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Abstract- Developing reliable safety performance functions 
(SPFs) capable of estimating expected accident frequencies and 
identifying hazardous sites is a major concern of departments 
of transportation. In Bayesian accident data analysis, sites are 
commonly ranked based on their posterior expected accident 
frequency in order to be selected for safety countermeasures. 
The primary objective of this research was therefore to 
propose an alternative method to evaluate the level of accuracy 
of an SPF and identify potential hazardous sites, both directly 
through a single step or measurement. A case study of the 
Trans-Canada highway in New Brunswick was used applying 
Bayesian statistics with three different likelihoods: Poisson, 
hierarchical Poisson-gamma, and hierarchical Poisson-
lognormal. As a secondary and validating objective, the above 
mentioned models were investigated and compared. At the 
same time, the effect of environmental exposure on the 
occurrence of accidents was studied. It was found that accident 
frequencies were slightly affected by environmental conditions. 
The posterior means of the model parameters indicated that, 
for the case study, various likelihoods provided roughly similar 
estimates. However, there were significant differences in the 
way in which these likelihoods captured the uncertainty 
around the posterior means through the standard de viation, 95% 
credible interval, and model-fitting. Moreover, a series of 
computational and graphical goodness-of-fit measures were 
examined. In particular, the hierarchical Poisson-gamma 
likelihood presented the best model-fitting. Furthermore, a 
measure of relative risk was computed for each site based on 
the error term presented in Poisson mixture models. The 
rankings of sites using this measure and the posterior expected 
accident frequency were generated and compared. A positive 
covariance between the adopted relative risk factor and the 
expected accident frequency per segment length was observed. 
The results and discussions suggested that such a factor can be 
employed (1) to verify the dependability of SPFs and (2) as an 
alternative to identify and prioritize potential hazardous sites. 

Keywords- Safety Performance Functions; Bayesian 
Inference; Potential Hazardous Sites; Goodness-of-fit; Relative 
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I. INTRODUCTION 

Road safety audits are popular tools for assessing the 
safety condition of a particular road facility. However, they 
lack the ability to account for variations in site 
characteristics (e.g., changes in geometric design, traffic 
flow, pavement condition, traffic control, etc.). Typically, 
the consideration of safety improvements, in the road 
network, arrives from a cost-benefit analysis [1, 2, and 3]. 
Therefore, a p recise evaluation o f safety treatments is 
inevitable to be able to allocate resources appropriately. In 
fact, incorporating road safety into performance-based 

optimization [4] to support tradeoff analysis between 
competing objectives (i.e., condition, safety, cost, mobility, 
environmental impact, social cost, etc.) at  the network level, 
requires accurate estimate of the current safety condition 
(e.g., road segment) and its progression across time. Safety 
is defined as the number of accidents, or accident 
consequences, by type and severity, expected to occur 
during a given period of t ime [5]. Safety perfo rmance 
function (SPF) that represents a mathematical relat ionship 
between accident frequency (expected number of accidents 
per unit of time) and a set of causal factors (e.g., traffic flow) 
is used for evaluating the safety state of a road facility. Thus, 
developing reliable SPFs is a noteworthy task in road safety 
engineering where these functions are mainly employed for 
hotspot (hazardous sites) identification and safety 
countermeasures assessment.  

The base of Bayesian statistics, the Bayes theorem, has 
been around for centuries [6]. The use of Bayesian statistics 
in engineering can be traced back to the nineteen seventies 
[7] with more widespread applications since the nineties [8]. 
The full Bayes approach [9, 10] has recently gained 
popularity in engineering specially for predicting the 
performance of fixed assets [11]. Bayesian inference 
presents some advantages over classical methods, such as 
the capacity to deal with uncertainty associated to causal 
factors. Then, it can produce more accurate estimates for 
data including a small number of observations [9, 12]. 
Classical methods basically provide point estimates for 
model parameters and further computation (through 
standard errors) is necessary to provide the uncertainty 
around the estimated values [13]. However, Bayesian 
estimation direct ly provides the posterior distribution for 
each parameter in the model. Additionally, in  the Bayesian 
framework, a variety of models with different levels of 
complexity can be employed, which makes it more suitable 
for complex data [9]. For instance, hierarchical models and 
those considering spatial and/or temporal correlations can be 
adopted properly in the full Bayes approach [9]. The use of 
Bayesian statistics in road safety has recently been studied 
by some researchers [12, 13, 14, and 15].  The aim of these 
studies has been mainly  to recognize casual factors that may 
affect accident frequencies and identify hotspots (sites that 
require safety improvements).  

