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Abstract- Aging sewer pipes inevitably deteriorate to a point where raw, untreated wastewater leaks out of the pipe and into the 
surrounding soil and nearby sources of groundwater. Municipalities can utilize closed-circuit television (CCTV) inspection 
technology to identify individual pipes within a sewer network in bad structural condition. Although CCTV inspections provide 
essential information on pipe condition, they are expensive and often limited to small portions of an entire sewer network. 
Consequently, any threat to the environment posed by uninspected pipes remains unknown. Predictive analytics can leverage 
existing inspection datasets so that reliable predictions of condition are available for individual pipes not yet inspected. The 
predictive capability of the “random forests” data mining algorithm is demonstrated using a case study of sanitary sewer pipe 
condition data collected by a municipality in Ontario, Canada. A comparison of class-imbalance learning strategies (undersampling 
and threshold adjustment) is carried out to evaluate the potential to increase predictive accuracy for bad condition pipes 
representing the minority class of interest. Threshold adjustment is found to provide an optimal level of performance for the 
classification problem – with the trained predictive model achieving a false negative rate of 18%, false positive rate of 29% and an 
excellent area under the receiver operating characteristic (ROC) curve of 0.81 (considered to be excellent given the nature of the 
inspection dataset). An analysis of the predictive capabilities of the random forests algorithm trained using a dataset one-third the 
size of the one originally available to the case study municipality indicates the algorithm has utility for municipalities outside of the 
case study area. Network spatial analytics are implemented to visualize clusters of bad condition pipes in the sewer system. 
Visualization of pipe condition in this manner is found to be an effective tool for screening candidate pipes for inspection and for 
conveying the necessity of inspection to members of a municipality responsible for approving sewer inspection-related budgets.   
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I. INTRODUCTION 
The majority of North American sewer infrastructure was installed during the period of rapid economic expansion that 

followed the conclusion of the Second World War. The first phase of this infrastructure is rapidly approaching the end of its 
useful life and a growing list of evidence suggests many sewers are in an advanced state of disrepair. In the 2013 Report Card 
for American Infrastructure, a poor condition grade was assigned to the 700,000 miles of publicly owned sewer mains 
currently in operation [1]. Aging pipes represent the largest capital investment need – comprising three-quarters of the 
estimated $298 billion of capital investment required over the next twenty years to address wastewater infrastructure [1].   

Structural defects in sewer pipes allow raw, untreated wastewater to leak into the surrounding environment. This 
phenomenon is referred to as exfiltration and is of great concern to municipalities as a range of groundwater pollutants are 
found in typical municipal wastewater flows [2]. There are numerous historical instances of contamination to validate this 
concern – e.g. a leaking sewer contaminated an aquifer in the Bath region of the United Kingdom in 1928, resulting in a 
typhoid outbreak affecting 50 people [3] and a total of 54 separate incidents of sewer-related groundwater contamination have 
been recorded in the United Kingdom alone [2]. Although published data on the rates of exfiltration of raw sewage from aging 
sewers is rather limited, estimated rates have been established for some international locations – e.g. 18 of average daily flow 
in Munich, Germany [4], 10% of dry weather flow in Rome, Italy [5], and 8% of total pumped volume in Hong Kong [6]. 

In municipalities with separate sanitary and stormwater networks, the issue of sewage exfiltration is exacerbated when 
sewage leaking from broken sanitary sewers passes untreated into any broken stormwater pipes located nearby. Sewage 
contamination of a dedicated stormwater system poses a significant risk to human health as stormwater pipes release their 
untreated contents to surface waters, such as lakes used for recreational pursuits. A number of recent studies indicate sewage 
contamination of stormwater systems is nearly ubiquitous in the urban environment. Approximately half of 18 stormwater 
outfalls studied in Milwaukee, Wisconsin contained more than 25% sanitary sewage by volume and were linked to poor water 
quality of receiving waters in the area [7]. Individuals swimming in recreational waters located near a stormwater outfall 
studied in [8] were 50% more likely to experience adverse health effects (e.g. gastroenteritis) than those swimming further 
away from the same outfall.  Sewer leaks located near building connections were a significant source of faecal contamination 
in stormwater systems recently studied in central Singapore [9]. A study conducted in California indicates stormwater pipes act 
as conduits for raw sewage leaking from failed sanitary sewers, even during periods of dry weather [10].  

