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Abstract-The water flow characteristics in the implantable artificial lung (IAL) were evaluated by in vitro experiments. The 50-fiber 

modules were of different lengths but contained well-spaced fibers; and the 300-fiber module had a volume fraction of 0.9. A lower 

number of tired hollow fibers produce a higher water-side film coefficient of oxygen transfer at a constant velocity of water-side flow. 

The area of the water flow decreases with increasing hollow fiber packing density, thus if water is induced to flow uniformly in the 

IAL module, the oxygen transfer rate should monotonously increase with the packing density. The water flow in the IAL is not 

uniform and depends on the hollow fiber packing density. The stagnation of the water flow occurs in the bundle of the hollow fibers 

at the water inlet. 
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I. INTRODUCTION 

Acute respiratory distress syndrome (ARDS) refers to reversible, noncardiogenic pulmonary edema arising from a variety 

of different insults to the lung tissue. The disease affects approximately 150,000 people per year in the United States [1] and its 

treatment requires respiratory support using conventional therapies of mechanical ventilation, and/or extracorporeal membrane 

oxygenation (ECMO) for patients with severe ARDS. The positive airway pressures and volume excursions associated with 

mechanical ventilation can result in further damage to lung tissue, including barotrauma (high airway pressures), volutrauma 

(lung distension) and parenchyma damage from the toxic levels of oxygen required for effective mechanical ventilation [2]. 

The alternative to ECMO is complicated and expensive, requiring extensive blood/biomaterial contact in extracorporeal 

circuits, systemic anticoagulation, and labor-intensive patient monitoring. Due to these complications, the mortality rate of 

ARDS patients remains high, exceeding 50% in adults [3-6].  

Intravascular oxygenation represents an attractive, alternative support modality for patients with ARDS. The concept of 

intravascular oxygenation as an alternative ARDS therapy originated with Mortensen [7], who developed an intravenous 

oxygenator (IVOX) consisting of a bundle of crimped hollow fiber positioned in the vena cava. In phase I clinical trials, the 

IVOX provided an average of 28% of basal gas exchange requirements for patients with severe ARDS [8-14]. The clinical 

study, however, concluded that more gas exchange was needed for intravascular oxygenation to be clinically effective in 

ARDS treatment. We are developing an intravenous membrane oxygenator (IMO) with a design goal of 50% of basal oxygen 

and carbon dioxide exchange requirements for end-stage ARDS patients. Like the IVOX, the IMO consists of a bundle of 

manifolded hollow fiber, and is intended for intravenous placement within the superior and inferior vena cava. The target level 

of gas exchange in the IVOX, and consequently, the IMO, incorporates a polyurethane balloon concentric with the fiber bundle, 

which rhythmically inflates and deflates to provide active blood mixing, and thus enhances gas exchange. Our current efforts 

focus on device improvements intended to provide the target levels of gas exchange, given the constraints imposed by 

intravenous placement on fiber bundle size and hence fiber area for gas exchange. Although critical care techniques have been 

improved, the high mortality of severe ARDS has not significantly changed [10-15]. In an implantable artificial lung (IAL), the 

greater part of the oxygen transfer resistance is located in the blood-side laminar film [16], and various methods have been 

attempted to make the laminar film thin and improve the oxygen transfer rate [17, 18].  

In the present study, the water flow characteristics in the IAL were evaluated by in vitro experiments. The effect of hollow 

fiber packing fraction on water flow condition was evaluated to produce effective constant of water with the hollow fibers. 

Oxygen transfer rates were evaluated, and the optimum hollow fiber packing fraction was determined at an outside diameter of 

hollow fibers of 380 μm. 

II. THEORYT 

The Reynolds number (NRe =Lv/υ) characterizes the flow regime and is the ratio of inertial force to viscous force. The 

Schmidt number (NSc=υ/D), analogous to the Prandtl number in heat transfer, characterizes the fluid properties and is the ratio 

of momentum transport to diffusive transport. The Peclet number (NPe=Lv/D), which is the product of NRe, characterizes the 

relative importance of convective and diffusive processes and is the ratio of bulk mass transport to diffusive mass transport. 

