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Abstract-The properties of neutron matter is studied in the 
Hartree-Fock theory with a bare meson-exchange nucleon-
nucleon interaction and Urbana IX three-body interaction. We 
find that the energy contribution from tensor interaction is very 
small in neutron matter, which consists of only the two-body 
isospin triplet channel ( 1T = ). The strong repulsive interaction 
between two nucleons in the short distance is treated by unitary 
correlation operator method (UCOM). The equation of state 
(EOS) in our calculation only with the Bonn potential agrees 
with the one of AV18 potential including the relativistic boost 
effect in the variational method for neutron matter. The three-
body interaction is also introduced in this framework to improve 
the properties of neutron matter in higher density region. 

Keywords-Hartree-Fock; Neutron Matter; UCOM; Three-body 
Interaction 

I. INTRODUCTION 
The properties of neutron matter play a very important role 

in the study of supernovae and neutron stars. After a 
gravitational core collapse, supernova explosion takes place 
and leads to the formation of a neutron star or a black hole in 
the central part of a massive star. For this purpose, we need the 
equation of state (EOS) of nuclear matter, especially of 
neutron matter up to high density for the description of 
astrophysical objects as supernovae and neutron stars [1, 2]. 

The EOS's of nuclear and neutron matter have been 
predicted by many different models of various assumptions. 
One kind of models uses phenomenological Lagrangians 
which are able to describe finite nuclei by fitting about 10 
parameters. Due to this construction, the properties of 
symmetric nuclear matter around and below nuclear matter are 
well constrained but those of neutron matter and of symmetric 
nuclear matter at high density are not strongly constrained. 
Actually, experiments on heavy ion collisions give some 
constraints for the behavior of nuclear matter at high density 
[3]. From this view point, the microscopic calculations are 
better providing the EOS of symmetric nuclear matter and 
neutron matter which adopt a realistic nucleon-nucleon (NN) 
interaction, which is obtained by fitting the phase shifts of NN 
scattering. 

There is a strong short range repulsive interaction in the 
realistic NN interaction due to their quark structure [4, 5]. The 
basic task of microscopic theories is to take into account the 
short range correlation in the many-body problem and hence to 
introduce high momentum components in the many-body 
wave function. Therefore, two kinds of correlation method for 
short range repulsive interaction were developed in parallel 
about 50 years ago. One method is to introduce the short range 
correlation through the correlated wave function with 
variational approach by Jastrow [6]. Pandharipande et al. 

pursued this method as a variational chain summation (VCS) 
approach, based on hyper-netted chain-summation techniques 
in nuclear matter system in 1970's [7]. Recently, Akmal et al. 
used this method and a realistic NN interaction as the Argonne 
V18 potential, which excellently fits the NN scattering data, to 
obtain the EOS of symmetric nuclear matter and neutron 
matter [8]. These EOS's are in accordance with the constraint 
by the experimental data of heavy ion collision [3]. 

At the same time, Brueckner et al. introduced the hole-line 
expansion method and used the G -matrix instead of the bare 
NN interaction to treat the short range correlation [9]. This 
method is extended to the relativistic Brueckner Hartree-Fock 
(RBHF) theory by Brockmann and Machleidt for nuclear 
matter with Bonn potential [10]. It is the first time to give 
reasonable saturation properties of symmetric nuclear matter 
from the microscopic approach. This result illuminates that the 
relativistic effect is very important in the many-body 
calculation which provides the repulsive contribution in 
nuclear matter. 

