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Abstract-Demand for distributed simulations between control modeling and building performance applications is rapidly growing as 

the preferred means for supporting design studies of Automated Buildings (ABs) that are becoming increasingly complex because of 

urgent needs for developing sophisticated improvements in building indoor environments. In order to overcome problems in meeting 

the occupants’ needs while reducing energy use and greenhouse gas emissions, it requires using distributed simulations to study the 

impact of advanced control strategies on building performance applications through virtual representations rather than using 

experiments, which are usually time-consuming and cost-prohibitive. For this reason, this paper mainly describes the development 

and implementation of a framework for distributed simulations involving different software tools over a network. The main role of 

this framework is analogous to a cooperative middleware that distributes one or more building performance simulation tool(s) and 

control modeling environment by run-time coupling over a network as qualified by similarity to Building Automation and Control 

Systems (BACS) architecture. The paper finishes by giving an outlook on the present work for further developments. 

Keywords- Systems Engineering; Distributed Dynamic Simulation; Building Performance Applications; Control Systems; Automated 

Building; Building Automation and Control Systems 

I. INTRODUCTION 

Today, a distributed simulation between control systems and building performance applications is increasingly becoming 

an important enabler in the analysis of Automated Buildings (ABs) for better design and operation. In this context, a 

distributed simulation consists of several run-time coupled software tools that communicate over a network to coordinate the 

control actions and tasks of building performance applications. However, to develop the necessary diversity of control 

functions for all the plant systems that operate within a building indoor environment, it is required to consider several practical 

aspects such as economic factors in order to fulfill the occupants‘ needs (i.e. by maintaining the building indoor processes, 

such as air-temperature, relative humidity, and light level, at the desired occupants references) while reducing energy 

consumption and greenhouse gas emissions. Hence, the use of experiments for testing and analyzing new control systems in 

buildings is an option, but they are time-consuming and cost-prohibitive. For example, when testing a designed control system 

or calibrating its internal parameters, it requires at least 24 hours to obtain the results. In contrast, when using simulations, it 

takes only few minutes or one hour at most. For this reason, a distributed simulation between control systems and building 

performance applications is increasingly becoming an essential enabler in the analysis of ABs for better design and operation. 

ABs are a class of buildings, which are able to accrue economic and environmental benefits by the use of computer-based 

monitoring to coordinate, regulate and optimize building heating, ventilation, air-conditioning, and refrigeration (HVAC&R) 

equipment, lighting components, and facilities related to the maintenance of fire safety and elevator function, among other 

functions [20, 22]. Among the many other names used to refer to ABs, the most common are building automation (BA), smart 

buildings (SBs), and intelligent buildings (IBs). The term ABs is used, in this paper, because it best describes the importance of 

integrating automatic control systems and intelligent control technologies into a building environmental performance. In 

principle, ABs are composed of numerous sensors, actuators, and control units interconnected in such a way to facilitate and 

adapt a suitable control strategy and/or optimum control reference (or set-point) from the central computer-based monitor 

system. These basic activities of ABs have been the subject of Building Automation and Control Systems (BACS) since the 

last century. Generally, modern comprehensive BACS use the all-encompassing term building automation systems (BAS) 

when referring specifically to their control designs, although the terms energy management systems (EMS), building energy 

management systems (BEMS), building management systems (BMS), and intelligent building management systems (IBMS) 

are still used, sometimes intentionally to refer to specific functional aspects, but more often by habit [13]. All these names refer 

to BACS, which greatly increase the interaction of plant systems within buildings, improve occupant comfort, reduce energy 

use, and allow for distribution of building operations over a network. The relevant international standard uses the term BACS 

as an umbrella term [4]. 

