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Abstract- In the present research, electrical discharge machining (EDM) of carbon fiber reinforced plastic (CFRP) material was 
studied. The selection of optimum electrical discharge machining parameters combinations for the purpose of obtaining higher 
cutting efficiency and accuracy is a challenge task due to the presence of a large number of process variables. This paper presents an 
attempt to develop an appropriate machining strategy for a maximum process criteria yield. A feed-forward back-propagation 
neural network was developed to model the machining process. The three most important parameters-material removal rate, tool 
electrode wear rate and surface roughness-were considered as measures of the process performance. A large number of experiments 
were carried out over a wide range of machining conditions to study the effect of input parameters on the machining performance. 
The experimental data was used for the training and verification of the model. Testing results demonstrated that the model is 
suitable for predicting the response parameters accurately as a function of most effective control parameters, i.e. pulse duration, 
peak current and tool electrode rotational speed. 

Keywords- Electrical Discharge Machining (EDM); CFRP; Neural Network Technique; Metal Removal Rate; Tool Electrode Wear 
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I. INTRODUCTION 

Carbon fiber reinforced plastic (CFRP), is a very strong and light composite material or fiber reinforced polymer. It 
consists of a polymer (usually duroplastics, thermoplastics or epoxy) employed as a matrix material in which carbon fibers 
with diameters of a few micrometers are embedded. CFRPs exhibit considerably greater rigidity, sharply enhanced electrical 
and thermal conductivity and a lower density. Their positive characteristics (relative to the weight) enable them to be typically 
used for many applications in aerospace engineering, automotive industry, motor racing, sport equipment subject to high levels 
of stress as well as in sailboats and high-strength and high-rigidity parts in industrial applications, such as robot arms, 
reinforcement and sleeves in turbo molecular pumps or drive shafts. 

However, machining CFRP is difficult, because it is inhomogeneous substances consisting of electrical conductive high-
tensile fibre materials and an electrical non-conductive matrix material that is usually made of a plastic or epoxy resin. The use 
of traditional machinery to machine hard composite materials such as turning, sawing, drilling, etc. generally results in serious 
tool wear due to the high strength, delaminating, splintering, burrs of machined surface and shorting the life of the tool used [1, 
2]. Although other non-conventional machining techniques such as ultrasonic machining, water jet machining and laser beam 
machining have been increasingly used [3], the machine equipment itself is very expensive and the height of the workpiece is 
constrained to be small.  

Electrical discharge machining (EDM) is an effective alternative for machining difficult-to-cut materials. Machining with 
EDM is achieved by a series of accurately controlled micro sparks produced by the breakdown of a liquid dielectric in a 
narrow gap subjected to high voltage for the purpose of eroding (vaporizing) metals. Therefore, electrical discharge machining 
process is capable of machining any electrically conducting material regardless of its hardness. The scope of the EDM 
processes ranges from the drilling of micro-holes to machining very large automotive dies [4, 5]. 

At present, the selection of machining parameters in EDM process is important for achieving optimal machining 
performance. Usually, the desired machining parameters are determined based on experience or handbook values. However, 
this does not ensure that the selected machining parameters result in optimal or near optimal machining performance for that 
particular electrical discharge machine. In some cases, selected parameters are conservative and far from the optimum, and at 
the same time selecting optimization parameters requires many costly and time consuming experiments [6, 7]. Many 
researchers tried to optimize the machining performance by adapting different optimization techniques. Several attempts have 
also been made to model and control the electrical discharge machining processes such as mathematical modeling, response 
surface methodology, artificial neural networks, genetic algorithms, expert and fuzzy systems [8-11].  

Artificial neural networks (ANN) are highly flexible modeling tools with an ability to learn the mapping between input 
variables and output feature spaces. The superiority of using ANN in modeling machining processes make easier to model the 
EDM process. ANN models usually assume that computation is distributed over several simple units called neurons, which are 
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interconnected and operate in parallel. The purpose of a neural network is to learn to recognize patterns in the data. Once the 
ANN has been trained on the samples, it can make predictions by detecting similar patterns in future data [11, 12]. 