We are aware of the fact that the G -matrix includes the 
high momentum components due to the short range correlation 
and additionally the tensor correlation. There are several 
studies on the role of the tensor interaction, which is extremely 
important to provide large binding energy for symmetric 
nuclear matter and finite nuclei [11-15]. The tensor interaction 
arises from the pion exchange interaction. The effect of the 
tensor interaction in neutron matter is suppressed largely for 
the T=1 isospin channel. In fact, the calculation of Krastev and 
Sammarruca in the RBHF method has shown that the EOS's of 
Bonn-A, Bonn-B, and Bonn-C are identical for neutron matter 
[16]. On the other hand, the difference of these three potentials 
is distinct due to the different tensor effects. Hence, we are 
motivated to look into neutron matter by just considering 
explicitly only the short range correlation. If this is the case, 
we may find some other many-body methods to treat the 
many-body system in more efficient way for various phases of 
astrophysics. 

For the short range correlation, there is a very attractive 
method developed recently by Feldmeier et al. in terms of the 
unitary correlation operator method (UCOM) [17, 18]. The 
UCOM was demonstrated extremely good to provide binding 
energies and wave functions for light nuclei by taking an 
effective NN interaction with only the central interaction 
including the short range repulsive interaction [17]. Therefore, 
we discussed the properties of neutron-rich matter in the 
framework of relativistic Hartree-Fock model with UCOM 
(RHFU) by using the realistic NN interaction, Bonn potential 
[19]. We found that the EOS in our calculation could 
completely reproduce the one of pure neutron matter in RHBF 
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model with Bonn-A potential. This achievement drives us to 
consider whether we can also obtain the similar results as the 
variational method in a simpler theory like the Hartree-Fock 
UCOM model. 

It is necessary to introduce the three-body interaction to 
provide enough repulsive contribution in high density region in 
the non-relativistic framework of the microscopic calculation. 
Li et al. obtained reasonable saturation properties of symmetric 
nuclear matter by including the microscopic meson-exchange 
three-body interaction in Brueckner-Hartree-Fock approach 
[20]. However, Akmal used a phenomenological three-body 
interaction, Urbana model IX (UIX) to improve the EOS of 
nuclear matter, especially in high density part [8]. Therefore, it 
is very interesting to study the effect of a three-body 
interaction in the Hartree-Fock framework for neutron matter. 

Furthermore, the realistic NN potential is obtained from the 
center of mass framework where the total momentum  ijP   is 
zero. To take the effect of non-zero ijP  into account, the 
relativistic boost correction was applied in the variational 
method with the AV18 potential. However, Forest et al. [21] 
pointed out that the meson exchange potential contains the 
relativistic boost correction. Hence, we will discuss the 
properties of nuclear matter with Bonn potential which is 
constructed by using the meson exchange model and not 
include the relativistic boost correction term. 

Hence, the purpose of the present study is to develop the 
Hartree-Fock theory with UCOM and three-body interaction 
(HFUT) to investigate the properties of neutron matter, which 
can deal with a bare NN interaction. We want to find a simpler 
way to discuss neutron matter in the many-body framework. In 
Section Ⅱ, we will illuminate first that the tensor effect of the 
pion exchange interaction in neutron matter is very weak using 
the perturbation theory. In Section Ⅲ , we will construct a 
theoretical framework of the Hartree-Fock theory with UCOM 
(HFU) for the nuclear matter system. In Section Ⅳ , a 
phenomenological three-body interaction is included in the 
HFU model. In Section Ⅴ, we present numerical results for 
nuclear matter. We will discuss the effect of short range 
correlation and three-body interaction. Section Ⅵ is devoted to 
the summary of the present study. 

II. THE TENSOR CONTRIBUTION IN THE PERTURBATION THEORY 
In this section, we would like to estimate the contributions 

of the tensor interaction both for neutron matter and symmetric 
nuclear matter in the perturbation theory. In the one-boson-
exchange model of the NN interaction, the tensor contribution 
mainly comes from the one-pion exchange potential (OPEP). 
For the pseudo-vector coupling between pion and nucleon, the 
OPEP in momentum space is given by 

