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Abstract-An important parameter for a drive system is its developed torque. In practice up to now, torque-speed converters or 
torque-sensors are usually used to determine the developed torque. These devices are costly and in many cases difficult to fix to a 
motor shaft due to mechanical or constructive constraints. The research paper presented here proposes an alternative indirect 
method for motor torque assessment. The method focuses on low power induction motor applications and is based on the evaluation 
of the power factor considering its variation with motor load. The lowest power factor is at no-load operation, and the highest value 
occurs at rated motor load. An electronic circuit for implementing the proposed method is suggested. The experimental results based 
on known conventional torque measurement methods are used to benchmark the corresponding results obtained via the proposed 
torque measurement method.  The results corroborate each other. 
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I. INTRODUCTION 

The torque developed by three-phase induction motors is a very important factor for any drive system. Torques cannot be 
measured directly. Usually speed-torque converters or torque sensors are used to determine the torque of such motors [1, 2, 3]. 
These devices are fixed on the motor shaft and produce signals proportional to the speed. It is not always possible to attach 
them on the motor shaft due to mechanical or constructive constraints [4, 5]. In addition, these devices are quite expensive and 
there are limitations to their accuracy.  
 

The method of torque T assessment proposed in this paper does not require any speed converters. The torque is evaluated 
from basic motor characteristics like the output power Pout, current I, power factor cos φ and efficiency η. It is well known that 
at escalating motor loading, the speed n reduces, but the input and output power Pin, Pout, the current I, the power factor cos φ, 
and the efficiency η, all increase. At full load the a.c. motor parameters are at their nominal/rated values: PN, IN, cos φN, and ηN 
as indicated on the motor’s manufacturer data plate. At no-load, the power factor and the current are much lower than the rated 
values.  Accordingly, cos φ0 < cos φN, and I0 < IN. If not specified, the parameters like I and cos φ could be easily measured or 
calculated to reveal the induction motor characteristics as shown in Fig. 1.  
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Fig. 1 Basic induction motor characteristics 
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II. EXPERIMENTS 

Experiments were conducted on two cage motors whose rated parameters are shown in Table 1.  
 

TABLE 1: CAGE MOTOR PARAMETERS 

Parameter Motor 1 Motor 2 
Power, W 100 370 

Phase Voltage, V 220 240 
Current, A 0.6 1.6 
Speed, rpm 1300 2700 
PF cosφ0 0.23 0.24 
PF cosφN 0.74 0.80 

Torque, Nm 0.70 1.25 
 

The experimental results are shown in Table 2 and Table 3. The PF-T characteristics for motors 1 and 2 are shown in Fig. 
2 and Fig. 3 respectively where the torque is expressed in per-unit (pu).  

 

TABLE 2: MOTOR 1 AT V = 220V, F = 50 HZ 

T, Nm T/TN, pu n, rpm I,  A Pin , W Pout , W cos φ 
0 0 1465 0.31 28 0 0.23 

0.05 0.07 1460 0.32 34 8 0.28 
0.1 0.14 1455 0.34 45 15 0.34 
0.2 0.28 1445 0.36 61 30 0.45 
0.3 0.43 1440 0.39 81 45 0.53 
0.4 0.57 1410 0.42 99 55 0.61 
0.5 0.70 1390 0.46 118 72 0.67 
0.6 0.857 1365 0.51 140 86 0.72 
0.7 1.00 1340 0.57 162 98 0.74 
0.8 1.14 1310 0.64 185 110 0.76 
0.9 1.28 1250 0.71 207 122 0.78 

 

TABLE 3: MOTOR 2 AT V = 235V, F = 50 HZ 

T, Nm T/TN, pu n, rpm I,  A Pin , W Pout , W cos φ 
0 0 2980 1.08 98.5 0 0.24 

0.05 0.04 2960 1.09 120 15.4 0.27 
0.25 0.20 2915 1.14 187 76.3 0.41 
0.40 0.32 2880 1.21 240 124 0.49 
0.60 0.48 2855 1.28 310 176 0.58 
0.75 0.60 2820 1.36 360 224 0.65 
1.10 0.88 2780 1.52 470 314 0.76 
1.25 1.00 2760 1.61 521 361 0.80 
1.50 1.20 2730 1.78 615 423 0.84 

 

                                                                      

                                                                 Fig. 2 Approximation of the PF-T characteristic of motor 1 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T, pu