There are many applications of artificial neural networks in electrical discharge machining process. Thillaivanan et al. [13] 
established a model based on neural networks and Taguchi method to optimize operating parameters for EDM process. 
Predictions of surface finish for various work materials with the change of electrode polarity were compared based upon six 
different ANN models [14]. Tsai et al. [15] establish a better process model based on neural networks by comparing the 
predictions from different models under the effects of the change of polarity between the tool electrode and workpiece 
materials in the EDM process. Somashekhar et al. [16] reported on the development of modeling and optimization for micro-
electric discharge machining process to establish the parameter optimization model using ANN and genetic algorithms. A 
method that can optimize the processing parameters was presented in the EDM sinking process with the application of ANN 
[17]. Rajesh et al. [18] developed an ANN to model and optimize hole drilling electro discharge micro machining of invar. 
Prediction models of material removal rate and surface finish in electrical discharge machining process was developed using 
ANN approach [14, 19]. Pushpendrai et al. [20] and Bharti et al. [21] used neural networks and Taguchi’s method for 
optimization of process parameters of EDM. 

In this work a better process parameter optimization model of electrical discharge machining was established based on the 
presence of artificial neural network. An ANN model was established to represent the relationship between EDM cutting 
parameters such as material removal rate, tool electrode wear rate and surface roughness with machining variables such as 
pulse duration, peak current and tool electrode rotation speed. Initially, pertinent process variables affecting the cutting 
parameters were screened by making use design of experiments technique. The design of experiments data were later used for 
training the various process models. Finally, more experimental verification on the established process models was conducted, 
and comparisons among the models, including a statistical process model, were analyzed. 

II. PROBLEM FORMULATION 

A. Design Variables 

The formulation of a solution to an optimization problem begins with identifying the underlying design variables, which 
are primarily varied during the optimization process. In this work, pulse duration, peak current and tool electrode rotation 
speed were considered as design variables. 

B. Constraints 

The constraints represent some functional relationship among the design variables and other design satisfying certain 
physical phenomenon and certain resource that are greater than or equal to, a resource value. In this work, surface roughness 
and tool electrode wear rate were considered as constraints. 

C. Objective Function 

The objective function can be of two kinds. Either the objective function is to be minimized or it has to be maximized. In 
this paper, maximization of the material removal rate was considered as objective function. 

III. EXPERIMENTAL WORK 

A. Materials 

The workpiece material selected for this work was carbon fiber reinforced plastic CFRP (Sakai Industries F6343B-05P) 
with two perpendicular orientations of carbon laminates formed by autoclave method. The shape of the workpiece was 30 mm 
* 30 mm square cross section with height of 10 mm. The physical and mechanical properties of the CFRP are listed in Table 1. 
The manufacturing process of the CFRP material has been explained by Habib et al. [22, 23]. The present experiments were 
performed using cylindrical copper tool electrodes.  The physical properties of the copper tool electrode material are listed in 
Table 2. The tool electrode is 8.0 mm in diameter and 80 mm in height. Kerosene is the dielectric fluid used between the tool 
electrode and workpiece. 

TABLE 1 PHYSICAL AND MECHANICAL PROPERTIES OF THE CFRP (F6343B-05P) 

Fiber type T300 

Fiber content ratio vol.% 60 

Tensile strength MPa 360 

Elasticity 103 MPa 23.5 

Elongation % 1.5 

Breaking expansion % 1.3 
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Density g/cm3 1.76 

TABLE 2 PHYSICAL PROPERTIES OF THE COPPER TOOL ELECTRODE 

Density g/cm3 Melting point °C Resistivity Ωcm/104 

8.93 1083 0.009-0.07 

 

B. Experimental Procedure 

A numerical control programming electrical discharge machine known as "Sodick AQ550L" was used in this study. This 
machine has 4 axes control x, y, z and u and allows the user to program the generator settings and job machining steps prior to 
actual machining of the job. Kerosene type (Sodick high-tech VITOL2) was used as working fluid. The working principle of 
EDM process can be found in Fig. 1. 

