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Abstract- Several publications used the finite element method to determine the band structures of periodic solids by solving the 
Schrödinger equation (for example, Pask et al., Sukumar et al. [1-4]).  

The approaches used by these publications could basically be divided into two. The first approach (Pask et al. [1-3]) expresses the 
wave function ψ as the product of a harmonic function and a periodic function using Bloch’s theorem. The periodic function is then 
discretized over the domain.  

In contrast, the second approach (Sukumar et al. [4]) discretizes the wave function over the domain with its nodal values being 
complex in this case.  

This paper discusses a solution procedure for determining the band structures for a class of materials starting from the approach 
followed by Sukumar [4]. It assumes that one can obtain the discrete Hamiltonian and overlap matrices from a conventional finite 
element analysis program without reverting to a special program. The application of the boundary conditions and the solution of the 
band structures, for the defined class of material, are performed through matrix operations of well defined steps. The final complex 
eigenvalue problem, to determine the band energies of the system, is then solved by conventional methods.  

When solving the resulting system, two representations of the overlap matrix were tested in this work, namely, the consistent and 
lumped representations. Each of these representations displayed a different response when compared to the exact solution. The 
results from the lumped and consistent formulations as well as those from a simple averaging process are discussed in this paper. 
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I. INTRODUCTION 

Determining the band structures of periodic solids involve solving the Schrödinger’s equation with an equivalent potential 
and periodic boundary conditions [1-4].  

Different methods could be used for such a task, such as the Fourier analysis and the finite element method, among others. 
Within the class of finite element solution methods, the work of Pask et al. [1-4] and Sukumar et al. [4] are mostly quoted in 
this paper.  

Pask et al. [1-3] start with the Schrödinger equation, and using Bloch’s theorem, replace the wave function by the product 
of a harmonic function and a periodic function. Inserting the above decomposition into the differential equation and using the 
weak form results in a complex finite element formulation. In this case, the interpolation functions of the periodic function are 
real. 

On the other hand, Sukumar et al. [4] use the wave function as the main variable in the finite element formulation and thus 
the variables at the nodes are complex wave function values.  

In this paper, we start with the basic equation of quantum mechanic and use the wave function as the main variable, similar 
to the work presented by Sukumar [4]. However, instead of developing a special finite element program to solve the resulting 
formulation, we proceeded as follows. First, we assumed that the discrete Hamiltonian and overlap matrices are obtained from 
a conventional finite element program (like the conductivity and mass matrices), and thus there is no need to develop a special 
program to compute them. Second, the periodic boundary conditions were applied through matrix operations of well-defined 
steps. Thirdly, we selected the class of materials for which the special periodic boundary mesh renders the “force” vector null. 
Fourthly, this led us to a regular complex-eigenvalue problem that is solved to determine the system energies. In the finite 
element formulation, two presentations for the overlap matrix were used, namely, the consistent and lumped representations. 
The effects of each as well as those from a simple averaging process were discussed. The paper concludes with examples to 
validate the procedure proposed. 

The advantages of the above procedure may be summarized as follows. a-The discrete Hamiltonian and overlap matrices 
can be computed by using the meshing/computation capabilities of conventional finite element programs. Also, the mesh 
refining capabilities of these programs can be utilized. This is made possible since the periodic boundary conditions are applied 
from outside the formulation through matrix operations and not built into the formulation a priori. b-The compact finite 

mailto:najib01@idm.net.lb�


Journal of Basic and Applied Physics                                                                                    May 2014, Vol. 3 Iss. 2, PP. 129-138 

- 130 - 

element formulation presented and the matrix application of the periodic boundary conditions may facilitate the development 
of an error analysis scheme. c-Without a mesh refinement, an averaging process is presented, which may lead to an 
improvement in the error analysis. 

II. BLOCH THEOREM FOR PERIODIC SOLIDS AND THE PERIODIC BOUNDARY CONDITIONS 

Felix Bloch discovered that the wave function Ψ(r) in the Schrödinger equation for periodic solids with periodic potentials 
is equal to a periodic function u(r) multiplied by a harmonic function eik.r, where r and k are the electron position and Bloch’s 
wave vector, respectively. One can prove that the above statement is equivalent to having the wave function Ψ(r) satisfying 
Ψ(r+R) = eik.R Ψ(r), where R is the periodicity or lattice translation vector of the solid [5]. When the periodic boundary 
conditions are applied to the solution to the Schrödinger equation for periodic solids, the wave vector k is quantized.   