Under the Bayesian context and regarding causal factors, 
studies that consider environmental exposure are rare. 
However, in this paper, firstly, the presence of snowfall and 
rainfall in the SPF is examined. Secondly, d ifferent 
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likelihoods commonly used in analyzing accident data 
(Poisson and Poisson mixture models) are applied to a case 
study from New Brunswick (the Trans-Canada Highway) 
and the outcomes are compared. Poisson mixture models are 
introduced in analyses in a hierarchical fashion. Lastly, an 
alternative method is suggested in order to (1) verify the 
reliability of an SPF and (2) identify potential sites (hotspots) 
for safety improvement programs or further safety 
investigations.  

II. METHODOLOGY 

Four main steps were followed in order to develop SPFs 
for the adopted case study in a fu ll Bayes framework: (a) the 
choice of a model function (functional form for SPF), (b) 
the choice of likelihoods (regression approaches), (c) 
assigning prior d istributions to SPF parameters, and (d) 
estimation of the SPF parameters via Markov Chain  Monte 
Carlo (MCMC) methods [10] based on local observations.  

A. Safety Performance Function (SPF) 

Equation 1 is the functional form that represents the SPF 
for road segments in this study [14]. The causal factors used 
in this equation are: segment length, annual average daily 
traffic (AADT), density of horizontal curves, and the 
amount of snowfall and rainfall. These were  the only 
available variables for this case study, which also reflect the 
lack of data faced in many cases and yet the need to 
establish an SPF. In addition, the use of more independent 
variables was out of the scope of this research.  

ln(μ) = ln(a0) + a1ln(x1) + a2ln(x2) + a3x3 + a4x4 + a5x5       (1) 

where  
μ = expected accident frequency; 
ai = stochastic parameters (i=0 to 5); 
x1 = L = segment length (km); 
x2 = AADT = annual average daily traffic (vehicles per day);  
x3 = number of horizontal curves/km;  
x4 = annual snowfall (cm);  
x5 = annual rainfall (cm). 

B. Likelihoods (Regression Approaches) 

Three different regression approaches were investigated 
in the Bayesian paradigm in order to estimate SPF 
parameters and to predict accident frequencies. In other 
words, it was assumed that accidents (as count data) may 
follow three likelihoods: (a) Poisson, (b) hierarchical 
Poisson-gamma, and (c) hierarchical Po isson-lognormal. 

1) Poisson Likelihood: 

Accident occurrences being random events and positive 
integers are assumed to follow the Poisson distribution in 
which mean and variance are equal. Such a model may not 
be efficient since it cannot deal with the over-dispersion 
issue resulting from heterogeneity across sites that are 
usually associated to accident data [12, 15, 16, and 17].  In 
the case of over-dispersion, variance is greater than the 
mean. The accident frequency in Poisson models (for site i) 

is expressed as ki ~Poisson (μi), where ki and μi are observed 
and expected accident frequencies, respectively. μi is a 
function of site characteristics vector Xi and unknown 
parameters vector a; i.e., μi = exp(aXi). In other words, μi is 
the mean value obtained from the SPF. 

2) Hierarchical Poisson-Gamma Likelihood: 

In this case the assumption is that accidents within sites 
are Poisson and unobserved accident heterogeneity across 
sites is gamma d istributed [13, 14]. Therefore, the expected 
number of accidents is described by the SPF and a 
multip licat ive random variable that varies across sites. The 
model is expressed as ki~Poisson(θi), where ki is the 
observed accident frequency. And the expected accident 
frequency θi=μiri. Where μi is a function of site 
characteristics vector Xi and unknown parameters vector a; 
(μi=exp(aXi)). And ri is a multiplicative random effect that 
is typically assumed to follow a gamma d istribution; 
ri~Gamma(φ,φ). Hence, based on this parameterization, ri 
has a mean of 1 and a variance of 1/φ, where φ is the inverse 
dispersion parameter [13]. In hierarchical models, φ is in 
turn assumed to follow a hyper-prior, main ly a gamma 
distribution φ ~ Gamma (a, b) with hyper-parameters a and 
b. Usually, a  non-informative hyper-prior is assumed for φ 
by choosing a small value for shape and scale parameters a 
and b, respectively. For instance, a = b = 0.001 [13].  