 
Fig. 1 EDM experimental setup 

In this work, a series of EDM experiments with varying discharge conditions were carried out. Various EDM cutting 
conditions such as pulse duration, peak current and tool electrode rotation speed were selected for this work. The electrical 
discharge machining conditions selected for this work can be found in Table 3. 

TABLE 3 EDM MACHINING CONDITIONS 

Peak current (A) 1.0, 2.0 and 3.0 

Open circuit voltage (V)  120 

Pulse duration (µs) 100, 200 and 300 

Machining fluid Kerosene 

Electrode material Copper 

Tool electrode rotation speed (rpm) 0, 1000 and 2000  

Machining depth (mm) 1.0 

The work piece and tool electrode were weighed before and after each experiment using an electric balance with a 
resolution of 0.01 mg. For each set of values, three experiments were performed in a randomized sequence in order to 
eliminate the influence of systematic errors. In this work, material removal rate (MRR) and tool electrode wear rate (TEWR) 
were calculated by the following formulas: 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =

�𝑊𝑊𝑖𝑖𝑖𝑖 −𝑊𝑊𝑓𝑓𝑖𝑖 �
𝑡𝑡

 (1) 

 
𝑇𝑇𝑇𝑇𝑊𝑊𝑀𝑀 =

�𝑊𝑊𝑖𝑖𝑖𝑖 − 𝑊𝑊𝑓𝑓𝑖𝑖 �
𝑡𝑡

 
(2) 

Where MRR is the material removal rate (g/min), TEWR is the tool electrode wear rate (g/min), Wiw  is the initial average 
weight of the workpiece (g), Wfw  is the final average weight of the workpiece, Wie  is the initial average weight of the tool 
electrode, Wfe  is the final average weight of the tool electrode and t is the EDM experiment period (min). 
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The surface roughness (Ra) of each machined workpiece was measured using Talysurf 6 surface roughness measuring 
machine with cut-off length of 0.8 mm and the stylus tip width of 2.0 µm nominal. Each experiment was replicated twice for 
better results and the average value was calculated. 

IV. EXPERIMENTAL DESIGN 

Based on a literature survey and preliminary investigations, the following three parameters were chosen as inputs: pulse 
duration (Te), peak current (Ip) and tool electrode rotation speed (Se). Table 4 shows the different levels of these control 
parameters considered. There are other factors that can be expected to have an effect on the measure of the performance. In 
order to minimize their effects, these other parameters were held constant: open circuit voltage and machining depth. In the 
present study, the cutting performance of EDM was measured by the following three important response parameters: material 
removal rate (g/min), tool electrode wear rate (g/min) and surface roughness (µm). 

TABLE 4 LEVELS AND RANGE OF THE MACHINING PARAMETERS 

Control parameters Level 

-1 0  +1  

Pulse duration Te (µs) 100 200 300 

Peak current Ip (A) 1 2 3 

Tool electrode rotation speed Se (rpm) 0 1000 2000 

Based upon the input factors and their levels as listed in Table 4, a factorial design of experiments was carried out based on 
Central Composite Design (CCD) with three variables, eight cube points, four central points, six axial points and two centre 
point in axial, in total 20 runs. Electrical discharge machining experiments were divided into two main branches; the first part 
of the experimental date was conducted to design the neural network and the other part to train the developed neural network. 
Total numbers of experiments conducted with the combinations of machining parameters are presented in Table 5. The 
experimental results from Table 6 were used to train the developed neural network. The central composite design was used 
since it gives a comparatively accurate prediction of all response variable averages related to quantities measured during 
experimentation [24]. 