III. REVIEW OF SOME METHODS USED TO SOLVE THE SCHRÖDINGER EQUATION FOR PERIODIC SOLIDS 

The stationary expression of the Schrödinger equation for a many-body problem [6] can be expressed as: 

 
Ψ=Ψ++++=Ψ Tnn EVUUTTH ][

^

,
 (1) 

where Tn = kinetic energy of the nuclei 

T = kinetic energy of the individual electrons 

Un = nucleus-nucleus interaction term 

U = electron-electron interaction term 

V = interaction of electrons and nuclei term 

ET = total energy 

Ψ = wave function 

Using the Born-Oppenheimer approximation, the solution of the nuclei motion can be decoupled from the electrons motion, 
and the equation simplifies to: 

 Ψ=Ψ++=Ψ EVUTH ][ , (2) 

where E is the electronic energy. 

The density functional theory (DFT) attempts to solve the many-body problem by replacing it with a one-electron problem 
(or many non-interacting electrons) subjected to a potential that represents the combined effects of U and V above [7]. For 
periodic solids [8], the valence electron may be assumed to be non-interacting and subjected to a periodic potential (which is a 
result of the interaction with the ions and a mean field from the other electrons). This decouples the Schrodinger equation into 
a system of single-electron equations. The adequacy of the solution depends on the qualitative representation of the periodic 
potential. Accurate potentials, justified by DFT for example, would lead to better solutions [9]. 

The above assumption, of non-interacting valence electrons subjected to a resultant periodic potential, was taken in this 
work. Thus, for the case of one-electron problem, the Schrödinger equation can be written as: 

 

, 
(3) 

where h=1.0545x10-34 J.s. is the Planck’s constant divided by 2π, m is the mass of the particle (in this case the electron), Ψ 
the wave function, V the equivalent periodic potential and E the electron energy. 

Five methods/procedures for solving this equation were referred to in this paper, namely: 

1) Closed form solution, when possible; 

2) Fourier series solution; 

3) Method of Pask [1-3] where the wave function is replaced in the Schrödinger equation by a complex harmonic part eik.r 
and a periodic function u(r); 

4) Method of Sukumar [4] where the wave function is used as the basic variable, and the boundary conditions are applied 
at the periodic nodes; and 

5) The procedure described below. 

Ψ=Ψ+Ψ∇− EV
m

h 2
2

)
2
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In the following section, a complimentary procedure for solving the Schrödinger equation for a class of periodic solids is 
presented. 

IV. PROPOSED PROCEDURE FOR SOLUTION 

A. Schrödinger Equation – Normalized (Dimensionless) Form 

The one-electron Schrödinger equation can be written as 

 

, 
(4) 

If the coordinates X, Y and Z are also normalized with a0 (a basic unit of length), and if we let E*=2.m. a0
2 E/h2 and 

V*=2.m. a0
2V/h2, then, the resulting normalized Schrödinger equation can be expressed as: 

 . (5) 

B. Weak Form of the Schrödinger Equation 

Applying the weak form [10] to Schrödinger’s equation results in  

 
, (6) 

where v* is the complex-conjugate of the trial function v which has the same interpolation functions as Ψ in these derivations. 

Integration of Eq. (6) by parts leads to  

 
. 

(7) 

C. Periodic Boundary Conditions 

The periodic boundary conditions are specified as [1-4] 

 
, (8) 

and 

)().()().()().()().( .. rnreRrnRrrnrernRr RikRik Ψ∇−=++Ψ∇⇒Ψ∇=+Ψ∇ , 
where R is the lattice translation vector. 

D. Finite Element Formulation 

Using the standard finite element formulation to the weak form of the Schrödinger equation leads to the following system 
of equations. 

 , (9) 

where  

 
, 

(10) 

 
, (11) 

 
, (12) 

Ψ=vector of nodal wave functions, and 

N=shape function vector. 