Raw sewage that flows untreated into surface waters is potentially very dangerous as it may contain a wide range of 
bacteria, pathogenic microorganisms and endocrine disrupting compounds (EDCs - commonly found in human 
pharmaceuticals, detergents and chemical disinfectants). These EDCs threaten long-term environmental and human health as 
they interfere with natural processes in the body responsible for reproduction, development and behaviour. The 



International Journal of Environmental Protection                          Apr. 2014, Vol. 4 Iss. 4, PP. 48-57 

- 49 - 

pharmaceuticals carbamazepine (an anticonvulsant and mood-stabilizing drug) and sulfamethoxacol (an antibiotic commonly 
used to treat urinary tract infections) were not completely eliminated in soil columns studied in [11], suggesting they are 
capable of passing from leaking sanitary sewers to nearby stormwater pipes. Ultimately, chronic faecal contamination of 
recreational waters ultimately reduces the potential economic benefit of water-based recreation and tourism activities as 
municipalities are forced to close recreational waters to protect users from illness and disease [12]. Wastewater leaking out of 
structurally damaged sewer pipe is also capable of contaminating drinking water distribution systems during transient low or 
negative pressure events, further compounding the potential consequences of aging infrastructure [13].   

Until quite recently, most municipalities in North America carried out sanitary sewer-related work primarily as part of 
basement flooding relief studies (generally limited to qualitative inspections of select sewer pipes representing a small portion 
of the entire sewer system), as part of roadway rehabilitation projects (where older pipes are dug-up and replaced when new 
roads are constructed), or in in response to sewer failure or blockages.  A major shift in municipal accounting practice has had 
a dramatic impact on the way sewers are now managed in North America. Historically, tangible assets such as sewer pipes 
were only recorded as expenditures in their year of installation and the value of existing assets did not appear on annual 
financial reports. With the introduction of GASB Statement 34 in the United States in 1999 and PSAB Statement 3150 in 
Canada in 2009, capital asset inventory is now reported using accrual accounting methods reflecting the fact that assets such as 
sewer pipes have a value long after their initial cost of construction is incurred, but this value depreciates over time [14, 15]. 
These changes in accounting practice have improved the accountability of local government to their citizens as the value of 
existing sewers are now amortized over their useful life with depreciation recorded as an expense on the municipality’s 
statement of operations. Accurate information needed to satisfy these new legislative requirements is typically obtained by 
determining the condition of individual pipes in a sewer system using closed-circuit television (CCTV) inspection technology 
– where a video record of condition is captured using a camera mounted on a remote-controlled robot driven along the length 
of the pipe. Although CCTV provides valuable information on defects present inside each inspected pipe as shown in Fig. 1, 
these inspections are expensive and budgetary restrictions force most municipalities to limit inspection-related work to portions 
of their entire network of sewer pipes. 

In this paper, the random forests data mining algorithm is proposed as an efficient means of leveraging information from 
existing inspection datasets so that predictions of condition can be made for the remaining pipes that have not yet been 
inspected. As the case study described herein demonstrates, predictions of pipe condition made available by random forest 
models can be combined with network spatial analytics that seek out clusters of bad condition pipes. The new information 
made available by this novel application of predictive and spatial analytics can serve as a valuable screening tool for planning 
future inspection-related work.   

 
Fig. 1  CCTV technology is used to inspect the internal condition of sewer pipes currently in operation 