3) Hierarchical Poisson-Lognormal Likelihood: 

Here, the assumption is that accidents occur following a 
Poisson distribution with a mean  that is lognormally 
distributed; θi ~ Lognormal (ln (μi), υ) [13]. In particular, ki 
~Poisson (θi), with ki being the observed accident 
frequencies and the expected accident frequency, θi = μiri. μi 
is the mean from the SPF, similar to the Poisson-gamma 
model. Instead, here, the multip licat ive random effect is 
assumed to be lognormally distributed; ri ~ Lognormal (0, υ). 
Then in a hierarchical fashion, υ-1 (the inverse of variance) 
is also assumed to follow a gamma distribution with 
parameters a and b; υ-1 ~ Gamma (a, b) [13, 14]. 

C. Bayesian Estimation of the Parameters 

1) Bayesian Inference: 

Different methods are available to estimate the 
parameters of a regression model being the most popular: 
the method of moments [18], maximum likelihood 
estimation [19], and Bayesian estimation [9]. The latest has 
been used in this study because of its interesting properties, 
advantages, and capacities to deal with limited data, 
uncertainty, and randomness related to the causal factors 
presented in SPFs [9, 12, and 20]. Moreover, Bayesian 
regression can combine the expert criteria  (through the prior 
distribution) with local observations in order to calibrate 
mathematical equations for various engineering 
performance models [11]. Bayesian inference is structured 
based on prior, likelihood, and posterior. The Prior 
distribution, which may represent some sort of init ial 
knowledge about a parameter, can be selected based on 
previous studies, expert criteria, or experience. The 
Likelihood is represented by data containing local 
observations. And the posterior is the product of the 
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likelihood and the prior. Equation 2 shows the estimation of 
the posterior distribution. 

( ) ( )
( ) ( )

| . ( )
|

| .

p k a p a
p a k

p k a p a da
=
∫

                    (2) 

where   
a:  model parameter;  

k: observed data; 

p(k|a): likelihood distribution; 

p(a): prior distribution; 

∫ 𝑝𝑝(𝑘𝑘|𝑎𝑎). 𝑝𝑝(𝑎𝑎)𝑑𝑑𝑎𝑎: marginal likelihood. 

Because of the complexity issues (high dimensional 
integrations), Equation 2 cannot be solved analytically. 
Therefore, the posterior distribution is estimated by using 
MCMC methods (e.g., Gibs sampler) [20] that samples the 
space of the causal factors and takes into account the 
randomness associated to these factors. Four main steps to 
apply the Bayesian estimation technique to a dataset are:  

a) choice of  priors for model parameters; i.e ., regression 
parameters, precision and over dispersion parameters, 
etc.; 

b) setting initial values for parameters mentioned in Step 1; 
c) specification of the Likelihood distribution that is 

basically the type of the regression approach-like 
Poisson regression; 

d) running the MCMC simulation to obtain Posteriors for 
the SPF parameters. 

2) Deviance Information Criterion (DIC): 

DIC is a Bayesian model-fitting measure [21], which is a 
generalization of the Akaike information criterion (AIC). 
Similarly, DIC can  be used to compare models in terms of 
goodness-of-fit and is given by Equations 3 to 3d : 

 
𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷� + 𝑝𝑝𝐷𝐷                                (3) 

𝐷𝐷� = 𝐸𝐸[𝐷𝐷(𝑎𝑎) ]                                (3a) 

𝐷𝐷(𝑎𝑎) =  −2log(𝑓𝑓(𝑘𝑘|𝑎𝑎))                      (3b) 

𝑝𝑝𝐷𝐷 =  𝐷𝐷�−  𝐷𝐷(𝑎𝑎�); 𝑎𝑎� = 𝐸𝐸[𝑎𝑎]                   (3c) 