The Sherwood number (NSh=KL/D), also known as the mass transfer Nusselt number, likewise characterizes the relative 

importance of convective and diffusive transport; it is the ratio of total transport to diffusive transport. The mass transfer 

Stanton number (NSt=K/v) is proportional to the ratio of the actual mass flux to the mass flux capacity of the flow, i.e. the 

amount of mass potentially transferable per unit time and cross-sectional area.  
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In the expressions of these numbers, L is the characteristic length, v denotes velocity, D denotes diffusivity, υ denotes 

kinematic viscosity and K denotes mass transfer rate. The overall mass transfer coefficient K is calculated by the following 

equation. 
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where QL is the liquid flow rate, A is the interfacial area, [O2]in and [O2]out are the inlet and outlet oxygen concentration in the 

liquid, respectively, and [O*
2]in is the liquid concentration in equilibrium with the inlet gas concentration. The dimensionless 

group H' is defined as 
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where QG is the gas flow rate, and H is the equilibrium ratio of gas concentration to liquid concentration. In the experiments, 

QLH was usually much greater than QL, so H' was essentially equal to one. For oxygen removal, the gas stream was essentially 

free of oxygen, so [O*
2]in was zero, Eq. (1) is then simplified to 
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Thes mass transfer coefficients reported in the following section [19, 20]. 

III. EXPERIMENTAL SETUP 

Fig. 1 shows the schematic diagram of the tested IAL device. The IAL tested was prepared with the number of tied hollow 

fibers in a bundle varying from 50 to 300, as shown in this figure. The distance between the hollow fibers in a bundle was 

constant for any number of tied hollow fibers. The hollow fiber membrane was made of microporous polypropylene with an 

outer diameter of 380 μm, thickness of 50 μm and length of 120 cm (Oxyphane, Enka, Germany). 
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Fig. 1 Detail of the test module 
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Fig. 2 In vitro bench test system used for the oxygen transfer and of the test modules 



Biomedical Engineering Research  Sept. 2014, Vol. 3 Iss. 3, PP. 74-79 

- 76 - 

DOI: 10.5963/BER0303002 

Fig. 2 shows a schematic diagram of the experimental circuit for the measurement of oxygen transfer rate. Deoxygenated 

water was induced to flow in flow rates ranging from 2 to 6 L/min. The temperature was maintained at 37°C throughout the 

apparatus. Water was sampled at the inlet and outlet of the IAL module and the partial pressure of oxygen was measured with a 

DO meter (Model 58, Yellow Springs Instrument, USA). The input and output pressure were measured with a mercury 

manometer (Model M-1000 W/M, Dwyer Instrument, Inc., USA). Each circuit contained a pump, an oxygenator, appropriate 

polyvinylchloride tubing, and connectors with stopcocks for water sampling. The oxygenator was placed on the outflow side of 

the roller pump, the polyvinylchloride tubing loop, and a polyvinylchloride reservoir with a sampling port was attached. A 

Cobe Cardiovascular system pump (Cobe Cardiovascular, Inc., Arvada, Co. USA) was used for the roller pump The water flow 

was fixed at 1-6 L/min during the test and the gas flow was also fixed at 1-6 L/min (V/Q ratio = 1). The water flow was 

monitored using an ultrasonic flow meter (Transonic System T108, Ithaca, NY). In order to maintain a temperature of 37±2°C, 

two reservoirs were connected to the heat exchanger, and a water reservoir was placed between these water reservoirs for one 

to six hours. Samples were taken from the inlet and outlet sampling ports. The pumps were driven for 6 h at a water volume 

flow rate ranging from 1 to 6 L/min. The water volume flow rates were controlled by adjusting the resistance attached to the 

outflow tubing and the rotational speed of the pump. The water volume flow rate was monitored with an electromagnetic flow-

meter (MFV-1100, 1200, and 2100, Nihon Koden, Tokyo, Japan).  

IV. RESULTS AND DISCUSSION 

The idea that mass transfer in the water controls decreation gains powerful support from the results in Fig. 3. In this figure, 

the logarithm of the mass transfer coefficient (Kc), plotted as a Sherwood number, varies with the logarithm of water velocity 

per modules length, plotted as a modified Peclet number. The 50-fiber modules were of different lengths but contained well-

spaced fibers; the 300-fiber module had a volume fraction of 0.9. The values of Kc for these modules of different geometries all 

fall along this line. This occurs even though the volume fraction of fibers in the module varies from 1 to 9%. Of course, the 

flow within the fiber is unaltered by events in the fiber wall or outside the fibers, so Kc is similar in all modules. These results 

imply that the key to oxygen mass transfer is the diffusion in the liquid. For other solutes, the results may not be as simple. 