II. AN OVERVIEW OF MODELS DEVELOPED TO PREDICT SEWER PIPE CONDITION 

The majority of sewer pipe deterioration models have been based on statistical theory, with the output typically being a 
binary response (e.g. a yes or no answer to the question of whether or not a pipe will fail), categorical responses, or a matrix of 
probabilities for the transition of pipes between condition states. No goodness-of-fit tests were provided for logistic regression 
models developed in [16]. Multiple regression models were developed in [17] using a small dataset of pipe condition (22 
training and 7 for testing asbestos cement; 79 training and 30 for testing concrete; 34 training and 16 for testing for PVC). 
Fitting data-sensitive sample means to a full population mean is inherently problematic, particularly when very few poor 
condition pipes are available for model development and validation [18]. Reference [19] explored a variety of regression 
models for predicting the condition of sewer pipes in Cincinnati, Ohio -  binary logistic regression had the highest prediction 
accuracy with a correct prediction rate of 46% for structurally poor pipes. Reference [20] used 45 km of inspection data 
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collected in Niagara Falls, Ontario to develop network level logistic models for predictring the probability of concrete and 
vitrified clay pipes being in various condition states. A linear regression model developed in [21] was believed to greatly 
under-estimate the length of deficient pipe in a California sewer system. Reference [22] used Markov-chain models to describe 
the deterioration of large combined sewers in Indianapolis, Indiana – limited data made model development problematic. 
Markov models were used in [23] to estimate surface condition deterioration curves for groups of concrete sewer pipes in 
Waterloo, Ontario, Canada.  Markov models developed to describe the deterioration of groups of stormwater pipes in Australia 
could only reasonably predict the future condition for cohorts of pipes [24]. Markov models and ordinal regression models 
developed using 27 km of stormwater pipe inspection data collected by an Australian municipality were useful at the system-
level (predictive accuracy of the ordinal regression model for individual pipes was 42%) [25]. Survival analysis was used to 
predict structural condition at the network-level for sewer pipes in Quebec City, Quebec in [26]. As noted in the state-of-the-art 
of statistical deterioration methods presented in [27], cohort survival models are difficult to develop (computationally tedious 
and they require extensive datasets) and tend to underestimate the number of pipes in the poorest condition states.  

While statistical techniques have their own unique sets of advantages, they often require assumpions that limit utility of the 
developed predictive tool. Data mining techniques, drawing on the fields of artificial intelligence and machine learning, can 
serve as an alternative when the inherent bias and sparseness of inspection datasets prevent statistical model development. 
Reference [28] investigated the importance of parameters related to sewer pipe deterioration in Pierrefonds, Quebec using 
artificial neural networks. Neural networks were found to be superior to both Markov models and ordinal regression models 
when modeling stormwater pipe deterioration in [29]. Reference [30] used support vector machines to predict individual pipe 
condition in South Australia. References [31, 32] used decision tree classifiers to investigate sewer pipe condition.  

In general, there is still a significant need to develop efficient methods for learning from existing inspection datasets so that 
location-specific predictions of condition can be made for individual pipes that have not yet been inspected. In the majority of 
cases, existing modelling techniques (e.g. multiple linear regression, logistic regression and Markov-chains) are of limited 
utility at the individual-pipe level. As such, this manuscript investigates the possibility of reliably predicting individual pipe 
condition using the “random forests” data mining system. The random forests algorithm consists of growing hundreds of 
decision tree classifiers and then combining the predictive capabilities of these individual trees into an ensemble, or forest of 
trees. Each individual tree is grown to a maximum size by first selecting a random subset of predictor inputs (i.e. pipe 
attributes) to spilt the dataset on and then calculating the best split based on the CART algorithm first described in [33]. 
Hundreds of these trees are grown in a similar fashion, and classification predictions are made by having each tree in the forest 
cast a vote and then determining the mode of these votes.  

Models consisting of a single decision tree classifier may exhibit high variance and tend to be unstable as their structure 
will change depending on the instances available for model training. A more powerful approach to modeling deterioration is 
the random forests system as it has proven to be one of the best performing classification algorithms on a variety of tasks [34].  
Random forests are a logical choice for modeling sewer pipe condition as they are efficient for large databases, require 
minimal parameter tuning, are insensitive to outliers in a dataset, capable of high levels of performance even when faced with 
class imbalanced datasets, require no assumptions of pipe behaviour over time and are inherently capable of identifying the 
most important input predictors out of a larger candidate set. Some example applications in other fields of research have 
included ecology (classification of invasive plant species in [35]), marketing (predicting customer retention in [36]) and 
genetics (analysis of genome wide association  datasets in [37]). Further information on random forests can be found in [38, 
39]. 

III. CASE STUDY 

A municipality located in south-western Ontario, Canada was used as a case study area. The 120,000 residents of the 
municipality rely on a fractured bedrock aquifer as the source of their drinking water. A recent study indicates shallow over-
burden thickness and fast groundwater velocities make the aquifer vulnerable to the deterioration of the municipality’s aging 
sanitary sewer system, with 90% of 22 sampled drinking water wells found to contain at least one sewage-derived contaminant 
and 45% of the wells exhibited human enteric viruses derived from the exfiltration of domestic sewage flows [40].  