𝐷𝐷(𝑎𝑎�) =  −2log(𝑓𝑓(𝑘𝑘|𝑎𝑎�))                    (3d) 

where k  is data, a is unknown parameters, 𝐷𝐷�  is the 
expectation of the deviance given a, and 𝑝𝑝𝐷𝐷  represents the 
complexity  of the model. In other words, it is the effective 
number o f parameters. Basically, a  smaller DIC value 
indicates the model that provides a better fit to a part icular 
dataset. As stated by Spiegelhalter et al. (2002), DIC 
differences of greater than 10 might definitely rule out the 
model with higher DIC value, differences between 5 and 10 
are considered to be significant, and those smaller than 5 are 
not important. In addition, one must take into account that 
DIC can provide a measure of comparison between models- 
nested or not- applied to the same dataset [12, 21]. 

D. Assigning Relative Risk to Sites Based on Poisson 
Mixture Models in the Full Bayes Context  

As mentioned in Section II-B, Poisson parameter θ (in  
Poisson mixture models) is defined by μ multip lied by a 
random effect r, which may have different structures 
depending on the model (Equation 4). As it is a common 
practice in the field of disease mapping, r can represent the 
relative risk associated to each site [22, 23, and 24]. 
Moreover, in  the Bayesian framework this relat ive risk r, 
can vary according to a probability density function (e.g., 
gamma distribution). Thus, r is not a point estimate. 

( )~  i i ik Poisson rµ                             (4) 
where   

μi: mean estimated from the SPF fo r site i; 
 ri: relative risk, fo r site i, with a certain PDF. 

In Po isson-gamma models, r can be assumed to be 
gamma d istributed and in Poisson-lognormal models it is 
lognormally distributed (see Section II-B). In a fu ll Bayes 
approach, when the posterior mean of r approaches 1, the 
Poisson mixture models converge to the Poisson model. 
This means that the observed data are neither over-dispersed 
nor under-dispersed, which rarely happens in accident 
datasets being main ly characterized by heterogeneity across 
sites [12, 15, and 16]. In other words, r indicates the level of 
variability of the Po isson parameter θ from μ; the latter is 
directly obtained from the SPF. The posterior mean of the 
relative risk r may increase beyond 1 and vice versa. Indeed, 
the value of r indicates to what extent causal factors that are 
present in an SPF can exp lain the occurrence of accidents. 
Hence, in sites where the value of r is significantly greater 
than 1, the currently used SPF is not able to describe safety 
conditions adequately and further investigation to find other 
causal factors seems to be essential. Besides, these sites may 
be those that require safety improvements. 

III. CASE STUDY: THE TRANS-CANADA HIGHWAY IN NEW 
BRUNSWICK 

A case study including 62 d ivided highway segments in 
New Brunswick (the Trans-Canada highway) was used for 
the objectives of this paper. The safety of the segments was 
evaluated using three likelihoods through the estimation of 
the SPF parameters based on the local observations. A 
statistical summary of the dataset is reported in Table I. 
Accident data were aggregated over a period of three years 
of the most recently availab le observations (2004 to 2006). 
This aggregation can be justified since it helps to avoid the 
regression to the mean phenomena and confounding effects 
associated to exceptional events observed in a particular 
year [25, 26]. The total number of accidents including 
property damage only, injury, and fatality accidents was 
taken into consideration. In order to incorporate the 
environmental exposure in the analysis, the observations 
related to the annual rainfall and snowfall co llected by 5 
weather stations located in the proximity of the case study 
were assigned to the highway segments. For this purpose, 
the altitude of the weather stations was also taken into 
account. 
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TABLE I SUMMARY STATISTICS OF THE DATA 

Variables Mean S.D. Minimum Maximum 
Segment 
Length x1 (Km) 12.012 4.79 3.17 19.8 

AADT x2 (veh./day) 8323.800 3640.630 4435.000 17550.000 
Density of 
Horizontal 

curves 

x3 (number of 
horizontal 

Curves/Km) 
0.389 0.130 0.165 0.769 

Snowfall 
(annual) x4 (cm) 295.270 27.620 276.00 353.00 
Rainfall 
(annual) x5 (cm) 85.000 4.190 76.800 88.500 
Accident 