Another dimension of BACS architecture is the application of advanced protocol for data communication and information 

exchange between a central computer and building HVAC&R equipment and lighting components. Other main functions of 

BACS architecture are effective and efficient management facilities to promote greater occupant satisfaction and productivity, 

as well as advanced structural design and innovative materials. As described by researchers, e.g. [17], BACS architecture can 

also integrate systems to improve the response of a building to earthquakes. Accordingly, several communication protocols 
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such as BACnet, LonWorks, and Modbus have been developed for high performance networks used in BACS architecture [3, 

4]. Recent approaches have improved the ability of BACS architecture to adjust building performance applications by 

providing it with the ability to detect climactic changes and occupant behavior [15, 22]. Because HVAC&R equipment and 

lighting components become important when addressing energy consumption and environmental comfort aspects, the 

development of their appropriate control systems requires a multidisciplinary approach in order to provide healthy and 

comfortable conditions for building occupants. In response to this consideration, a systems engineering (SE) approach has been 

found effective in coordinating multi-disciplinary applications to enable the realization of successful control systems within 

buildings. Rather than viewing a project as a collection of separate sets of functions and entities, SE concepts take a holistic 

view of all the aspects of the project as a complete system, aiming for aggregation of an end (or final) product to achieve a 

given purpose or solve a particular problem. Therefore, the final product is a constituent part of a system that performs 

operational functions while continuously fulfilling user requirements (i.e., the occupants need). 

The remainder of this paper is organized as follows. Challenges to distributed control and building performance simulation 

are introduced in Section 2, followed by development and implementation in Section 3, and then example of application is 

given in Section 4. The conclusion is presented in Section 5. 

II. CHALLENGES TO DISTRIBUTED CONTROL AND BUILDING PERFORMANCE SIMULATION 

Computer simulation of control and building performance and energy consumption is of particular importance to the 

modeling of building performance applications, as simulation practices are complex coupled tools in which all of these aspects 

interact dynamically. This simulation must take into account various technical aspects, such as comfort, and safety. Integrating 

such a technology is not ―yet another add-on artifact‖ but a balanced approach that preserves invariant properties with the 

additional constraint of cost reduction. The traditional slogan ―faster, better, and cheaper‖ applies here. 

The current situation is that, on the one hand, there exists a domain-based control system modeling environment very 

advanced in the analysis and design of control systems but still limited in building performance simulation concepts (e.g., 

Matlab/Simulink). On the other hand, domain-specific building performance simulation software (e.g., ESP-r) is usually 

relatively basic in terms of control modeling and simulation capabilities. Marrying the two approaches by run-time coupling 

building performance simulation software and control system modeling environment could enable integrated building 

performance assessment by predicting the overall effect of innovative control strategies in a building indoor environment [20, 

23]. By extending this potential in distributing one or more building performance simulation software tools and control 

systems modeling environment over a network, this results in a typical pattern of distributed simulation between control 

systems and building performance applications as qualified by similarity to BACS architecture [23, 24]. 

Distributing different applications, especially simulation environments and tools on the network provides the facility to 

exchange data and events in a distributed and co-operative way. Usually, one application controls the overall simulation 

procedure at run-time and requests the other application(s) when necessary. Previous and some ongoing works by others for 

the purpose of building performance simulation include for example coupling between lighting and building energy simulation 

[8], between computational fluid dynamics programs and building energy simulation [27], and between systems and building 

energy simulation [5]. However, these approaches were limited to a particular application, and often based on coupling only 

two software tools running on the same machine over the same operating system (OS). Besides these approaches, some 

libraries such as Building Controls Virtual Test Bed (BCVTB) are also used to couple different simulation tools for 

performance assessment of integrated building energy and controls systems [11], but still limited in terms of a detailed 

representation of BACS technology or real-time networked building control applications in simulation. For this reason, a 

framework distributing one or more building performance simulation tool(s) with control systems environment over a network 

by run-time coupling was developed and implemented based on SE approach with several different communication options for 

the objective of a more effective and reliable applicability. 

III. DEVELOPMENT AND IMPLEMENTATION 

A. Overview of Networked Building Control Systems 

Fig. 1 shows an example of a networked control and building application that shows two separate different parts including 

control and building zone and plant systems, and a network that links each other. In general, this network is a protocol that 

supports data communication between control systems and building HVAC&R equipment and lighting components. 