This is especially true when the mass transfer is accelerated by chemical reactions in the liquid. Mass transfer in the liquid 

apparently also controls ox ygen removal when the water flows outside of but parallel to the follow fibers. As in Fig. 3, the 

mass transfer coefficient is incorporated in a Sherwood number and plotted versus liquid velocity per module length written as 

a modified Peclet number. The closed-packed 300-fiber module shows mass transfer independent of flow and over 10 times 

slower than that in the 50-fiber module. Velocity is reported as a Reynolds number. The characteristic length in the Reynolds 

number is not the internal diameter of the hollow fiber, but an equivalent diameter (de) defined as 

4(Cross-sectional area)
[ ]

Wetted perimeter
de  . 

This quantity is often effective for mass transfer correlations. However, when the fibers are closely packed, the mass 

transfer coefficient becomes independent of flow, as shown in Fig. 4. Under many circumstances, this would be interpreted as 

evidence that the membrane resistance has become important. In this case, we are not so sure. The membrane resistance almost 

certainly is not important for less densely packed fibers, so it seems strange that there is through the closely packed fibers, and 

that the mass transfer is controlled by diffusion through nearly stagnant liquid trapped between the fibers, not by the membrane. 

Fig. 5 shows the dependence of water-side film coefficient of oxygen transfer <K> of the water flow in the IAL at varying 

number of tied hollow fibers. The water-side film coefficient of oxygen transfer increased with the linear velocity of the water 

flow. A lower number of tired hollow fibers produce a higher water-side film coefficient of oxygen transfer at a constant 

velocity of water-side flow. These results indicate that the packing of hollow fiber strongly affects the oxygen transfer rate. 

This figure showed log-log plot of <K> vs. NRe for the experiment for the IAL at varying number of tied hollow fibers. Least-

squares fits yield the following equations: 

log<K> = log(1.04) + 1.32 logNRe (No. of fibers  50); 

log<K> = log(1.27) + 1.30 logNRe (No. of fibers 100); 

log<K> = log(1.91) + 1.25 logNRe (No. of fibers 150); 

log<K> = log(3.28) + 1.25 logNRe (No. of fibers 200); 

log<K> = log(3.66) + 0.97 logNRe (No. of fibers 250); 

log<K> = log(13.77) + 1.15 logNRe (No. of fibers 300). 

These values for the slope and vertical position were used in equation  to predict oxygen transfer rates in water 

for the IAL at varying number of tied hollow fibers. 
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Fig. 3 Mass transfer for water flowing through well-spaced fibers: (a) Gas flow rate 1 lpm, (b) Gas flow rate 2 lpm, 

 (c) Gas flow rate 3 lpm, (d) Gas flow rate 4 lpm, (e) Gas flow rate 5 lpm, (f) Gas flow rate 6 lpm 
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Fig. 4 Mass transfer for water flowing outside and parallel to the hollow fibers: (a)50 fiber, 

 (b) 100-fiber, (c) 150-fiber, (d) 200-fiber, (e) 250-fiber, (f) 300-fiber 
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Fig. 5 Relationship between Reynolds number and length average transfer rate at varying the number of tied hollow fibers 

Fig. 6 shows the dependence of the oxygen transfer rate of oxygen using water on the hollow fiber packing density of the 

IAL. The area of the water flow decreases with increasing hollow fiber packing density, thus if water is induced to flow 
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uniformally in the IAL module, the oxygen transfer rate should monotonously increase with the packing density. This 

demonstrates that the water flow is not uniform and different at each packing density. 

0.00 0.02 0.04 0.06 0.08 0.10
0

50

100

150

200

250  Liquid flow rate[lpm]

 2,  3,  4

 5,  6

 

 

O
2
 t

ra
n

sf
er

 r
at

e

Packing density  

Fig. 6 Dependence of oxygen transfer rate at various numbers of tied hollow fibers 

V. CONCLUSIONS 

The results reported in this paper strongly indicate that the performance of microporous hollow-fiber is almost always 

controlled by the mass transfer in the liquid phase. The data in Figs. 3 and 4 are consistent with this conclusion. The mass 

transfer coefficient itself is reported as a Sherwood number NSh. The variations in water velocity and module length are 

reported as a Reynolds number NRe or a modified Peclet number NPe. Note that the kinematic viscosity ν and the diffusion 

coefficient D have not been varied in our experiments. For parallel flow outside of hollow fibers, the obtained results do not 

agree with scattered previous correlations for this unbaffled laminar flow. The obvious answer is some type of secondary flow. 

When we consulted heat transfer experts, they all volunteered this rationalization. However, these same experts could not 

suggest specific references that support this idea. Oxygen transfer rate of the IAL increased with the increase in the number of 

tied hollow fibers due to more effective water contact with the membrane. The water flow in the IAL was not uniform and 

depended on hollow fiber packing density. The stagnation of the water flow occurred in the bundle of the hollow fibers at the 

water inlet. 
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