Frequency K (acc./3ys) 17.460 9.470 3.000 43.000 

A. Model Specification in WinBUGS 

Statistical software WINBUGS [27] was used for 
MCMC simulat ions in order to estimate the posterior 
distributions of the SPF parameters. Two different chains 
were considered with different initial values. Increasing the 
number of chains leads to more accurate estimates, and the 
modeler can easily verify the convergence of the chains, 
using the tools available in WinBUGS. An in itial portion of 
the iterations was discarded from the estimation of the 
parameters (Burn-in iterations) and the remaining iterat ions 
were used to derive the posteriors. The convergence of the 
model was checked using trace p lots, history plots, Gellman 
Rubin diagram [28], and also by verifying the stability of 
the posterior estimates. Furthermore, the accuracy of the 
posterior mean for each parameter was verified checking the 
value of the Monte Carlo error; this error should be 
preferably s maller than 5% of the standard deviation [27]. In 
particular, 30000 iterations were updated for each parameter 
and chain from which the in itial 7000 iterations were 
discarded as burn-in; and therefore, 23000 iterations were 
used for the posterior inference.   

A Normal distribution with a mean value equal to zero 
and a large variance of 1000 (non-informat ive prior) was 
selected as the prior distribution for regression parameters 
(a0 to a5) in order to let the data dominate the derivation of 
the posteriors [9, 20]. Moreover, in the Poisson-gamma 
model, informative and non-informative hyper-priors have 
been tested for φ (the inverse dispersion parameter). While 
the model with a non-informat ive hyper-prior ran very 
slowly and made the convergence time consuming, an 
informat ive hyper-prior for φ leaded to convergence and 
reasonable results in a timely fashion. This confirmed that 
the use of an informative hyper-prio r for the inverse 
dispersion parameter can  facilitate the analysis process and 
provides more reliable estimates when dealing with limited 
data such as the case study used in this paper [13]. The 
informat ive gamma hyper-prior;  i.e., φ ~ Gamma (12.5, 5), 
was introduced in the analysis based on a study conducted 
by Miranda-Moreno et al. (2009) who suggested that φ can 
be assumed to follow an informative gamma distribution 
with mean and variance equal to 2.5 and 0.5, respectively. 
These values were estimated considering a series of studies 
as explained by the authors [29]. One should take into 
account that in a gamma d istribution with shape and scale 
parameters a and b, respectively, mean=a/b and 
variance=a/b2. Finally, for the Po isson-lognormal model, a  

non-informative prior for υ-1 (the inverse of variance) has 
been specified, which performed well [13]; υ-1 ~ Gamma 
(0.01, 0.01). 

B. Results and Discussion 

The results of the analyses for the estimation of the SPF 
parameters and goodness-of-fit measures are summarized in 
Table 2. A ll three likelihoods (Poisson, Poisson-gamma, and 
Poisson-lognormal) provided almost similar estimations of 
the posterior mean for regression parameters; however, 
there were notable differences in the way in which these 
likelihoods capture the variability around the mean through 
the standard deviation, 95% credible interval, and goodness-
of-fit measure. 

1) Comparisons and Inferences for Estimated Parameters:  

As reported in Table II, for all three likelihoods used in 
this study, the parameters associated to segment length, 
AADT, and the density of horizontal curves are positive. So, 
the accident frequency increases when these causal factors 
increase and vice versa. AADT and the density of horizontal 
curves are found to be more significant predictors in the 
Poisson-gamma model in which AADT results in a 
parameter that is normally distributed with mean and 
standard deviation equal to 0.485 and 0.155, respectively 
(Table II). Based on this estimation, 99.9% of the 
distribution is greater than zero (a2 is positive for 99.9% of 
the segments) and 0.10% of it is smaller than zero. This 
implies that only for 0.10% of the segments as AADT 
increases, accident frequency decreases. Similarly, the 
density of horizontal curves results in  a parameter that is 
normally  distributed with mean  and standard deviation 
0.682 and 0.602, respectively (Table II). Th is means that for 
the majority of the segments (87.1% of them) the h igher the 
density of the horizontal curves is, the more likely the 
occurrence of accidents is. Furthermore, the parameter a1 
associated to segment length, which is normally distributed, 
implies that for almost 100% of the segments an increase in 
length leads to an increase in the accident frequency. 