The municipality’s sanitary system increased by approximately 100 km every 15 years after WWII to satisfy the demands 
of increased residential development. Although the average sanitary sewer pipe in the municipality has only been in operation 
for 38 years as shown in Fig. 2, approximately 1,900 pipes were installed more than 50 years ago. Pipes are made of a variety 
of materials, including asbestos cement (11% of system length), concrete (16.1%), PVC (44.6%), reinforced concrete (3.1%), 
and vitrified clay (25.2%). In general, the oldest pipes in the network are made of vitrified clay and most pipes installed within 
the past 30 years are PVC. 
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Fig. 2  Change in average sanitary sewer pipe age over time 

An engineering consultancy was retained from 2008 - 2011 to help the municipality prepare for compliance with PSAB 
Statement 3150 by CCTV inspecting a portion of the municipality’s more than 7,000 gravity sanitary sewer pipes. A total of 
221 km of inspections were completed over this time period, with pipes selected for inspection based on expert opinion that 
determined those pipes would have an increased likelihood of being in poor structural condition. Structural defects inside each 
pipe were identified using the third edition of the Water Research Centre Manual of Sewer Condition Classification (WRc 
MSCC) and severity scores were assigned to defects using the fourth edition of the Water Research Centre Sewerage 
Rehabilitation Manual (WRc SRM).  An internal condition grade (ICG) of 1, 2, 3, 4 or 5 was assigned to each inspected pipe 
using thresholds established in the WRc SRM for the highest severity scores accumulated in any one meter length of the pipe. 
The consultancy carried out comprehensive quality assurance/quality control (QA/QC) to ensure accuracy of the collected 
inspection data. Approximately 90% of the inspected pipes were assigned an ICG of 1, 2, or 3 as shown in Table 1. As a result, 
the inspection dataset is class imbalanced, with significantly more pipes in some condition classes than others. Class imbalance 
is common within pipe inspection datasets (as indicated in [19, 41]) and is problematic for predictive modeling as most 
algorithms will pursue high levels of accuracy by focusing their learning effort on correctly predicting instances belonging to 
the majority class at the expense of misclassifying minority instances. Fortunately, the data mining community offers a variety 
of class imbalance learning techniques – the majority designed with the intention of solving two-class problems, as accounting 
for class imbalance is exceedingly complex beyond two classes.   

TABLE 1 INTERNAL CONDITION GRADES ASSIGNED TO INSPECTED PIPES 

Material Internal Condition Grade Structural Condition 
1 2 3 4 5 Good (ICG 1-3) Bad (ICG 4-5) 

Asbestos Cement 373 14 24 5 0 411 5 
Concrete 364 79 73 36 7 516 43 

PVC 110 9 1 2 1 120 3 
Reinforced Concrete 56 8 0 0 0 64 0 

Vitrified Clay 213 135 165 121 29 513 150 
Total 1116 245 263 164 37 1624 201 

Pipes were reclassified as being in good (ICG 1 – 3) or bad (ICG 4-5) structural condition to accommodate the following 
class-imbalance learning strategies: 

• Down-sampling (i.e. balanced random forests): where for each tree grown in the random forest, a bootstrap sample of 
instances is drawn from the minority class and the same number of instances are randomly drawn (with replacement) 
from the majority class.  

• Alternative classification cut-offs: where a random forest is grown but the model is tuned to improve performance on 
the minority class by identifying a classification cutoff that is more effective than the baseline threshold of 0.50 
typically used to convert class probabilities to discrete class predictions [34].  

Pipes with an ICG of 4-5 are the minority class of interest as their defects make them susceptible to failure and exfiltration-
related issues. An analysis of the inspection data indicates reduced structural integrity was most often the result of cracks, 
fractures and defective joints as they represent 42%, 38% and 11% of all recorded structural defects, respectively as shown in 
Fig. 3. This appears to be the case for many Canadian sewer systems, as cracks were previously found to be the most common 
structural defect in a study of inspection datasets obtained from six other Canadian municipalities in [42].  