TABLE 5 MATRIX EXPERIMENT 

Experiment 
number 

Input parameters Responses 

Te 
µs 

IP 
A 

Se 
rpm 

MRR 
g/min 

TEWR 
g/min 

Ra 
µm 

1 100 1 1000 0.010724 0.0000111 9.885225 

2 200 1 2000 0.011115 0.0000245 7.03775 

3 200 1 0 0.009395 0.000039 9.2046 

4 200 2 1000 0.008995 0.000099 6.88125 

5 200 3 0 0.008417 0.0000175 7.892275 

6 100 3 1000 0.00682 0.0000649 7.013475 

7 300 3 1000 0.005925 0.0000577 7.8588 

8 100 2 2000 0.011115 0.0000245 7.03775 

9 200 2 1000 0.008995 0.000099 6.88125 

10 300 1 1000 0.007035 0.0000154 9.065075 

11 100 2 0 0.008512 0.0000697 6.77105 

12 200 2 1000 0.008995 0.000099 6.88125 

13 200 2 1000 0.008995 0.000099 6.88125 

14 300 2 0 0.007756 0.0000563 7.70595 

15 300 2 2000 0.010394 0.0000458 6.263125 

16 200 3 2000 0.010107 0.0000553 8.678875 

17 200 2 1000 0.008995 0.000099 6.88125 

CCD offers  the  advantage that certain  levels  of adjustments  are  allowed  and  can  be  used  in  two-step  chronological  
response  surface  methods  [25].  In these methods, there is a possibility that the experiments will stop with fairly few runs and 
decide that the prediction model is satisfactory. 
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TABLE 6 VERIFICATION EXPERIMENT 

Experiment 
number 

Input parameters Responses 
Te 
µs 

IP 
A 

Se 
rpm 

MRR 
g/min 

TEWR 
g/min 

Ra 
µm 

1 300 3 2000 0.006417 0.0000601 7.08155 

2 100 2 2000 0.007665 0.0000155 7.9568 

3 100 1 1000 0.008172 0.0000125 8.46525 

4 300 1 1000 0.009402 0.0000118 9.27675 

5 300 1 0 0.010847 0.0000106 8.92615 

6 200 3 0 0.006367 0.0000642 7.0655 

 

V. ARTIFICIAL NEURAL NETWORK MODELING FOR EDM 

Artificial neural network (ANN) is a logical structure in which multiple processing elements communicate with each other 
through the interconnection between the neurons. ANNs are built on the basis of the biological system of human nervous 
system. They are capable of learning from examples and performing non-linear mappings. It consists of inputs, which are 
multiplied by weights, and then computed by a mathematical function which determines the activation of the neuron. Another 
function computes the output of the artificial neuron. ANNs combine artificial neurons in order to process information. The 
knowledge is presented by the interconnection weight, which is adjusted during the learning stage using the back-propagation 
learning algorithm that uses a gradient search technique to minimize the mean square between the actual output pattern of the 
network and the desired output pattern.  

A. Developed Neural Network Model 

In this work, back-propagation multi-layer feed forward neural network was used. Before applying the neural network for 
modeling, the architecture of the network was decided; i.e. the number of hidden layers and the number of neurons in each 
layer were determined. The final architecture of the network used in this study was a three-layer structure with three nodes at 
the input layer and three nodes at the output layer as shown in Fig. 2. Also, the back-propagation architecture with one hidden 
layer is enough for the majority of applications [10]. Hence, only one hidden layer was adopted. 

The procedure to perform the proposed neural network is: (a) dividing the experimental data into two sets, a training data 
set and a test data set. The model is produced using only the training data set; (b) determining how closely the actual output of 
the network matches the previously unseen data and (c) searching for the optimum non-linear relationship between the input 
and the output data by changing the weight of each connection so that the network produces a better approximation of the 
desired output. Developing and training of the network were carried out by using the MATLAB R14 (version 7.0) package. 