Unlike a1, a2 and a3, parameters associated to snowfall a4 
and rainfall a5 are negative (Table II). This implies that 
when these causal factors increase, the accident frequency 
decreases. The parameter related to snowfall results in a 
normally d istributed random variable with mean -0.006 and 
standard deviation 0.003, meaning that 99.7% of the 
distribution is less than zero. The parameter related to 
rainfall is also found to be normally d istributed with a mean 
of -0.062 and standard deviation 0.016, indicating that 99.9%  
of the distribution is negative. Although this finding seems 
to be controversial (meaning that in the presence of rainfall 
and snowfall one expects more accidents to occur), it  can be 
justified based on the complex interaction among 
environmental conditions, travel patterns, and driver 
behavior. For instance, drivers in  this region might be very 
familiar with safety issues in adverse weather conditions. 
One should also take into account that weather ind icators 
used in this study do not vary drastically across sites. 
Moreover, these weather parameters are normally 
distributed with a mean  value close to zero and a very s mall 
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standard deviation in all three likelihoods. Thus, it can be 
implied that weather causal factors-especially snowfall-do 
not have a considerable effect on the occurrence of 
accidents given the case study analyzed in this paper. The 
weak influence of the weather conditions on the accident 
frequency was also noticed in the phase of data exp loration 
(explanatory data analysis) based on traditional methods; yet, 
the aim of having them among the causal factors was to 
verify their contribution in the SPF in a Bayesian framework. 

TABLE II SPF PARAMETERS WITH RELATED BAYESIAN STATISTICS 

Causal factors Mean S.D. 
MC 

error 2.50% Median 97.50% 
Poisson-gamma Likelihood (DIC = 199.78) 

ln(a0) 25.610 18.33 0.591 1.131 22.620 70.21 

a1 (ln(length)) 1.007 0.144 0.005 0.716 1.009 1.30 

a2 (ln(AADT)) 0.485 0.155 0.006 0.180 0.486 0.80 

a3 (density of 
h. curve) 0.682 0.603 0.018 -0.457 0.668 1.89 

a4 (snowfall) -0.006 0.003 0.000 -0.011 -0.006 -0.002 

a5 (rainfall) -0.062 0.016 0.001 -0.089 -0.063 -0.020 

Poisson-lognormal Likelihood (DIC = 309.182) 

ln(a0) 28.18 17.86 0.584 3.841 24.960 69.79 

a1 (ln(length)) 1.015 0.097 0.003 0.824 1.016 1.202 

a2 (ln(AADT)) 0.449 0.102 0.004 0.274 0.441 0.672 

a3 (density of 
h. curve) 0.585 0.368 0.009 -0.130 0.586 1.315 

a4 (snowfall) -0.006 0.002 0.000 -0.009 -0.006 -0.003 

a5 (rainfall) -0.062 0.009 0.000 -0.080 -0.062 -0.045 

Poisson Likelihood (DIC = 351.704) 

ln(a0) 30.640 17.94 0.6185 5.989 27.100 74.41 

a1 (ln(length)) 1.0120 0.079 0.002 0.862 1.010 1.170 

a2 (ln(AADT)) 0.455 0.075 0.003 0.306 0.456 0.601 

a3 (density of 
h. curve) 0.536 0.285 0.004 -0.020 0.536 1.093 

a4 (snowfall) -0.006 0.001 0.000 -0.009 -0.006 -0.004 

a5 (rainfall) -0.063 0.007 0.000 -0.077 -0.063 -0.048 

2) Goodness-of-Fit Comparisons: 

The deviance information criterion (DIC) was used as a 
goodness-of-fit measure fo r comparison between the three 
likelihoods presented in this paper. The Poisson-gamma 
likelihood provided the smallest DIC value and therefore the 
best fit to the dataset. DIC values are shown in Table II. In 
addition to DIC, the observed and the predicted accident 
frequencies were plotted against each other to graphically 
represent the model-fitting (Fig. 1). These graphs indicate 
that the Poisson-gamma model had the lowest variab ility 
around the straight line (the line that indicates a perfect 
match between the predicted and the observed values). On 
the contrary, the Poisson model was the least accurate 
because of having the largest variability around the straight 
line. Th is confirmed the limitation of the Poisson regression 
in dealing with over-dispersion in accident counts. 