Matrix K, the discrete Hamiltonian matrix, has a parallel in another branch of science, namely, a combination of the 
“conductivity” and “mass-heat capacity” matrices with the “density” ρ playing the role of the equivalent potential V*, which is 

Ψ=Ψ+Ψ∇− EV
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2
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given in this case. Matrix M, the overlap matrix, is equivalent to the “mass-heat capacity” matrix with density ρ =1. Thus, K 
and M can be generated from a conventional finite element program once a mesh is built.  

 
Fig. 1 Elements used in the finite element solution (a) 1D 2-node element.  (b) 3D 8-node hexagonal element 

In the 1D problem, 2-node C0 elements were used, as shown in Fig. 1(a) above. 

On the other hand, for 3D problems, 8-node C0 hexagonal elements were used, as shown in Fig. 1(b). 

E. Solution Procedure  

To solve the above system of equations with periodic boundary conditions, which are complex in this case, and without 
reverting to a new finite element program, we proceed as follows. 

Let n be the total number of nodes and m the number of independent nodes;  

Define Ψ =Ay where Ψ (nx1) is the nodal wave function vector, y (nx1) is the wave function vector where the dependent 
nodes are replaced by the independent ones, and A (nxn) a diagonal matrix, part of it relates the dependent degrees of freedom 
on the boundary to the independent ones through factors of the form eik.R. The other diagonal entries of A would have a value 
of 1; 

For example, assume I as an independent node and J a node that depends on node I. The J-th row of A will be all zeros 
except the entry A(I,J) which will have a value equals to eik.RIJ; 

Let y=Xz where X (nxm) is a matrix, made of 1s and 0s, that relates the modified total nodal wave function vector to the 
vector of independent degrees of freedom; 

Thus, the vector z (mx1) represents the independent nodal wave function vector. 

For example, for the dependent node J, the X(J,I) entry in the matrix X will have a value of 1 and all other entries will be 
zero. 

Actually, matrices A and X could be combined into a single matrix. However, they are preserved here in these forms to 
explain their individual original roles whereby matrix A was used to apply the periodic boundary conditions and matrix X to 
add the rows and columns of the equations. 

Applying these transformations to Eq. (9) leads to 

 (XT .A* .K.A.X).z – E*(XT. A* .M.A.X).z = XT A* F. (13) 

Let L= XT A* .K.A.X and P= XT A* .M.A.X, then Eq. (13) can be written as  

 L.z – E*P.z = XT .A* .F, (14) 

where matrices L and P are complex values. 

As is obvious from the above formulation, the resulting matrices are Hermitian, and consequently, the energy eigenvalues 
are real. 

By setting z=P-1/2w in the above result, Eq. (14) can then be transformed into 

 P-1/2.L.P-1/2.w – E*.I.w = 0. (15) 

The resulting equation is a regular complex-eigenvalue problem. 

F. Some Properties of the Resulting Matrices 

Diagonal matrix A can be decomposed into a real diagonal matrix AR with values of “1” and “cos(k.R)” terms and another 
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real diagonal matrix AC with values of “0” and “sin(k.R)”terms. AR represents the real part and AC represents the complex 
part. Thus, we can write A = AR + i*AC. 

Then,  

XT .A* .K.A.X = XT .(ACT.K.AC + ART.K.AR).X+i*[ XT .( ART.K.AC- ACT.K.AR).X], (16) 

and 

 XT .A* .M.A.X = XT.(ACT.M.AC + ART.M.AR).X+i*[ XT .(ART.M.AC- ACT.M.AR).X]. (17) 

It is not difficult to show that the real part of the second term on the right in the above two equations is a skew-symmetric 
matrix.  

The solution to the above eigenvalue problem, using the finite element method, is supposed to provide upper bounds to the 
energy eigenvalue. 

Indeed, the results obtained in this paper were either close to the exact solution or upper bounds. 

In this study, we did also attempt to use the concept of “lumped” overlap matrix, as generally applied in structural 
dynamics to the mass matrix. The terms in each row of the overlap matrix M were summed and placed on the diagonal. This 
results in an overlap matrix that is an identity matrix for this case of 3D C0 hexagonal elements. One implication of lumping 
the overlap matrix is that the right hand side of Eq. (17) is real in this case. 

Returning to the formulation at hand, and for the class of problems we are dealing with in this paper, one can prove that the 
right hand side of Eq. (14) is zero. This is accomplished as follows. 