2
1 2

1 22 2 2( ) ,NNfV
m q m
π

π
π π

⋅ ⋅
= − ⋅

+
q qq σ σ

τ τ                  (1) 

where  NNfπ   is the pion-nucleon coupling constant and  q  is 
the exchanged momentum between two nucleons. The 
operators,  σ  and τ , represent the spin and isospin operators, 
respectively. This interaction can be separated into the spin-
spin central and tensor parts  

2 2 2
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Here,  12 ( )S q  is the tensor operator 

               12 1 2 1 2ˆ( ) 3 .S = ⋅ ⋅ − ⋅q q qσ σ σ σ                       (3) 

As we know, the expectation value of the tensor operator is 
zero at the Hartree-Fock level for a spin-saturated system. We 
should discuss the tensor effect of pion in the higher-order 
terms of the perturbation theory. They are called as the iterated 
one-pion-exchange Hartree and Fock terms in [11], which can 
be expressed in the following Feynman diagrams. 

   
 

To evaluate the energy contribution from the iterated one-
pion-exchange term, we would like to write the matrix 
elements of OPEP as, 
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where  1 1 2 2
′ ′= − = −q k k k k   and   

                       
2
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                                      (5) 

Therefore, the energy per particle arising from the Hartree 
contribution of iterated one-pion-exchange is, 

1 2 1 2
1 2 1 2

3 3 3 3
[2] 21 2 1 2

, , ,,
  1 | | ,

2
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d k d k d k d kE V
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∑     (6) 

where ρ  is the baryon density and V  the volume of nuclear 
matter. The single particle energy  εk  occurring in the energy 
denominator is simple kinetic energies 2 / 2k M . M  is the 
nucleon mass, while the integrated region  Γ   is limited by the 
Pauli principle, 1 2| |, | | Fk<k k  and 1 2| |, | | Fk′ ′ >k k  which means 
that two states are above the Fermi surface and the other two 
states are below the Fermi surface. After taking the summation 
of spin and isospin operators with plane wave functions in Eq. 
(6), the energy  [2]

HE  can be rewritten as  

4
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MT fE C T I q q dq
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∞
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Here, HT  is the result of summation of the isospin operator. 
Its value depends on the isospin channel. 

12         for symmetric nuclera matter
1          for pure neutron matter     HT 

= 


            (8) 

and  ( )I q  is the integration related with the Pauli principle, 
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where the region of integration about  Γ  is generally defined 
by 
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where Fk is the Fermi momentum. The integration about ( )I q  
can be expressed in the analytical form, 
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Here we have defined / 2 Fx q k= . However the energy per 
particle in Eq. (7) is divergent. It is necessary to introduce the 
form factor for the OPEP to regularize this integration. We 
choose a monopole form factor for the vertex between pion 
and nucleon, 

                         
2 2

2 2( ) ,mF q
q
π

π
Λ −

=
Λ +

                            (12) 

where  Λ  is the cut off momentum. From Eq. (7), we find that 
the tensor contribution of pion related with  T   is twice of 
spin-spin central force related with  C in nuclear matter for the 
Hartree diagram of iterated one-pion-exchange term. 
Furthermore, the tensor effect in neutron matter is much 
smaller than the one in symmetric nuclear matter due to the 
isospin factor. 

In the similar way, we can discuss the Fock energy 
contribution per particle from the right diagram as shown in 
Fig. 1.  

 
Fig. 1 The iterated one-pion-exchange Hartree and Fock diagrams: the left-

hand figure is the Hartree diagram and the right hand one is the Fock diagram. 
The dashed line represents the propagator of pion, while the solid one is the 

propagator of nucleon 

It is written as 
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where the exchange momentum for 
2 1 1 2, , ,

V π
′ ′k k k k

 , is changed as  

1 2
′ ′ ′= + −q q k k  . After taking the spin and isospin sum and 

using the momentum conservation in intermediate states in Eq. 
(13), we obtain 
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Here, C′,T′  are the same expressions as C,T,  but with q 
replaced  by  q′＝q+k1-k2 and the isospin factor  TF  is  