 

 

 
Fig. 1 Observed versus predicted accident frequencies 

In Fig. 2, another graphical goodness-of-fit measure is 
shown. This figure that is based on the cumulative density 
function (CDF) represents a typical result obtained for the 
majority of the highway segments used in this paper. Fig. 2 
indicates how the predicted CDFs related to different 
likelihoods varied from the CDF of the observed accident 
frequency. As illustrated, the Poisson-gamma model CDF is 
the most closest to the observed accident frequency CDF, 
imply ing that this model provides the best prediction. 
Additionally, Fig. 3 illustrates the relationship between the 
exposure and the predicted accident frequency (represented 
by three curves of posterior mean, 2.5%, and 97.5% 
percentiles). In the road safety literature, the exposure for a 
road segment is defined as vehicle kilometers of travel per 
year [5]. Assuming that the accident frequency is only 
described by the exposure, Fig. 3 indicates how three 
different likelihoods, having their specific 95% credible 
interval band, are able to cover the sample space of the 
accident frequencies. As shown, the Poisson-gamma model 
(which has the biggest coefficient of variation for the 
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predicted mean value) is able to capture more po ints within 
its credible interval. Consequently, it can be implied that 
when these points are situated away from the curve that 
indicates the predicted mean; and particularly, when they 
are completely  outside the 95% envelope, the exposure per 
se cannot explain the occurrence of accidents. In other 
words, these points are the segments where other causal 
factors (e.g., horizontal alignment) intervene and affect the 
accident frequencies. Hence, in such cases, more 
investigations will be required in o rder to  identify  other 
important causal factors.   
3) Relative Risk Outcomes:  

The results related to the rank of the relative risk 
estimates are summarized in  Tables III and IV. In the 
Bayesian road safety literature, a typical method to rank 
sites for hotspot identification is based on θ, the posterior 
expected accident frequency [30]. In accordance with this 
method, Table III and IV report the ranks of the highway 
segments based on the posterior expected accident 
frequency (θ) per km and the relative risk r. The correlation 
between these sets of ranks can be examined through the 
Spearman’s correlation coefficient estimated based on the 
Equation 5. 

2

2

6
1

( 1)

d
s

n n
= −

−

∑                              (5) 

where, 

s is the Spearman’s coefficient; 
d is difference between corresponding ranks; 
n is the number of elements to be ranked. 

For the Poisson-gamma likelihood the value of the 
Spearman’s correlation coefficient between the above 
mentioned sets of statistical ranks is 0.60 (Tab le III), which 
is statically significant accord ing to the critical values 
related to this coefficient. Such a value implies a relatively 
high positive correlat ion between these sets of ranks. The 
Spearman’s coefficient fo r the Po isson-lognormal likelihood 
is 0.39 (Table IV).  

Besides, for the case study used in this paper, we 
observed that there is a relat ionship between the observed 
accident frequency (normalized per segment length) and r 
(Fig. 4). Th is figure shows that as the posterior mean of the 
accident frequency per km increases, the posterior mean of 
the relative risk r, generally, increases (Fig. 4). It was also 
found that there is a positive covariance between the 
accident rates and r. The results exp lained in  this section 
support the use of r to identify sites with potential need for 
further investigations. Additionally, as explained in the 
Section II.D, r can be used to verify the quality or reliab ility 
of SPFs. But this verification is not, directly, possible using 
the posterior θ. 

IV. CONCLUSIONS 

In the Bayesian paradigm, three different likelihoods 
were applied to calibrate SPFs, and consequently to predict 
the accident frequency for 62 d ivided segments of the 
Trans-Canada highway in New Brunswick. Total accident 
frequency (property damage only, injury, and fatal accidents) 
for a period of 3 years was aggregated and analyzed through 
MCMC methods using Gibbs sampling. A ll the independent 
variables used in the SPFs were found to be statistically 
significant. Segment Length, AADT, and the density of 
horizontal curves were the most influential causal factors. 
Environmental exposure (snowfall and rainfall) had a minor 
effect on the accident frequency for the case study adopted 
in this paper. 

