 3. We find the quasi-stationary distribution and the expected time to 
extinction of the infected CD4 + T cells. Here we also consider the initial conditions for the state variables T , I  and V  along 
with the transversality condition for the adjoint variables iξ , = 1,2,3i , where ( ) = 0ti fξ , = 1,2,3i . Here we analyze the effect 

of change of recovery rate of the infected individuals in presence of the control theoretic approach and find the expected time to 
extinction of the infected CD4+T cells.  

TABLE 3 A HYPOTHETICAL SET OF PARAMETER VALUES FOR THE MODEL SYSTEM (2)  

Parameters Values 

s  5 1 3day mm− −  .1in [9] 

1d  0.01 1day−  .3in [9] 

a  0.5 1day−  .4in [9] 

1a  0.30 .4in [21] 

1b  0.015 .3in [21] 

2a  0.02 .4in [21] 

2b  0.001 .3in [21] 

β  0.0002 3mm− .1in [9] 
k  /q cβ .7in [9] 

ρ  0.01 1day− .3in [9] 

δ  1 1day−  .5in [9] 

q  800 1 3day mm− −  [9] 

c  5 1day− .5in [9] 

 



Biomedical Engineering Research                                                  Jun. 2014, Vol. 3 Iss. 2, PP. 47-63 

DOI:10.5963/BER0302003 
- 59 - 

  

  
Fig. 1 The behavior of the state system and the control variable ( )u t of the optimality system (2) and (3) for = 0.01ρ , R=0.1, all other parameter 

values are the same as in Table 3 

 
 

  



Biomedical Engineering Research                                                  Jun. 2014, Vol. 3 Iss. 2, PP. 47-63 

DOI:10.5963/BER0302003 
- 60 - 

  

Fig. 2 The behavior of the state system and the control variable ( )u t of the optimality system (2) and (3) for = 0.1ρ , 
R=0.1, all other parameter values are same as in Table 3 

 

 
 

  

Fig. 3 The behavior of the state system and the control variable ( )u t  of the optimality system (2) and (3) 
for = 0.5ρ , R=0.1, all other parameter values are same as in Table 3 

Figs. 1-3 represent the behavior of the disease dynamics for control theoretic approach using control variable ( )u t  for 
different values of recovery rate ( = 0.01ρ , = 0.1ρ  and = 0.5ρ ). From these figures, it can be inferred that if we increase the 
recovery rate from = 0.01ρ  to = 0.1ρ  and then = 0.5ρ  with the control approach of the drug adherence, then the number of 
infected CD4+ T cell decreases remarkably. This is due to the fact that with increasing recovery, antigen in the infected cells is 
being exhausted. Through this way, after reaching a certain level, number of virus also decreases. In the above figures, it has also 
been observed that by increasing the recovery rate of the infected cells, the infected CD4+T cell decreases but it does not extinct. 
With this idea, we performed the numerical simulation for finding out the marginal distribution of the number of infected CD4+ T 
cells and its time to extinction. 

For the numerical simulation of the marginal distribution in quasi-stationarity, we use Monte Carlo simulations techniques. For 
this purpose, we consider different population size ( )N  and different recovery rate of the infected CD4+T cells. In the analytical 



Biomedical Engineering Research                                                  Jun. 2014, Vol. 3 Iss. 2, PP. 47-63 

DOI:10.5963/BER0302003 
- 61 - 

derivation as well as in numerical simulation, we consider = ( )1 1a a b−  and 1 1=
2 2

a b
Tmax a b

−

+
 where ai  and bi , = 1,2,i  are 

constants.  

 
 

Fig. 4 The marginal distribution in quasi-stationarity of the number of 
infected CD4+

 T cell, which is truncated and positively skewed i.e non-normal 
for N=1500 of Eq. (12)  

Fig. 5 The marginal distribution in quasi-stationarity of the number of infected 
CD4+T cells for different values of N of Eq. (12) 

  
Fig. 6 The marginal distribution in quasi-stationarity of the number of infected 

CD4+ T cells for different values of ρ of Eq. (12) 
Fig. 7 The expected time to extinction ( )E Qτ in transition region are shown as a 

function of N of Eq. (12), all other parameter are the same as in Figs. 1 and 2.  

Fig. 4 shows the marginal distribution in quasi-stationarity for the number of infected CD4+T cells, which is truncated and 
positively skewed i.e non normal at = 1500N . Figs. 5 and 6 represent the marginal distribution of infected CD4+T cells for 
different values of the total population N  and recovery rate ρ . From Fig. 5, we can see that with increasing population size N , 
the number of infected CD4+T cell also increases and the density of the infected CD4+ T cell is also enhanced. Fig. 6 reflects the 
distribution of infected individuals for different values of ρ  which shows that when we increase the recovery rate of the infected 
individual, the number of infected cell are also decreasing. So the skewness of the population decreases whereas the kurtosis gets 
higher value.  

Fig. 7 represents the expected time to extinction from marginal distribution of the infected population in quasi-stationarity for 
various population size. Here we observed that when the population size N  is very small, the expected time to extinction is very 
short but when N  grows, the expected time to extinction increases rapidly. This type of phenomenon occurs because when the 
total population N  is very small, it is expected that the number of infected cell is also very small. Furthermore, some of the 
infected cell become recovered, so the expected time to extinction becomes very short, but when the total population N  is high 
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then the number of infected cell grows rapidly which leads to the fact that the expected time to extinction is very long. Lastly our 
numerical analysis shows that the dynamics of disease progression can be reduced by applying control measures in the drug 
adherence with increasing recovery rate of the infected CD4+T cells. With this, it has also been concluded that expected time to 
extinction of the disease is a function of the total number of population size.  

VII. DISCUSSION AND CONCLUSION 

In this research article, we have enriched the mathematical model of Zhou et al. [9] by introducing optimal control therapeutic 
approach for successful recovery of the disease. Our analytical and numerical results reveal that, the number of infected CD4+T 
cell decreases remarkably by using systematic drug dose. By this, we get a better recovery of the infected class as it moves towards 
healthy class within a certain period of time. But for the estimation of expected time to extinction of the disease, it is not possible 
to analyze through deterministic version. For that purpose, we have studied the stochastic counterpart of the existing deterministic 
model of HIV. We also derived the quasi-stationary distribution of infected individuals as well as expected time to extinction of the 
disease. In this regard, our research findings may add a new dimension in epidemiological study through estimated approximation 
of marginal density of the infected individuals and its time to extinction. In conclusion, it can be stated that stochastic modeling 
provides a more accurate prediction in finding out the expected time to extinction of infected population for the disease HIV/AIDS. 
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