6        for symmetric nuclera matter
1         for pure neutron matter    FT

−
= 


                 (15) 

ˆ ′⋅q q  represents the cosine of the angle between  q  and  ′q . 
The second integration over the region  Γ   in Eq. (14) cannot 
be written in an analytical form like Hartree term any more in 
the case of the Pauli principle on exchanging momentum ′q . 
However, we can get it by numerical calculation in the 
cylindrical coordinates which will reduce to a 6-dimensional 
integration about the radius, height, and angles. We reproduce 
the results of the analytical expression for the case of the 
abrupt momentum cutoff [11]. Now the relation between the 
tensor contribution and the spin-spin central contribution is not 
so obvious. We can only discuss them based on the numerical 
results.  

We show the total tensor contributions from the iterated 
one-pion-exchange Hartree and Fock diagrams for neutron 
matter and symmetric nuclear matter as shown  in Fig. 2. 

 

Fig. 2 The tensor contribution of iterated one-pion-exchange terms: the solid 
curve denotes the tensor contribution for neutron matter, while the dashed 
curve for symmetric nuclear matter.  We take Λ = 1000 MeV in the form 

factor. 

The pion coupling constant is fixed as  2 / 4 0.08NNfπ π =  
and  1000Λ =  MeV for the form factor of the pion-nucleon 
vertex. We find that the tensor contribution in neutron matter is 
much smaller than the one in symmetric nuclear matter. There 
are two reasons which cause these large differences. The first 
one is the isospin factor, which is 1/12 for neutron matter to 
symmetric nuclear matter. The second one is that the tensor 
contribution in Fock term is repulsive which is opposite to the 
Hartree term in neutron matter, while the Fock contribution in 
the Hartree term is attractive in symmetric nuclear matter. 
Therefore, we may drop the tensor effect in the discussion of 
neutron matter and treat the many body system in a simple 
framework as the Hartree-Fock theory. 

III. THE HARTREE-FOCK THEORY WITH UCOM 
In this section, we would like to construct the Hartree-Fock 

theory with unitary correlation operator method (UCOM) in 
the non-relativistic framework. The nuclear matter can be 
considered as a system of identical nucleons (in a large box of 
volume V) which satisfies a non-relativistic Schroedinger 
equation. The Hamiltonian of this system is given by the 
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summation of the kinetic energy of all particles and the two-
body interactions between them, 

                         
1

.
A A

i ij
i i j

T V
= <

= +∑ ∑                                    (16) 

The kinetic energy operator in non-relativistic case can be 
written as, 

                              
2

2
i

i
pT
M

=                                            (17) 

and two-body interaction comes from the Bonn potential, 
which is the one-boson-exchange potential defined as a sum of 
one-particle amplitudes of six bosons, with π and η   
pseudoscalar,  σ   and  δ  scalar, and  ρ   and  ω   vector 
particles. These amplitudes can be obtained from the following 
Lagrangian,  
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where 

              , .a aW Rµν µ ν ν µ µ ν ν µω ω ρ ρ= ∂ − ∂ = ∂ − ∂              (19) 

The field  ψ  is the nucleon field and  M  the nucleon mass. 
Meanwhile, we use a monopole form factor,  

                         
2 2

2
2 2( ) ,mF q

q
α α

α
α

Λ −
=
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                               (20) 

For each meson-nucleon vertex denoted by  α  . There 
exists a strong repulsive effect in the short range region of the 
realistic nucleon-nucleon interaction. Nuclear matter cannot 
get enough binding energy in the Hartree-Fock approximation 
with a realistic NN interaction. We should treat the short range 
correlation to reduce the effect of the strong repulsive 
interaction. In the variational method, one chooses the two-
body correlation function on the wave function [8] to treat this 
short range effect. In the Brueckner theory, it is considered by 
the G  -matrix [10]. 