Proposition: For periodic solids with the unit cells meshed using the finite element method, if points on opposing periodic 
boundary elements have the same lattice translational vector R, then the right-hand side of Eq. (14), namely the vector Q = 
XT .A* .F, is a zero vector. 

Proof: Assume the independent boundary node I, attached to element Γ I as shown in Fig. 2 below, faces node J attached to 
element Γ J, on the periodic boundary; 

 

Fig. 2 Boundary elements attached to nodes I and J 

The Q(I)=XTA*F(I) entry will involve a sum of integrals over all elements on the boundary that are either attached to node 
I or related to node I through the periodicity of the solid.  

...))().(())().(()( . +Γ++Ψ∇+ΓΨ∇= ∫∫
Γ

−

Γ

dRrnRrNedrnrNIQ
J

IJ

I

J
Rik

I

,                (18) 
when Eq. (8b) is substituted in the above equation, we get  

...))().(())().(()( .. +ΓΨ∇−+ΓΨ∇= ∫∫
Γ

−

Γ

drnreNedrnrNIQ
J

IJ

I

Rik

J
Rik

I

.                   (19) 
Since by the requirement of the proposition that all points in element Γ J are related to the opposing points in element Γ I 

through the same translational vector RIJ, and since element Γ I is similar to element Γ J, then 

0...))().((.))().(()( .. =+ΓΨ∇−ΓΨ∇= ∫∫
Γ

−

Γ

drnrNeedrnrNIQ
I

IJIJ

I

I
RikRik

I

.                     (20) 
Thus, this proves that for independent boundary nodes, the corresponding entries in the vector Q are zero. For interior 

nodes, the boundary integrals are obviously zero. This implies that the Q vector is a zero vector.  
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Note: Sukumar et al. [4] arrived at a similar conclusion by restricting the test function in the finite element formulation to a 
special value-periodic subspace. 

V. VALIDATION OF RESULTS 

To validate the above method of solution, the 1D and 3D Kronig-Penney models were solved. 

A. 1D Kronig-Penney model:   

In this problem, the electron is subjected to a periodic potential as shown in Fig. 3 below. The values of the parameters 
used are as follows:  

V0=100 Ry, a=2 a.u. and b=0.022 a.u. 

Table 1 compares the results obtained from solving the differential equation for the 1D Kronig-Penney model [11] and the 
results obtained from the finite element formulation, as presented in this paper. The locations of the solution points E1 through 
E12 are shown in the plot of energy versus wave number k of Fig. 4. The number of elements used in the finite element mesh 
was 208 C0 elements. The agreement between the two methods is very good. 

 
Fig. 3 1D Kronig-Penney periodic potential V versus position x 

 
Fig. 4 Energy bands for the 1D Kronig-Penney model. Solution points E1 through E12 correspond to the Finite Element Method 

TABLE 1 ENERGIES (RY) FOR THE 1D KRONIG-PENNEY MODEL. EXACT RESULTS VERSUS THE FINITE ELEMENT SOLUTION 

K=0 E1 E2 E3 E4 

EXACT 0.786 9.657 11.680 38.627 



Journal of Basic and Applied Physics                                                                                    May 2014, Vol. 3 Iss. 2, PP. 129-138 

- 135 - 

Current FEM work 0.786 9.658 11.681 38.640 

 
K=π/2L E5 E6 E7 E8 

EXACT 1.334 6.424 16.140 30.644 

Current FEM 
work 1.334 6.424 16.142 30.652 

 
K=π/L E9 E10 E11 E12 

EXACT 2.414 4.182 21.728 23.832 

Current FEM 
work 2.414 4.183 21.732 23.837 

B. Generalized 3D Kronig-Penney Model – Simple Cubic Structure  

Since the simple cubic structure belongs to the class of problems discussed above, the suggested procedure of solution is 
applied to this problem. 

We used the Generalized 3D Kronig-Penney model, which is a 3D extension of the 1D Kronig-Penney model. The equation 
of the potential is expressed as:  

V(x,y,z)=V1D(x)+V1D(y)+V1D(z).  

The model parameters used were: V0=6.5 Ry, a=2. a.u., and b=1.0 a.u. [1-3] 

Three different methods were used to obtain the band structures, namely 

1) An 11x11x11 Fourier series solution (taken to be very close to exact and formulated by the author); 

2) A 12x12x12 Co finite element solution using consistent overlap matrix; and 

3) A 12x12x12 Co finite element solution using lumped overlap matrix. 