B. Neural Network Model Variables 

The proposed neural network model variables consist of input variables (electrical discharge machine setting parameters) 
such as pulse frequency (Te), peak current (IP), and tool electrode rotation speed (Se). The target variables (end results of 
electrical discharge machining process) are the material removal rate (MRR), tool electrode wear ratio (TEWR) and surface 
roughness (Ra). 

 
Fig. 2 Configuration of the neural network 
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To determine the A number of neurons in the hidden layer, experimental and predicted outputs for different numbers of 
neurons were compared. In all cases, maximum error tolerance was kept constant. The average prediction error was plotted 
against the number of neurons in the hidden layer as shown in Fig. 3. It is observed that the average prediction error was 
minimized with 10 neurons. Hence, 3-10-3 is the most suitable neural network for this work. Prediction error was defined as 
follows: 

 
Prediction error % = �

Experimental result − Predicted result
Experimental result

� × 100 (3) 

 
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 𝑝𝑝𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 𝑖𝑖𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴 (%) = �

𝑇𝑇𝑝𝑝𝑡𝑡𝐴𝐴𝑇𝑇 𝑝𝑝𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 𝑖𝑖𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴 %
n

𝑝𝑝

𝑖𝑖=1

 (4) 

The total average prediction error was defined as the average of the prediction errors in material removal rate, tool electrode 
wear rate and surface roughness.  

𝑇𝑇𝑝𝑝𝑡𝑡𝐴𝐴𝑇𝑇 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 𝑝𝑝𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 𝑖𝑖𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴 (%) = �
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 𝑝𝑝𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 𝑖𝑖𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴 (%)

m

𝑚𝑚

𝑖𝑖=1

 (5) 

where n is the number of verifications experiments and m is the number of experimental responses, i.e. material removal rate, 
tool electrode wear rate and surface roughness. 

 
Fig. 3 Total average prediction error versus the number of neurons in the hidden layer 

The transfer function in the input layer is "tansig", which means tan-sigmoid transfer function. In the output layer the transfer 
function is “purelin”, which means linear transfer function to make network outputs can take any values. The training function 
selected in this work is batching gradient descent with momentum training 'traingdm'. Momentum allows a network to respond 
not only to the local gradient, but also to recent trends in the error surface. Once the neural network gets trained, it can provide 
the result for any arbitrary value of input data set. Table 7 shows the experimental result and the model prediction. It is 
observed that the prediction based on an ANN model is quite close to the experimental observation. 

TABLE 7 COMPARISON OF EXPERIMENTAL RESULTS WITH THE ANN MODEL PREDICTION 

Experiment 
number 

Experimental results ANN model prediction 
MRR 
g/min 

TEWR 
g/min 

Ra 
µm 

MRR 
g/min 

TEWR 
g/min 

Ra 
µm 

1 0.006417 0.0000601 7.08155 0.006549 0.0000627 7.58221 
2 0.007665 0.0000155 7.9568 0.007872 0.0000146 8.12963 
3 0.008172 0.0000125 8.46525 0.007891 0.0000134 8.85772 
4 0.009402 0.0000118 9.27675 0.009832 0.0000122 9.89822 
5 0.010847 0.0000106 8.92615 0.010289 0.0000099 9.12875 
6 0.006367 0.0000642 7.0655 0.006722 0.0000618 6.86593 

 

VI. RESULTS AND ANALYSIS 
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The purpose of modeling is to develop an effective representation of electrical discharge machining parameters at preset 
values of machine setting. For material removal rate prediction by neural network model, the learning rate and momentum rate 
were finally adjusted to 0.05 and 0.9, respectively. The total number of epochs and goal were set to 300 and 2 respectively to 
get the best results as explained in the resulted matlab graph Fig. 4 (a). 