Here, we will follow the method of Neff-Feldmeier [17, 
18], which is named UCOM. They adopt a unitary operator 
C to transform the trial many-body wave function 

             , , ,| | ( ...) | ,i j i j kC C CΨ〉 = Φ〉 = + + Φ〉                 (21) 

where |Ψ〉 indicates the full wave function and  ..., ,ij ijk ij nC C C   
corresponds the two-body correlator, three-body correlator and 
many-body correlator of unitary operator  C , respectively. For 
simplification in this work, we just consider the two-body 
correlator, ijC . Finally the ground-state energy of A nucleons 
can be written as, 

              †| | .C Cε = 〈Φ Φ〉                                           (22) 

It is a good approximation to take terms up to two-body 
correlation in the UCOM. In an actual calculation, the operator 
C modifies the Hamiltonian  and we shall use the modified 
Hamiltonian. Therefore, it would be better to define a 
correlated NN interaction   ijV   instead of the bare interaction  

ijV  , 

   †† ( ) ( ).ij ij ij ij ij i j ij i jV C V C C T T C T T= + + − +               (23) 

In this correlated potential, the first term comes from the 
short range correlation on the bare NN interaction and the last 
two terms from the correlation on the kinetic energy. The 
emphases of this work are focused on the properties of 
neutron matter where the tensor effect is very small as shown 
in Section Ⅱ. We just treat the short range correlation on the 
spin-spin central part of the realistic potential. Furthermore, 
we also assume that the UCOM operator  C  is independent of 
the spin and isospin channel. These effects will be included in 
the variational calculation for the total energy of system with 
the short range effect. 

When the unitary correlation operator C  is applied on the 
two-body NN interaction, we just need to take the following 
transformation in the potential  ( )ijV r  as, 

                    † ( ) ( ( )),ij ij ij ijC V r C V R r+=                             (24) 

where ( )ijR r+  is a parameterized function of the unitary 
operator  ijC  [17], 

           ( ) exp( exp( / )).rR r r r
η
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β+

 
= + − 

 
              (25) 

It does not have so simple form for the short range 
correlation on the kinetic energy part. Because the unitary 
operator  C   just has an effect of short range correlation for 
the relative momentum, we need to separate the kinetic energy 
of two particles into relative and center of mass energy,  
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.
4
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i jT T

M M
+

+ = +
p pq                          (26) 

 The UCOM operator just correlates the part which is 
related with the relative momentum, ( ) / 2i j= −q p p  . More 
details can be found in Section Ⅱ in [17]. Here, we directly 
give the kinetic energy operator modified by the correlation 
operator.  
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where rq  is the radial component of relative momentum,  

r rq = ⋅r q , = ×L r q  the angular momentum and  1 2| |= −r r r   
the relative distance. The function ( )w r  comes from the 
commutation between the momentum operator and  ( )R r+  ,  
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 Now, we can obtain the ground-state energy per particle in 
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Hartree-Fock approximation with UCOM correlation,  

             

23 1 | | .
10

A
HFU F

ij A
i j

k ij V ij
A M A

ε

<

= + 〈 〉∑                    (29) 

Here | |ij Aij V ij〈 〉 means the anti-symmetrized two-body 

matrix element of operator   ijV  taken with the single particle 
plane wave functions, 

 1| exp( ) | | ,i s ti i
V

χ χ〉 = ⋅ ⊗ 〉⊗ 〉k r          (30) 

where sχ  and sχ  represent the eigenstates of spin and 
isospin. 

There are three parameters, ,α β  and η  , when we 
consider the short range correlation of realistic NN interaction. 
We would like to determine them by minimizing the energy 
per particle of whole system with variational principle,  

    
3( / ) 0.HFU Aε
α β η

∂
=
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                             (31) 

 We have constructed the non-relativistic Hartree-Fock 
model with UCOM (HFU), where we do not have any free 
parameters. 