 
Fig. 1 Network-based building control application 
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B. Description of BACS Architecture 

As outlined above, ABs are buildings that are controlled by BACS, and often referred as network-based building control 

systems. BACS is an example of a Distributed Control System (DCS) as it uses a computer-based control system to 

automatically monitor and control a range of building performance applications including heating, ventilation, air-conditioning, 

lighting and other tasks such as access control, energy management, and fault diagnoses in a building or a group of buildings 

via a network. While this has several advantages, it also brings inevitable problems due to the use of the network. Fig. 2 

illustrates a complete BACS architecture that can be described at four main levels [3, 4, 20]: 

 The management level consists of a central computer used for managing, storing, and analyzing data, communicating 

with external systems, and operating building equipment and components. 

 The network level consists of an open protocol connected to the Internet through routers used to exchange data between 

the central computer and substations.  

 The automation level consists of one or more substations used for interfacing building HAVC&R equipment and lighting 

components to the network. 

 The field level represents the low level where building HVAC&R equipment and lighting components (sensors and 

actuators) and final users are located. 

 
Fig. 2 BACS architecture 

C. Systems Engineering Practice 

SE is an emerging discipline that has been traditionally applied to complex technical development programs in which a 

software and/or hardware system was being developed and realized successfully [25, 9]. In literature, there are many 

definitions for SE. As a simple definition, SE is an interdisciplinary collaborative process (or methodology) used to ensure that 

a user need(s) or requirement(s) is satisfied throughout its entire life-cycle model such as waterfall, spiral, and V (or Vee) 

diagram. It concerns itself with effective phases suchKM as analysis of requirements and functions, synthesis, verification and 

validation of the design solution. Another way of defining SE, in accordance with e.g. [10], is that SE is a generic-solving 

process that provides mechanisms for defining, describing, and evolving both the product and the process needed to build the 

final product. This process should be applied throughout the entire system life-cycle model to all activities associated with the 

product development, verification/test, design, training, operation and use, support, distribution, and disposal. For the purposes 

of this study, the V diagram (or model) was used as a way of showing the SE process and relating the different phases in the 

system development life cycle of a distributed dynamic simulation mechanism to one another. 

D. Basic Systems Engineering Concept 

Effectively without a flexible, but a structured and rigorous approach to solving complex problems concerning advanced 

control systems and building performance applications, practical aspects including funds and time can be wasted either by 

solving the wrong problem, developing an incomplete solution, or over developing an appropriate (or good) solution. Because 

the factors affecting the problem definition are often dynamic in the real world, this requires a process that is adaptable to 

changing requirements, yet structured in a way that minimizes lost effort. The SE concept uses the followings [1, 9, 16, 22]: 

1) Determine the requirements or needs that the solution should fulfill. 

a) Define end-user requirements (or occupant needs) that are considered as top-level global requirements. 

b) Perform functional analysis to divide top-level global requirements into low-level local requirements and 

determine an alternate means of achieving the top-level requirements. 

c) Define the interrelationship between the – top-level and low-level – requirements, if applicable. 
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2) Develop concept design(s) that will satisfy all the requirements. 

3) Evaluate the proposed concept(s) and decide on most promising approach(s). 

a) Perform trade studies to identify weaknesses and risks and choose the best solution. 

b) Evaluate and optimize to eliminate and minimize weaknesses and risks.  

c) Quantify compliance of concept design(s) relative to top-level global requirements. 

4) Fully develop the concept design(s) chosen in the previous step. 

5) Verify that the system or program meets the top-level global requirements. 

Fig. 3 shows a typical example of the V (or Vee) diagram where steps 1) and 3) are interactive. In this paper, the V diagram 

was used with the SE approach, although other common diagrams such as waterfall and spiral can also be considered. In 

general, their utilization depends on the application and its usage including user requirements and operating conditions. 

 
Fig. 3 A typical example of the SE approach 

The above SE concept or a modified version of it is often used by organizations such as [2] for developing new products or 

solving day-to-day problems because it is natural to follow. In addition to this, it is sometimes lacking as a disciplined and 

systematic framework for quantifying and documenting the various steps, resulting in a less structured process that allows the 

results to be influenced by chance, limited or irrelevant knowledge and experience, intuition, or other factors [26]. 