The results are plotted in Fig. 5. As expected, one observes that for a given mesh, the finite element solution with consistent 
overlap matrix was producing energy values above the “exact” Fourier series solution. On the other hand, the “lumped” 
overlap solution was giving energy values, in most cases, below the exact values. 

Thus, it is tempting to use some kind of averaging on the two solutions obtained with the finite element method. A simple 
averaging process was attempted and the percentage relative errors of the above three procedures were compared with the 
Fourier series solution and are plotted in Fig. 6 below. It can be concluded that, in general, the averaging process provides a 
better solution than the other two methods. 

 
Fig. 5 Band structures for the Generalized 3D Kronig-Penney model (a) Fourier series solution with 11x11x11 terms (b) 12x12x12 Co hexagonal elements – 

Finite element with consistent overlap (c) 12x12x12 Co hexagonal elements – Finite element with lumped overlap 
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Fig. 6 Errors in the energy for the Generalized 3D Kronig-Penney model relative  to the Fourier analysis: (a) Finite element analysis with consistent overlap; (b) 

Finite element analysis with lumped overlap; (c) Averaging of (a) and (b) 

C. Modified 3D Kronig-Penney Model – Simple Cubic Structure 

A modified 3D Kronig-Penney model, as it applies to the simple cubic structure, was solved in this paper. This model 
involves applying a potential around each atom consisting of a cube with constant potential V0. The parameters of the problem 
are as follows: V0=6.5 Ry, a=2. a.u., and b=0.995 a.u.  

Again, the band structures were obtained using an 11x11x11 Fourier series solution in addition to a mesh of 12x12x12 Co 
hexagonal elements were the overlap matrix was used as consistent and lumped. 

The results, similar to the ones discussed above, are plotted in Figs. 7 and 8.    

Also in this case, the consistent overlap matrix was producing energy values above the “exact” Fourier series solution while 
the “lumped” overlap solution was lower, in most cases. In addition, the averaging solution consistently performed the best. 

 
Fig. 7 Band structures for the Modified 3D Kronig-Penney model: (a) Fourier series solution with 11x11x11 terms (b) 12x12x12 Co hexagonal elements – 

Finite element with consistent overlap (c) 12x12x12 Co hexagonal elements – Finite element with lumped overlap 

To validate the convergence of the finite element solution with mesh refinement, the results from the finite element meshes 
of 6x6x6 and 12x12x12 Co hexagonal elements were compared with the Fourier series solution. The results are plotted in Fig. 9. 
Indeed, refining the mesh does converge the finite element solution to the Fourier analysis. 
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Fig. 8 Errors in the energy for the Modified 3D Kronig-Penney model relative  to the Fourier analysis: (a) Finite element analysis with consistent overlap; (b) 

Finite element analysis with lumped overlap; (c) Averaging of (a) and (b) 

 
Fig. 9 Band structures of the Modified 3D Kronig-Penney model: (a) Fourier series solution with 11x11x11 terms (b) 12x12x12 Co hexagonal elements – 

Finite element with consistent overlap (c) 6x6x6 Co hexagonal elements – Finite element with consistent overlap 

VI. CONCLUSIONS 

A solution procedure was presented; it determines the band structures for a class of periodic solids where the boundary 
integral, in the finite element formulation, vanishes. On the other hand, if the boundary integral does not vanish, the solution 
procedure could be modified by updating the discrete Hamilatonian and overlap matrices, accordingly. Due to the way the 
finite element formulation was reached, where the periodic boundary conditions were applied from outside the formulation 
through matrix operations, and not built into the formulation a priori, one is able to calculate the discrete Hamiltonian and 
overlap matrices form conventional finite element programs. The problem is then transformed into a standard complex-
eigenvalue problem that is solved to calculate the energies of the system.  

For a given finite element mesh, the results from the consistent and lumped overlap matrices were presented. The results 
from using a consistent overlap matrix provided an upper bound to the exact solution. On the other hand, the use of the lumped 
overlap matrix resulted, in most cases, in a lower energy value. A simple averaging procedure of the above two methods was 
performed. In general, this averaging process provided better results than both of the other two methods discussed above. Thus, 
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averaging may provide a method for improvement on the error without modifying the mesh. 
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