IV. THREE-BODY INTERACTION IN THE HFU MODEL 
The three-body interaction is very important to provide 

reasonable saturation properties for the microscopic 
calculation in the non-relativistic framework [8, 21]. We shall 
introduce the Urbana three nucleon interaction (TNI) [22], 
which contains two terms: the two-pion exchange part 2

ijkV π  
from the Fujita-Miyazawa model [23], and the repulsive part  

R
ijkV   due to the relativistic effect,  

                            2 .R
ijk ijk ijkV V Vπ= +                                (32) 

Now, the Hamiltonian of the whole system is changed as, 

                 2
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R
i ij ijk ijk

i i j i j k i j k

T V V Vπ

= < < < < <

= + + +∑ ∑ ∑ ∑                        (33) 

More explicit form about the three nucleon interaction part 
can be written as,  

2
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with 

( ) ( ) .ij ij i j ij ijY r T r S= ⋅ +X σ σ           (35) 

Here,  {,}   and  [, ]   denote the anti-commutator and 
commutator. The functions  ( )Y r  and  ( )T r  are radial 
functions related with the Yukawa and tensor part of the one-
pion exchange interaction which take into account the form 
factor,  

2

2 2
2 2

( ) [1 exp( )],

3 3( ) 1 [1 exp( )] ,

m r

m r

eY r br
m r

eT r br
m r m r m r

π

π

π

π π π

−

−

= − −

 
= + + − − 
 

 (36) 

where  2.0b =   fm 2−  . 

Now, the correlated potential after short range correlation 
is written as,  



††

†     ( ) ( ).
ij ij ij ijk ijk ijk

ij i j ij i j

V C V C C V C

C T T C T T

= +

+ + − +
            (37) 

  For the three-body interaction, we take the UCOM to the 
two-body correlation. The Urbana TNI  ijkV   can be separated 
as the product of two two-body interactions, [3]

ijV  and [3]
ikV  . 

Therefore, the short range correlation on the TNI can be 
approximately written as, 

  

[3] [3]
,ijk ij ikV V V                           (38) 

where we have used the unitary property of short range 
operator  C . Finally, the energy per particle in the HFU model 
with three-body interaction is obtained as  





23 1 | |
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1           | | .
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ij A
i j

A

ijk A
i j k

k ij V ij
A M A

ijk V ijk
A

ε

<

< <

= + 〈 〉

+ 〈 〉

∑

∑
              (39) 

  Because there is a cyclic symmetry in the interaction of  
2

ijkV π   and  R
ijkV  , the expectation value of three-body interaction 

in Eq. (39) can be simplified, 

  



, ,

1 1| | | | | |
6 2

1                               | | .
3

A A

ijk ijk ijkA
i j k i j k

ijk

ijk V ijk ijk V ijk ijk V ikj

ijk V kij

< <

〈 〉 = 〈 〉 − 〈 〉

+ 〈 〉

∑ ∑
   (40) 

More obvious expression about the energy contribution of 
the Urbana TNI in nuclear matter with plane wave function is 
described in detail in [24]. Only the difference appears in the 
treatment of the short range correlation on the three-body 
interaction in this work. 

V. NUMERICAL RESULTS 
Firstly, we would like to discuss the properties of nuclear 

matter with a two-body NN interaction. We adopt the Bonn-A 
potential as a realistic NN interaction which is constructed by 
exchanging six non-strange mesons with masses below 1 GeV. 
The meson masses, meson-nucleon coupling constants and cut-
off masses in the form factor can be referred in Table VI in 
[10]. 

 In Fig. 3, we show the EOS of symmetric nuclear matter 
with the Bonn-A potential. We compare the results of 
symmetric nuclear matter with and without the short range 
correlation in the Hartree-Fock theory. The realistic NN 
interaction cannot bind the system of symmetric nuclear matter 
due to the strong repulsive effect in the short distance. The 
UCOM effect can largely cut down the repulsive effect in the 
short distance and make the symmetric nuclear matter bound. 
This correlation effect becomes larger with the density. 