E. SE Structured Approach to Developing and Implementing Distributed Control and Building Performance Simulation 

Fig. 4 shows a structured approach to a conceptual design of distributed simulation between control systems and building 

performance simulation [23, 24]. 

 
Fig. 4 A hierarchical approach to the systematic characterization of distributed control and building performance simulation  
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In this approach, the main applications of BACS architecture are characterized from the functional viewpoint at different 

levels of abstraction and organized hierarchically into three levels to allow for easy understanding of the nature of their 

differences. In accordance with the System of Systems (SoS) concept, one or more V diagrams are developed for each of the 

interrelated applications that describe a number of phases at each level. With the aid of a practical technique, such as a 

taxonomy method, adequate methods and/or tools for use at each phase can be identified for managing the complexity of 

distributed system by decomposing it into subsystems and then components. As shown in Fig. 4, the single V lifecycle diagram 

can be divided horizontally to distinguish a system level, sub-system level, and component level, respectively.  

From an end-user perspective, i.e. at a top-level of abstraction, a building model plus its control system is seen as one space 

(or zone) containing several devices necessary to regulate its indoor environment processes according to certain references set 

by the occupants. According to SE thinking, this space can be likened to an integrated set of two sub-systems, that are of a 

building model and its control system, with the latter being the so-called ‗building-control application‘. At the mid-level of 

abstraction, this integrated set is represented as the two independent sub-systems of a building model and its control system 

functioning within a cooperative environment such that the control system achieves a desired reference state, as set by the 

occupants according to the state of the space and its environment. At the bottom level of abstraction, this cooperative 

environment is perceived as a system component that ensures the exchange of data between these two different sub-systems, 

i.e. the building model and its control system. As a result, this represents what has been termed as a distributed control system 

as it particularly refers to the application of control systems in buildings indoor environment, as shown in Fig. 1. 

F. Development and Implementation of Run-Time Coupling 

The framework for distributed control and building performance simulations must have sufficient capabilities to enhance 

the flexibility in integrating any control system modeled in Matlab/Simulink to any building model built in ESP-r. In particular, 

the set of requirements set forth in run-time coupling one or more ESP-r(s) with Matlab/Simulink must be taken into account 

by this framework. The most important requirements for successful run-time coupling ESP-r with Matlab/Simulink are [15, 16]: 

 The ability to run the different software tools, ESP-r and Matlab/Simulink, simultaneously on a heterogeneous network 

including Unix-variant and Windows; 

 The possibility to run-time couple with e.g. a test-rig for a control system (hardware testing in the loop), or even a 

building emulator, in which the Inter-Process Communication (IPC) must be platform independent; 

 The ability that run-time coupling between one or more ESP-r(s) and Matlab/Simulink supports different communication 

modes including synchronous, asynchronous, partially asynchronous; 

 The ability that run-time coupling between one or multiple ESP-r(s) and Matlab/Simulink supports data exchange over a 

network in either unidirectional or bidirectional; and 

 The ability that run-time coupling between one or more ESP-r(s) and Matlab/Simulink supports different data exchange 

formats such as ASCII, binary and Extensible Markup Language (XML). 

In [18, 19, 20], it has been demonstrated that using internet sockets is the best means of implementing run-time coupling 

between Matlab/Simulink and one or more ESP-r(s) because it supports distributed simulation over a network, allowing data 

exchange between a building model and its remote control system in different communication modes including synchronous, 

asynchronous, and partially asynchronous, as shown in Fig. 1. The main advantage of using this IPC format lies in the fact that 

although the building model and its control systems are built separately and can be located on different kinds of machines, they 

work together by exchanging data in different formats including ASCII, binary and XML across a network. Fig. 5 illustrates 

the proposed approach to distributed simulations between ESP-r and Matlab/Simulink by run-time coupling over a network. 