International Journal of Environmental Protection                          Apr. 2014, Vol. 4 Iss. 4, PP. 48-57 

- 52 - 

 
Fig. 3 Distribution of structural defects present in various sewer pipe materials 

CCTV inspection records were integrated with existing spatial data in GIS to prevent under-utilization of the data. ESRI 
ArcMapTM was found to be an excellent document management system that saved considerable time in locating, organizing 
and confirming the accuracy of field-inspection information. Pipe-specific attributes obtained from GIS used as input 
predictors for model development include: material of construction (asbestos cement, concrete, PVC, reinforced concrete or 
vitrified clay), age at the time of inspection (years), installation era (pre-WWI (< 1914), WWI (1914-1918), inter-war (1919-
1938), WWII (1939-1945), post-WWII (1946-1966), or modern (1967-present)), sewer type (trunk or branch), diameter (mm),  
length (m), slope (%), slope change (maximum % change in slope at either the upstream or downstream pipe connection), 
upstream invert elevation (m), orientation change (maximum change in pipe orientation at either the upstream or downstream 
connection), burial depth (m), road coverage (portion of a pipe’s total length covered by an overlying roadway), number of 
nearby watermain breaks that have occurred within 3 m of the sewer pipe, land use (agricultural, commercial, industrial, 
institutional, park or residential), and census tract (one of 27 districts within the municipality pre-determined by government 
for census purposes).  This set of predictor inputs was analysed to ensure there were no near-zero variance predictors, nor was 
there any strong correlations between predictor variables.  Further identification of important input predictors (e.g. feature 
elimination) was unnecessary due to capabilities inherent in the random forests algorithm for such purposes.  

Integration of inspection data within a GIS environment afforded an opportunity to identify clusters/hotspots of bad 
condition inspected pipes. Network spatial analysis techniques can be used for cluster identification that establish proximity 
using the shortest-path distance between events located on the network. A recently introduced third party application for ESRI 
ArcMapTM known as SANET [43] can be used to efficiently implement network spatial analysis without the burden of 
excessive mathematical manipulations of the dataset. Fig. 4 presents a hotspot map of bad condition inspected pipes developed 
using SANET (equal-split continuous kernel density function, midpoint of a bad pipe considered to be a point of failure, and a 
shortest path distance between events of 200 m). Hotspot severity can be gauged using threshold values of standard deviation 
from the mean network density – e.g. pipes having a density greater than 2.5 standard deviations above the mean can be 
considered to be a hotspot of serious concern due to the number of structurally poor pipes located within close proximity.   

 
Fig. 4  Density estimation of inspected pipes found to be in bad condition (ICG 4-5) 
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IV. ASSESSING PREDICTIVE CAPABILITY 

Random forests generate both a continuous-valued prediction (in the form of a class membership probability between 0 and 
1) and a discrete class prediction based on the class membership probability (using a baseline probability cut-off of 50%). 
Based on the discrete class predictions, predictive capability was evaluated using the confusion matrix in Table 2 - where bad 
condition pipes are defined as the positive, minority class of interest for inspection planning purposes. The inspection dataset 
was partitioned using stratified random sampling into training, evaluation and test sets using a 70-10-20 split ratio.   

TABLE 2 CONFUSION MATRIX USED TO EVALUATE PREDICTIVE PERFORMANCE ON A BINARY CLASSIFICATION TASK 

 
Predicted 

Bad Pipe [+ class] Good Pipe [- class] 

Actual 
Bad Pipe [+ class] True Positive (TP) False Negative (FN) 
Good Pipe [- class] False Positive (FP) True Negative (TN) 

In addition to overall accuracy (which can be an unreliable indicator of predictive capability when dealing with class 
imbalanced data), model performance was assessed using the metrics true positive rate, true negative rate, false positive rate, 
and false negative rate. The area under the receiver operating characteristic (ROC) curve provided further indication of 
predictive power (with excellent models generally defined as those achieving an area under the ROC > 0.8). The ROC curve, a 
commonly used tool for evaluating the success of a data mining investigation, is a plot of the true positive rate versus the false 
positive rate achieved when different probability thresholds are used to establish classifications for instances in a dataset. For 
each candidate threshold (e.g. 50%) the true positive rate and false positive rate are plotted against each other. More 
information on the use of these metrics for gauging model performance can be found in [44].    

V. RESULTS 

Random forests were trained, tuned and tested using the randomForest [45] and caret [46] packages developed for R. Table 
3 contains the test set classification results for Random Forest Model 1 (using the entire set of available input-predictors, no 
class-imbalance learning strategies, the baseline classification cutoff of 0.50, and maximum area under the ROC curve used 
during model tuning to establish the optimal number of input predictors randomly select to grow each tree in the forest). The 
confusion matrix indicates class imbalance had the negative consequence of a predictive model that focused almost entirely on 
correctly classifying good pipes in the majority class in the pursuit of high overall accuracy. The area under the ROC curve 
achieved during three-repeats of ten-fold cross-validation of the training set was 0.81. Area under the ROC curve for the 
evaluation and tests sets was 0.82 and 0.81, respectively. These ROC results indicated the model would be capable of being an 
excellent classifier for bad pipes if the model could be optimally tuned using an alternative cutoff that is more appropriate than 
the baseline classification cutoff. 