Journal of Basic and Applied Physics                                                                                                                                                         (JBAP)                          

JBAP Volume 1, Issue 1  May 2012 PP. 1-8 www.bap-journal.org○C World Academic Publishing 
6 

However, the saturation properties of symmetric nuclear 
matter in the HFU model, / 12.66E A = − MeV and  0 0.33ρ =  
fm 3−  , are far from the empirical values. It is caused by the 
omission of the tensor effect in the Hartree-Fock model, which 
is very important as shown in Section Ⅱ for symmetric 
nuclear matter 

 
Fig. 3 The EOS of nuclear matter with the HFU model for symmetric nuclear 
matter: the dashed curve is the EOS of symmetric nuclear matter without the 

short range correlation in the Hartree-Fock approximation, while the solid 
curve is the result of the HFU model 

We also give the corresponding UCOM parameters, ,α β   
and η  , as functions of density in Fig. 4 . These parameters are 
obtained by minimizing the ground state energy with 
variational principle. They change slightly in the low density 
region and become stable in the high density region. The 
minimization of the binding energy is obtained by the 
competition between the short range correlation on the kinetic 
energy and the potential energy. The short range correlation 
effect on the kinetic energy is repulsive, while it is attractive 
for the NN interaction energy. Finally, they cancel with each 
other and make the binding energy minimized. 

 
Fig. 4 The UCOM parameters as functions of density for symmetric nuclear 

matter 

The tensor effect is very small in neutron matter. It should 
be a good approximation to consider only the short range 
correlation. We plot the EOS of pure neutron matter with the 
HFU model in Fig. 5. We find that it is compared very well 
with the calculation of the variational method with the AV18 
potential including the relativistic boost correction ( vδ ) [8]. 
This success is based on the following two points. The first 
one is that the UCOM takes the reasonable short range 
correlation into account for the Bonn-A potential and the 
contribution of the tensor interaction can be neglected for 
neutron matter. The other one is that the HFU model with the 
use of the Bonn potential includes the relativistic boost effect 
automatically.   

 
Fig. 5 The EOS of neutron matter with the HFU model as a function of 
density: the solid curve is the result of the HFU model with the Bonn-A 

potential, while the triangles are the EOS from the variational method with 
the AV18 potential 

Actually, we have the similar framework with the 
relativistic mean field approximation in the HFU model except 
for the kinetic energy part. Forest et al. has proved that the 
boost corrections for the meson-exchange potential, obtained 
from the relativistic mean field model is in agreement with the 
results of vδ [21]. The relativistic boost correction coming 
from the NN interaction is described in the framework where 
the total momentum  ij i j= +P p p  is zero. However, there is no 
such constraint when we calculate the energy in the framework 
of the relativistic mean field approximation. Furthermore, the 
meson-exchange potentials contain the Dirac spinors which 
takes the relativistic effect.

   
 

Although we reproduce the results of the variational 
calculation for neutron matter with the two-body realistic NN 
interaction, Bonn Potential, this EOS is still too soft in the high 
density region. An additional repulsive contribution should be 
introduced. It is obtained from the Z-graph of the  σ   meson 
exchange through nucleon-antinucleon excitation in the RBHF 
model. However, we would like to adopt a phenomenological 
three-body interaction, Urbana three-nucleon interaction (TNI), 
follow the work of the variational method. The EOS of pure 
neutron matter in the HFU model with a three-body interaction 
(HFUT) is given in Fig. 6. The strengths of the Urbana TNI,  

2A π   and  RA  , are chosen as the same values as the UIX* in 
[8], which have values 2 0.0293A π = − MeV and  

0.63 0.048RA = × MeV. 