 
Fig. 5 Run-time coupling between Matlab/Simulink and ESP-r 
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In effect, run-time coupling is implemented with Internet sockets to facilitate data exchange between Matlab/Simulink and 

ESP-r when they are concurrently operating either on the same machine or, to increase the speed of simulations, on separate 

machines connected by a network. In addition, when Matlab/Simulink and ESP-r are located on different machines over 

different OSs and/or use different data formats by initiating protocols, such as BACnet and LonWorks, run-time coupling can 

be designed in a way to support portability and distributed dynamic simulations over a heterogeneous network (i.e. on different 

machines with different OSs and/or different data format protocols). For this reason, in this work different methods for 

marshalling and demarshalling (or unmarshalling) data over a network were implemented within the run-time coupling to 

convert data (i.e. sensed or actuated variables) into a form of external network representation (e.g. a byte-stream) and then back 

to their native format prior to access by a building model and/or its control systems, respectively. 

The major advantages of this run-time coupling mechanism are that it requires that any simulation of a building model and 

its control systems be built separately using ESP-r and Matlab/Simulink, respectively, and that it provides the preferred means 

to complete interoperability tasks in a fashion with no or minor user interferences. Therefore, it requires only modeling a 

building model on ESP-r and its control systems in Matlab/Simulink, and then indicating their interfaces by specifying the 

port-numbers, modes of exchange, or variables that they will use to import or export data to or from each other. 

1)  Interfacing Client Socket to ESP-r 

Because ESP-r [7] is almost completely written in Fortran programming language and socket Application Programming 

Interface (APIs) can only be implemented in programming languages such as C/C++, mixed-language programming using 

Fortran and C++ must be used to interface between Fortran and C/C++ programs [6]. Therefore, mixed-language programming 

is used to develop and implement an approach combining a Fortran common block with global C/C++ external data structures 

(or extern structs) of the same name in order to enable the addition of new variables that need to be exchanged with 

Matlab/Simulink without making large modifications in the existing programming codes.  

ESP-r was modified and extended to enable users to obtain data on sensed and actuated variables in the external control 

systems of building zones, plant components, and/or mass-flow networks and to choose settings (including server IP address, 

port number, current process number, network protocol, communication mode, and data-exchange format) for run-time 

coupling. The added Fortran subroutines that exchange data with Matlab/Simulink and functions indicate when initiating and 

ending simulations are combined together with socket APIs of the C/C++ client code separately. The C/C++ client code was 

developed in a hierarchical way in order to support all possible combinations of exchanged variables and settings that a user 

could choose by run-time coupling to Matlab/Simulink. Compiling the modified and extended ESP-r code together with the 

socket APIs of the C/C++ client code generates executable ESP-r, respectively, and allows ESP-r to run as a client process. 

2)  Interfacing Server Socket to Matlab/Simulink 

Matlab/Simulink [14] has a built-in utility called Matlab EXcutable (MEX) that is often used to convert Fortran, Java or 

C/C++ programs to a MEX format. The original sense of the Matlab/Simulink word represents two different environments, 

which are a high-level technical programming language and a graphical block-diagram interface. Depending on which 

environment is interfaced, two main approaches can be used to link external programs written in C/C++: 

 For Matlab, MEX-files are used and dynamically linked programs that, when compiled, can be called from within 

Matlab in the same way as M-files or built-in functions. In case Simulink needs to be dealt with, the links can be 

performed between each other by just using ―sim‖ functions.  

 Practically the same procedure is adopted by Simulink, although MEX S-functions are used and dynamically linked 

programs that, when compiled, can be called from within a Simulink block diagram. However, when there is a need to 

deal with Matlab, the link should be done via M-file S-functions that are more complicated than using a straightforward 

―sim‖ function.  

The first approach is preferable not only because it is less complex than the second approach but also because it offers more 

advantages over it, such as 1) the capability to manage a high number of exchanging variables simultaneously, 2) the versatility 

needed to meet the requirements of run-time coupling, and 3) the ability to implement functionalities that are not accessible to 

M-file S-functions. Although the MEX-files were originally designed to allow the inclusion of external routines written mainly 

in C/C++, they are also capable of integrating external shared libraries, such as socket APIs, into Matlab. For these reasons, a 

MEX-file was used for the development and implementation of the matespexge toolbox. 