A Bayesian goodness-of-fit measure, DIC, and a series 
of graphical measures were used to compare each likelihood 
outcomes. The hierarchical Po isson-gamma model having 
the smallest DIC value indicated the best fit to the dataset, 
followed by the Poisson-lognormal, and then the Poisson 
likelihoods. In addition the results in terms of model-fitting 
using DIC were validated with different graphical goodness-
of-fit measures. It  was demonstrated that the multip licative 
random effect  r (here, labeled as relative risk) in  Po isson 
mixture models, can be used as an alternative to identify 
potential hazardous sites and examine the efficiency of the 
causal factors presented in an SPF.  

 
Fig. 2 CDFs based on the observed and the predicted accident frequencies for a typical segment
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The analysis suggests that sites where the value of r is 
significantly greater than 1 require more investigation to 
identify further causal factors. Moreover, these sites may be 
potential hazardous sites that necessitate the implementation 
of safety improvement programs. 

Since accident consequences may vary  drastically  by the 
type of accidents, future research should examine accident 

data by severity. For this purpose, a wider range of 
independent variables will be necessary in order to 
determine the most relevant causal factors related to various 
severities. Another extension of this research can focus on 
the application of the methodologies employed in this paper 
to other road facilities such as intersections. 

 

 
 

 
 

 
Fig. 3 Accident frequencies versus exposure (vehicle-km of travel per year) 
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TABLE III RANK OF SITES (POISSON-GAMMA LIKELIHOOD) 

Segment Id 
Rank of Sites 

Based on the Posterior θ 
Normalized Per Km 

Rank of Sites 
Based on the Posterior Mean 

of r 
Segment Id 

Rank of Sites 
Based on the Posterior θ 

Normalized Per Km 

Rank of Sites 
Based on the Posterior Mean 

of r 
1 27 47 32 22 42 

2 1 1 33 12 25 

3 16 34 34 32 49 

4 23 30 35 9 23 

5 28 20 36 17 45 

6 24 33 37 10 31 

7 35 55 38 19 46 

8 6 5 39 62 62 

9 39 15 40 37 17 

10 11 2 41 61 61 

11 20 3 42 53 56 

12 51 26 43 60 58 

13 25 29 44 57 59 

14 8 41 45 45 14 

15 46 38 46 34 6 

16 48 36 47 56 50 

17 59 54 48 50 35 

18 54 37 49 31 7 

19 43 11 50 30 8 

20 44 13 51 2 10 

21 55 57 52 3 4 

22 58 51 53 52 27 

23 49 48 54 33 19 

24 47 44 55 40 32 

25 38 18 56 13 16 

26 42 43 57 4 9 

27 36 60 58 41 53 

28 14 40 59 29 21 

29 26 52 60 15 22 

30 21 39 61 5 12 

31 18 28 62 7 24 

 

 
Fig. 4 Observed Accident frequencies per km versus relative risk (r) 
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TABLE IV RANK OF SITES (POISSON-LOGNORMAL LIKELIHOOD) 

Segment Id 
Rank of Sites 

Based on the Posterior θ 
Normalized Per Km 

Rank of Sites 
Based on the Posterior Mean 

of r 
Segment Id 

Rank of Sites 
Based on the Posterior θ 

Normalized Per Km 

Rank of Sites 
Based on the Posterior Mean 

of r 
1 22 51 32 21 39 

2 1 1 33 12 25 

3 15 35 34 29 53 

4 24 32 35 10 16 

5 30 20 36 14 45 

6 25 33 37 8 30 

7 28 57 38 13 47 

8 9 3 39 52 62 

9 39 14 40 40 23 

10 23 2 41 54 61 

11 33 7 42 43 50 

12 55 28 43 62 55 

13 27 29 44 58 59 

14 4 37 45 48 15 

15 46 41 46 44 9 

16 50 36 47 59 48 

17 60 52 48 51 34 

18 57 38 49 37 8 

19 47 13 50 34 6 

20 49 17 51 2 10 

21 53 58 52 3 4 

22 61 49 53 56 27 

23 42 46 54 38 19 

24 45 44 55 36 31 

25 41 24 56 16 12 

26 35 43 57 6 5 

27 26 60 58 32 54 

28 11 42 59 31 21 

29 19 56 60 18 18 

30 17 40 61 5 11 

31 20 26 62 7 22 
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