 
Fig. 6 The EOS of neutron matter with the HFUF model:  the solid curve is 
the results of the HFUT model, while the square points are the EOS in the 

variational method with the AV18 potential and three-body interaction 

In Section Ⅱ, we have shown that the tensor contribution 
of the pion and even the central spin-spin interaction of the 
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pion are suppressed by the isospin factor in neutron matter. For 
the 2 π   exchange part of the Urbana three-body interaction, 
the similar suppression effect of the pion matrix elements is 
present. Its effect can be neglected as compared with the 
contribution from the repulsive term. Therefore, we drop this 
contribution for the consistency in the three-body interaction 
case by the same reason as we have dropped the tensor 
interaction for the two-body interaction case. The solid curve 
in the left panel represents the EOS of neutron matter in the 
HUFT model without the term  2

ijkV π  , which is a factor 20 
smaller than that of the repulsive three-body interaction in the 
present model space calculation. We found our results almost 
reproduce those of the variational methods with the AV18 
potential and the Urbana three-body interaction [8]. 

In Fig. 7, we also show the UCOM parameters with density 
in the HFUT model for neutron matter. In the high density 
region, they change gradually with the density and are not 
stabilized as compared with the case with only the two-body 
NN interaction. This is because the three-body interaction is 
influenced largely by the short range correlation. In the high 
density region, the repulsive contribution of the three-body 
interaction becomes large, where the UCOM plays a very 
important role. 

 
Fig. 7 The UCOM parameters in the HFUT model for neutron matter 

VI. CONCLUSIONS 
We have studied the properties of nuclear matter, 

especially pure neutron matter in the non-relativistic Hartree-
Fock theory with three-body interaction in this work. We 
explain the role of tensor force in the different isospin channels 
of nuclear matter by evaluating the iterated one-pion-exchange 
diagram. The tensor force makes very large attractive 
contribution to symmetric nuclear matter, while its effect 
becomes very weak in neutron matter with only  1T =  
nucleon pairs. Therefore, it is sufficient to treat only the short 
range correlation induced by the strong repulsive interaction of 
a realistic NN interaction in neutron matter. 

The unitary correlation operator method (UCOM) has been 
adopted to treat the short range correlation. We constructed the 
Hartree-Fock theory with UCOM (HFU) by using the two-
body meson-exchange potential, Bonn-A potential, which is a 
realistic NN interaction constructed from the phase shifts of 
NN scattering. It is necessary to introduce a three-body 
interaction to improve the properties of nuclear matter in the 
microscopic calculation of nuclear matter with the non-
relativistic framework. We choose a phenomenological one, 
Urbana three-nucleon interaction. The HFU model with three-
body interaction was called as the HFUT model. 

We have studied firstly the equation of state (EOS) of 
nuclear matter with Bonn-A potential in the HFU model. The 
UCOM can largely cut down the strong repulsive contribution 
of a realistic NN interaction for symmetric nuclear matter 
being bound together. However, the saturation properties are 
still bit far from the empirical values due to the lack of the 
tensor effect. The parameters,  ,α β   and  η   in the UCOM are 
obtained by minimizing the ground energy of the total system 
with the variational principle. They changed somewhat at the 
low density region and become very stable in the high density 
region. For the pure neutron matter, we have obtained the 
similar EOS with the variational method using the AV18 
potential and relativistic boost effect. This success is based on 
the fact that the tensor effect is very weak in neutron matter as 
we have shown before and the Bonn-A potential contains the 
relativistic boost effect in the framework of the HFU model. 

To make the EOS harder, we also have performed 
calculations in the HFU model by including a three-body 
interaction, UIX*, for neutron matter. In this calculation, we 
include only the  R

ijkV  three-body interaction and do not include 
the 2

ijkV π  three-body interaction for consistency with the 
treatment of the two-body interaction without inclusion of the 
tensor interaction for neutron matter. The HFUT calculation 
compares nicely with the one in the variational method for 
neutron matter. Therefore, we can claim that the three-body 
force is very important in the non-relativistic framework for 
neutron matter. 
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