By combining MEX-file functions and socket APIs, access from ESP-r to Matlab and Simulink functionalities, especially 

to the application toolboxes for advanced control systems, is realized by invoking the name ―matespexge‖ from the Matlab 

prompt. Once the matespexge toolbox has been executed, a graphical user interface including icons and menus will display and 

provide the dialogue for users to create M-files to remotely control a building zone, plant, and/or flow model as built on ESP-r 

accordingly. Further access from these M-files to Simulink can be obtained by using ―sim‖ functions, although access from 

Simulink to Stateflow should be obtained by incorporating a Stateflow block in the Simulink block diagram. Moreover, these 

M-files include Matlab functions that contain the left- and right-hand arguments with which the MEX-file is invoked. 

Therefore, the matespexge toolbox was designed with the use of MEX-files that include facilities for enabling run-time 
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coupling between Matlab/Simulink and one or multiple ESP-r(s). After compiling the matespexge toolbox, a dynamic 

executable file is generated with an extension corresponding to the OS over which Matlab/Simulink is running. 

G. System-Level Design of Run-Time Coupling  

An SE approach to the system-level design of run-time coupling between Matlab/Simulink and ESP-r was developed in 

such a way to perform rapid simulations between building models and their control systems, even when both ESP-r and 

Matlab/Simulink are running on a heterogeneous network. This approach is based on the hierarchical decomposition concept, 

as shown in Fig. 6, which implements run-time coupling by taking into account different levels of abstraction, defining 

different operations on each level of run-time coupling, and proposing model refinements that will translate requirements and 

specifications to enable cycle-accurate implementation. 

 

 
Fig. 6 System-level design of run-time coupling between ESP-r and Matlab/Simulink  

Fig. 6 illustrates the system-level design as a means of run-time coupling between Matlab/Simulink and ESP-r in which 

properties such as functionality, connectivity, and mode of exchange are represented on different levels of abstraction and each 

function is a part of the previous one. For this reason, the system-level design (or design concept) for run-time coupling is 

based on the SE concept that embeds the V life-cycle model (or process) at all levels of abstraction. The underlying objective 

of applying the SE concept is to maximize the value of simulation and ensure the translation of the initial (especially functional) 

requirements into operational functions in the design of run-time coupling and its integrated applications, such as 

interoperability. Moreover, the use of an SE concept as a design methodology for the development and implementation of run-

time coupling between ESP-r and Matlab/Simulink provides a simple and flexible means of interfacing Matlab/Simulink with 

ESP-r over a heterogeneous network. 

H. Extension of Run-Time Coupling to Represent BACS Technology in Simulation  

Of the many possible ways to run-time couple more than one ESP-r with Matlab/Simulink at the same time, the Portable 

Operating System Interface (POSIX) standard for threads has been the most widely adopted [12]. The use of POSIX threads is 

very advantageous because of its standardization, flexibility, and portability, as well as the fact that POSIX threads provide a 

standardized programming interface for the dynamic creation and destruction of threads (i.e. sub-threads). It also enables use 

of the same port and a single shared address space to make Matlab/Simulink accessible to all ESP-r(s) connections that are 

handled on the network. By using a single address space abstraction, it is possible to avoid the overhead inherent to data 

exchange and provide better support for concurrency, parallelism, and consistency of data exchange in run-time coupling 

between Matlab/Simulink and multiple ESP-r(s) with substantial ease.  

To represent BACS architecture in simulation, the approach shown in Fig. 5 was extended to permit the option of run-time 

coupling with more than one ESP-r with Matlab/Simulink. This option was developed by using multi-threading in conjunction 

with C++ codes to support parallel and distributed control and building performance applications between multiple ESP-r(s) 

and Matlab/Simulink in the same simulation environment. Within this option, all ESP-r(s) should share the same address space 

of the Matlab/Simulink location and be able to run on either the same machine as Matlab/Simulink or a separate machine 

connected to a network. Each time a new ESP-r is connected with Matlab/Simulink, its specific thread is created by the 

matespexge toolbox in order to avoid conflicts and data inconsistencies with other concurrent ESP-r(s) participating in the 

same simulation environment. As all participating (or connected) ESP-r(s) exchange data with the same Matlab/Simulink, any 
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ESP-r can access all the global variables exchanged by Matlab/Simulink through its specific sub-thread. Fig. 7 illustrates an 

example of how run-time coupling between Matlab/Simulink and multiple ESP-r(s) is implemented using POSIX threads. 