Table 4 contains the test set classification results for Random Forest Model 2 (the baseline random forest Model 1 with an 
optimal cutoff of 0.125 derived from the evaluation set ROC curve).  Using this new optimal cut-off, any instance predicted by 
Model 1 to have a probability of being bad > 0.125 is classified as being bad. Using this new cutoff, the model achieved a true 
positive rate of 0.82 (up from 0.11), a true negative rate of 0.73 (down from 0.99, but still acceptable), and an overall accuracy 
of 0.74. As the existing structure of Random Forest Model 2 is the same as Model 1, it has the same excellent area under the 
ROC curve characteristics.  

Table 5 indicates the test set classification results for Random Forest Model 3: where instances in the majority class were 
down-sampled during model training. This balanced random forest model was found to be less suited to correctly identifying 
bad condition pipes than Model 2, achieving a test set true positive rate of 0.71 and a test set area under the ROC curve of 0.80.   

 TABLE 3 TEST SET CONFUSION MATRIX FOR RANDOM FOREST MODEL 1: BASELINE CLASSIFICATION CUTOFF OF 0.50 

 
Predicted Performance Metrics 

Bad Pipe [+ class] Good Pipe [- class] True positive rate = 0.11, False negative rate = 0.89 
True negative rate = 0.99, False positive rate = 0.01 

Accuracy = 0.90, Area under ROC curve = 0.81 Actual 
Bad Pipe [+ class] 4 34 
Good Pipe [- class] 2 316 

 TABLE 4 TEST SET CONFUSION MATRIX FOR RANDOM FOREST MODEL 2: OPTIMALLY TUNED CLASSIFICATION CUTOFF OF 0.125 

 
Predicted Performance Metrics 

Bad Pipe [+ class] Good Pipe [- class] True positive rate = 0.82, False negative rate = 0.18 
True negative rate = 0.73, False positive rate = 0.27 

Accuracy = 0.74, Area under ROC curve = 0.81 Actual 
Bad Pipe [+ class] 31 7 
Good Pipe [- class] 86 232 

TABLE 5 TEST SET CONFUSION MATRIX FOR RANDOM FOREST MODEL 3: DOWN-SAMPLING OF MAJORITY CLASS 

 Predicted Performance Metrics 
Bad Pipe [+ class] Good Pipe [- class] True positive rate = 0.71, False negative rate = 0.29 

True negative rate = 0.76, False positive rate = 0.24 
Accuracy = 0.75, Area under ROC curve = 0.80 Actual 

Bad Pipe [+ class] 27 11 
Good Pipe [- class] 75 243 
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VI.  DISCUSSION 

A. Planning Future Inspections through Combined Spatial and Predictive Analytics 

The increased true positive rate and slightly higher area under the ROC curve indicate Model 2 (optimal probability cut-off) 
performs better than Model 3 (down-sampling) when predicting the minority class of interest in the test set. Overall, the 
performance metrics obtained for Model 2 indicate it would be capable of providing reliable predictions of condition for 
uninspected pipes in the sanitary sewer network. Of the more than 4,000 pipes in the system that have not been inspected, 
Model 2 predicts 1073 will be in bad structural condition. Although the immediate inspection of these 1073 would be preferred, 
budgetary restrictions will most likely limit the number of pipes that can be inspected within the coming year.  

A variety of approaches could be used to plan the next round of inspections. One option would be to consider the individual 
predicted probability of belonging to the bad pipe class in tandem with risk-of-failure concepts (e.g. WRc critical sewers). It 
would also be possible to select a portion of the most likely bad pipes as the focus for the next round of inspection (i.e. gain-
chart analysis as indicated in [47]). Alternatively, the municipality can use the combined power of the validated predictive 
model with the information learned from network spatial analytics to establish a subset of pipes for immediate inspection. In 
essence, this establishes a risk assessment framework whereby future inspections are based on a predicted probability of being 
bad and a proximity to existing network hotspots, making the consequence of their failure greater than pipes located outside 
the hotspot. As an example, of the 1073 uninspected pipes predicted to be bad, 52 are within a hotspot established according to 
a network density value greater than 2.5 standard deviations above the mean density value for the entire network as shown in 
Fig. 5.  