The performance of the developed artificial neural network technique in the predicting the values of material removal rate 
is shown in Fig. 5. It was found that the correspondence between predicted results and experimental values was quite good. It 
was shown that the efficiency of the neural network in predicting the values of material removal rate of electrical discharge 
machining process. The average prediction error between the predicted and experimental results was found to be 3.9288 %. 
This value is less than those of the errors that usually arise in weight measurements after EDM machining process due to 
unavoidable produced particles sticking with the workpiece surface. 

   
(a) (b) (c) 

Fig. 4 Progress of ANN training process of output parameters with the variable of:    
(a) pulse frequency, (b) peak current and (c) tool electrode rotational speed. 

 
Fig. 5 Comparison between actual and predicted material removal rates 

To obtain the best results of predicted values of tool electrode wear rate from the developed neural network model, the 
learning rate and momentum rate were finally adjusted to 0.05 and 0.7, respectively. The total number of epochs and goal were 
set to 300 and 5 respectively as shown in the resulted matlab graph Fig. 4(b). 

The plot in Fig. 6 indicates the comparison between the experimental values of TEWR and those predicted using fully 
trained neural network. It is found that there were some small differences between the experimental and predicted values of 
TEWR. The maximum prediction error indicated between the predicted and experimental results during testing was 
approximately 7.2% with average prediction error of 5.1774%. This level of error is satisfactory and smaller than the errors 
that normally arise due to experimental variations and the accuracy of instrumentation. 

The surface roughness is an important parameter in EDM process as it indicates the quality of the final product. Surface 
roughness prediction neural network model was designed with the following parameters: the learning rate and momentum rate 
finally adjusted to 0.08 and 0.9, respectively. The total number of epochs and goal were set to 300 and 3 respectively as 
explained in the resulted matlab graph Fig. 4(c). The comparison between experimental and neural network predicted values of 
surface roughness is shown in Fig. 7. Good predictive ability was observed. The average prediction error between the predicted 
and experimental results was found to be 4.2786 %, lower than those usually obtained by the more classical modeling methods. 
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Fig. 6 Comparison between actual and predicted tool electrode wear rates 

 
Fig. 7 Comparison between actual and predicted surface roughness 

The total average prediction error of experimental results for material removal rate, tool electrode wear rate and surface 
roughness with that values predicted from the developed neural network model prediction was calculated as 4.4616 % as 
shown from Table 8. 

TABLE 8 PREDICTION ERROR (%) OF EXPERIMENTAL RESULTS WITH THE ANN MODEL PREDICTION 

Experiment 
number 

Prediction error (%) 

MRR 
g/min 

TEWR 
g/min 

Ra 
µm 

1 2.05703 4.32612 7.06992 
2 2.70058 5.80645 2.1721 
3 3.43857 7.2 4.63624 
4 4.57349 3.38983 6.69922 
5 5.22725 6.60377 2.26973 
6 5.57562 3.73831 2.82457 

Average prediction error 
(%) 

3.9287566 5.1774133 4.27863 

Total average prediction error (%) 4.4616 

VII. CONCLUSIONS 

This work attempts to model the electrical discharge machining (EDM) process using artificial neural network (ANN) with 
back propagation as the learning algorithm. Back-propagation feed forward learning algorithm was used with pulse frequency, 
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peak current and tool electrode rotation speed as input parameters and material removal rate, tool electrode wear rate and 
resulted surface finish as the responses. The resulting hole shape was not considered in this study. During the training process, 
several neural network configurations were studied. It was found that one hidden layer with 10 neurons can provide a better 
prediction. Hence, a feed forward neural network of type 6-10-3 was adopted to model the process. 

The results show more effective nature of neural networks in indicating the electrical discharge machining parameters. The 
total average prediction error of experimental results for material removal rate, tool electrode wear rate and surface roughness 
with that values predicted from the developed neural network model prediction was calculated as 4.4616 %. Well-trained 
neural network models provide fast, accurate and consistent results, making them superior to all other techniques. The artificial 
neural networks provide useful data from experimental databases, which means considerable higher productivity and accuracy. 
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