  

      

Fig. 7 Conceptual view of how matespexge toolbox is multi-threaded with multiple ESP-r(s): representation in a conventional way (left)  

and its equivalence in the V lifecycle model (right)  

As shown in Fig. 7, the matespexge toolbox is implemented in such a way that one or more ESP-r(s) can connect and 

interact with Matlab/Simulink concurrently. The number of ESP-r(s) to run-time couple to Matlab/Simulink depends on the 

application, varying from one (1) to nine (9) ESP-r(s) simultaneously. This implementation is fairly complex, requiring that the 

main thread of the matespexge toolbox accepts incoming connections and creates one ESP-r sub-thread for each ESP-r 

connection that is handled. These ESP-r sub-threads are a part of the matespexge toolbox used by shared data structures to 

communicate with their parallel (or with all) connected ESP-r(s). Because the matespexge toolbox can run-time couple with 

multiple ESP-r(s),  

 Each data exchange to/from ESP-r is handled by the corresponding ESP-r sub-thread on the matespexge toolbox side;  

 Each ESP-r sub-thread can send data to other connected ESP-r(s) by accessing the shared data structure that contains 

their references; and 

 The sockets connecting the matespexge toolbox to each ESP-r can be retrieved through this shared data structure. 

Consequently, any interaction between ESP-r(s) can occur via the matespexge toolbox, where it is handled by a particular 

ESP-r sub-thread. In addition, the matespexge toolbox is implemented with call-back methods to allow remote control systems 

(i.e. control systems modeled on Matlab/Simulink) to be invoked as they receive data from their corresponding building 

models built on one or more ESP-r(s). Because building models built on multiple ESP-r(s) can interact with each other via the 

matespexge toolbox, their corresponding remote control systems can also interact with each other on the Matlab/Simulink side. 

The main objectives of using this approach are representing the BACS architecture in simulation and enabling unrelated 

remote control systems, particularly advanced control systems such as Multi-Agent Systems (MASs), to communicate with 

each other when their corresponding building models are built on diverse ESP-r(s). 

In effect, permitting control systems, particularly MASs, to communicate with each other while remotely regulating 

building zone, plant, and mass-flow models built on diverse ESP-r(s) connected to a network results in the development of 

advanced building control applications that had previously been infeasible, such as: 

 the use of coordinated and interconnected control systems, especially MASs, to better operate and regulate building 

HVAC&R equipment and lighting components in ABs; 

 the use of self-adapting control systems to react to climate changes, the addition or removal of equipment in a building, 

or building plant variations; and  

 the use of self-upgrading control systems to meet occupant needs when damping effects or changes are critical factors in 

the functioning of the systems. 

IV. BUILDING CONTROL APPLICATION 

To demonstrate the development and implementation of run-time coupling between Matlab/Simulink and ESP-r, a building 

model built on ESP-r was used in closed loop with an external Proportional Integral (PI) control modeled on Matlab/Simulink. 

Fig. 8 shows this building model that is actually the test office in the TNO building located in Delft (Netherlands) used to 

investigate the phenomena that influence the indoor climate of buildings. The constructions used in this building were all 
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internally insulated cavity walls except for the wall with window, which was external. The window was single glazed and 

almost south faced (31o E azimuth).  1 

                                   2  
Fig. 8 TNO test office facility concept (left) and its model built on ESP-r (right) 

The external (or remote) PI control system was used simply to regulate the air temperature in a building zone by supplying 

the required heating flux capacity to it (maximum is 3000 W). Fig. 9 illustrates a building model built on ESP-r (left) in 

combination with a continuous PI control system modeled on Matlab/Simulink (right). The simulations were performed by 

run-time coupling between Matlab/Simulink and ESP-r in a synchronous mode and the data were exchanged between a 

building model and its external PI control system during the simulation via a network. 