 
Fig. 5 Predictive and spatial analytics can be combined to identify uninspected pipes that should be targeted for immediate inspection 

B. Sensitivity Analysis 

A sensitivity analysis was performed to evaluate the impact on the predictive capabilities of the random forests algorithm 
when using a dataset containing significantly fewer inspections than the one available for analysis by the case study 
municipality. A scenario was established by using one-third of the inspection dataset (consisting of 531 good pipes and 61 bad 
pipes) to train a random forest model and then keeping the remaining two-thirds of the inspection dataset as a hypothetical set 
of 1,195 pipes that have not yet been inspected (but would actually contain 1064 good and 131 bad pipes if they were 
eventually inspected).  The model trained using one-third of the dataset achieved a cross-validated area under the ROC curve 
of 0.76 and a test set true positive rate and accuracy of 75% and 72%, respectively. Using this trained model to predict the 
condition of the 1195 pipes in the hypothetical set of uninspected pipes would have resulted in an overall accuracy of 73% 
(866 pipes correctly classified) and a true positive rate of 79% (104 out of 131 bad pipes correctly identified). This result 
indicates that although models developed using a significantly a smaller dataset may not have as high a level of performance, 
trained predictive model can still be of significant utility to a municipality.  

C. Inherent Restrictions on Predictive Capability for Individual Pipes 

Beyond basic characteristics such as material of construction and age,  sewer pipe deterioration rates are likely highly 
dependent on a variety of factors that are often unavailable for analysis including original design quality control, local 
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environmental conditions, history of extreme loading events, operating context, and maintenance history since installation. An 
absence of this information serves to make the characterization of any time-dependent relationship between asset condition and 
failure difficult. Although drawn from experience within the medical field, reference [48] provides some explanation as to why 
predictions of individual pipe condition will, most likely, always be associated with some degree of uncertainty. Individual 
pipe models are similar to models developed in the medical field for individual patients, where even the best models are of 
little use when predicting survival times for terminally ill patients (with expected error rates usually 50% at best as human 
survival is so uncertain). In much the same way, the behaviour of individual sewer pipes over time is proving to be difficult to 
model with the same levels of accuracy as generalized network level models. The individual pipe condition modeling task is 
further complicated by the nature of the data used for condition classification. CCTV inspections are carried out using 
standardized systems of defect detection but there is still considerable potential for operator subjectivity or experience to 
introduce noise into the modeling dataset (i.e. some operators may miss certain types of defects resulting in a less severe ICG 
score for a pipe).  

VII. CONCLUSIONS 
Widespread evidence of environmental contamination caused by sewer deterioration and higher expectations for sewer 

performance both call for a more proactive approach to sewer inspection and management. An analysis of CCTV inspections 
carried out by a municipality in Ontario, Canada indicates the most common structural defects are cracks, fractures and 
defective joints, representing 41%, 38% and 11% of all recorded structural defects, respectively. The inspection dataset was 
found to be class imbalanced - with approximately 90% of all pipes in good structural condition. Network spatial analytics in 
GIS was found to be a useful tool for identifying clusters/hotspots of inspected sanitary sewer in bad structural condition.  

The random forests data mining algorithm was used to predict the structural condition of individual sanitary sewer pipes 
using a set of input predictors derived using GIS. Two class imbalance learning techniques were utilized to improve the 
predictive capabilities of the algorithm for bad condition pipes representing the minority class of interest. Although down-
sampling (balanced random forests) performed well on the classification task at hand, it was outperformed by the simpler 
approach of establishing a new classification cut-off for the predictive model – an approach that achieved an excellent area 
under the receiver operating characteristic (ROC) curve of 0.81, an overall accuracy of 74% and a true positive rate of 82%.  

Although accurate predictions of condition of individual pipes within a sewer network are often difficult to achieve (due to 
class imbalance common in inspection datasets, the uncertain nature of the inspection data, and the considerable variability that 
can exist in environmental conditions and loading events experienced by individual pipes), the combined application of the 
random forest algorithm with network predictive analytics was found to be a useful tool for efficiently screening uninspected 
pipes for future rounds of inspection.  
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