 

  
Fig. 9 A simple building model built on ESP-r (right) with an external PI control system implemented in Matlab/Simulink (left) 
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In this example of application, both continuous and discrete PI control systems were set to maintain the indoor air-

temperature at 22ºC between 07:00 and 18:00 o‘clock for different numbers of simulation time-steps per hour. Consequently, 

the input to the PI control system implemented in Matlab/Simulink was the error signal created by subtracting the sensed air-

temperature of the building model built on ESP-r from the air-temperature set-point. The output of this PI control system, a 

weighted sum of the error signal and its integral gain, was the actuated heat flux to the building model built on ESP-r. The 

weighting gains were the same used for both continuous-time (or analogue) PI control systems and discrete-time (or digital) PI 

control systems. Hence, the same values for proportional and integral gains were used in both continuous-time and discrete-

time PI control systems. Fig. 10 illustrates the simulation results obtained with the continuous-time PI control system. 

  

 

Fig. 10 Simulation results obtained with the continuous-time PI control system  

For the discrete-time PI control system, the sampling period was 0.1s. Fig. 11 illustrates the simulated results obtained with 

the discrete-time PI control system. 

  

 
Fig. 11 Simulation results obtained with the discrete-time PI control system 

Comparison of the simulation results in Fig. 10 and 11 indicate that they were precisely identical despite being obtained by 

different types of a PI control system (i.e. continuous and discrete). In addition, it appeared that the simulation results obtained 

with the simulation time-step of 1 min were similar to those obtained with the simulation time-step of 2 min, as well as that 

once the control response (e.g., the air temperature in a building zone) reached the set-point, the response became stable and 

was maintained continuously at the level of the set-point until the end of the occupied period (i.e. between 07:00 and 18:00 

o‘clock). In addition to this, it can be noticed from Fig. 10 and 11 that the simulation result of the sensible heat load was 

optimized as after reaching the set-point, the control supplied the heat flux into a building zone with the necessary energy. 

V. CONCLUSION AND PERSPECTIVES 

This paper has attempted to show how a SE methodology can help to develop and implement a distributed simulation 

mechanism for BACS technology by run-time coupling Matlab/Simulink and one or multiple ESP-r(s) that can be used to 

provide practical solutions for improving distributed control and building performance applications in ABs in the quest to 

satisfy occupants requirements while reducing energy use and greenhouse gas emissions. The objective of the approach was to 

facilitate the development of such complex systems by taking into account most of the design phases, ranging from the user 

and system requirements phase to the system operations and disposal phases, as partially shown in Fig. 3. 

It must be stressed that the SE methodology provides tools that will allow reasonable requirements to be defined in the 

most effective manner. Based on the perspective that designing a dynamic distributed simulation mechanism for BACS is a 

complex system, the use of the SE methodology is needed to define all occupant requirements and required functionalities in 

the development, implementation, validation, and operation of the functioning processes early in the System Development 

Life-Cycle (SDLC), i.e. within the V lifecycle diagram. This work has shown that significant speedup as well as building 

control applications that were previously not possible can now be achieved with the utilization of distributed control and 

building performance simulation. The investigation of a simple example of application has identified the efficiency of run-time 

coupling between Matlab/Simulink and ESP-r as a significant means for the performance of distributed simulations. Among 

perspectives, future work envisage to analyze and simulate control building applications involving the utilization of multiple of 
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ESP-r(s) by run-time coupling to Matlab/Simulink and to perform a more detailed analysis of the performance of a distributed 

simulation using different communication modes including synchronous and asynchronous and partially asynchronous. 
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ABBREVIATIONS 

AB: Automated Building 

API: Application Programming Interface 

BA: Building Automation  

BAS: Building Automation System  

BACS: Building Automation and Control System 

BEMS: Building Energy Management System  

BMS: Building Management System  

DCS: Distributed Control System  

EMS: Energy Management System  

HVAC&R: Heating, Ventilation, Air-Conditioning,  

and Refrigeration  

IB: Intelligent Building 

IBMS: Intelligent Building Management System  

IPC: Inter-Process Communication  

MAS: Multi-Agent System  

NCS: Networked Control System  

OS: Operating System  

SE: Systems Engineering 

SB: Smart Building  

SME: Society of Manufacturing Engineer  

SoS: System of Systems  

XML: Extensible Markup Language 

 