PF

cos φ Line Appr



Electrical and Power Engineering Frontier     Mar. 2014, Vol. 3 Iss. 1, PP. 1-7 

- 3 - 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T, pu

PF

PF Line Appr

 
 

      Fig. 3 Approximation of the (PF-T) characteristic of motor 2 
 

III. BASIS OF THE PROPOSED METHOD 

The method is based on the evaluation of the segmented line approximation of the power factor-torque PF-T characteristic. 
The power factor depends not only on the loading but also on the size of the motor. For motors with low power in the range of 
PN < 500W, the following are true:  
 

§ The rated currents are smaller and the number of stator turns is bigger in order to produce the necessary flux. As a 
result the active coil resistances and copper losses are high, and efficiency is reduced.  

 

§ The air-gaps between rotors and stators cannot be reduced in proportion to the motor sizes. The air gaps are of the 
same magnitudes as those for large motors due to constructive and technological constraints. This causes high 
magnetizing and no-load currents.  

 
As a result the motors with low power in the range of 100 < PN < 500 W are characterized by higher PF at no-load and 

lower PF at full load, also lower efficiencies and larger no-load currents are typically related to bigger motors in the rated 
parameter ranges [2, 6], as shown in Table 4. 

 

TABLE 4: TYPICAL PARAMETER RANGES FOR LOW POWER MOTORS 
 

Motor Parameter 
Description 

 
Parameter 

Torque 
Motor 1 Motor 2 

No-Load Power Factor cos φ0 0.2 0.3 
Rated Power Factor cos φN 0.72 0.82 

Efficiency η 0.56 0.68 
No-Load Current Ratio I0 / IN 0.45 0.7 

  
The PF-T characteristic is non-linear. The slope of the curve is high at low loading but decreases at higher loading. It 

could be accepted that the slope changes at a load torque TT = 0.5T considered as the turning loading point value. The power 
factor corresponding to this load is referred to as cos φT.  Hence the PF-T characteristic can be represented by two straight lines 
as shown in Fig. 2 and Fig. 3. Taking into account the area of low loadings for which 0 < T1 < TT, the resulting equations are as 
follows:  
 

               
1

1 coscoscoscos

T

o

T

o

T

T jjjj -
=

-
,                                                                                               (1) 

 

               
oT

o
TTT

jj

jj

coscos

coscos 1
1

-

-
= .                                                                                     (2) 



Electrical and Power Engineering Frontier     Mar. 2014, Vol. 3 Iss. 1, PP. 1-7 

- 4 - 

 
Taking into account the area of high loadings where TT <T2 <TN, the resulting equations are: 
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The rated full-load torque TN is 1pu. Equations (2) and (4) reveal that at any loading, the power factors cosφ1, cos φ2 and   

cos φT could be used to provide an estimation of the torque developed by the motor. The power factors cos φ0 and cos φN are 
assumed to be known from the manufacturer’s data. The determination of the torque TT and the power factor cos φT at the 
turning point is critical for the accuracy of this method. From the studies of the experimental motor characteristics and from 
general experience, at half the rated loading TT = 0.5TN, the power factor increases up to the value of cos φT = 0.6. It is also 
essential to determine the angle φ between the phase voltage and current at any loading to enable the calculation of the 
corresponding torque.  
 

At TT = 0.5TN, equations (2) and (4) become:     
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IV.  PROPOSED ELECTRONIC METHOD FOR IMPLEMENTING MOTOR TORQUE MEASUREMENT 
 

A block diagram of the torque meter derived from implementation of equations (1) to (4) above is shown in Fig. 4.  
 

 
Fig. 4 Block diagram of the torque meter 

 
The block diagram in Fig. 4 is implemented using the electronic circuit diagram shown in Fig. 5 that is used to simulate 

the measurement of induction motor torque at different power factors. A voltage and a current transformer take into account 
the supply voltage and current of the induction motor respectively.  

 
Two Zero Comparators produce pulses with phase difference corresponds to the phase lag φ between the voltage and the 

current. These pulses control an R-S Trigger, resulting in its square wave output voltage. The width of the square pulses is 
equal to the phase difference φ. These pulses are filtered, resulting in a filter DC output voltage proportional to the angle φ.  
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The filter output is applied simultaneously to two parallel channels in order to achieve better linearity in measuring the 
power factor and the torque. Each channel includes a Zero and Span Converter [7, 8], producing output signals directly 
proportional to the power factor cos φ.  

 
The first channel generates the readings of cos φ1 ranging from cos φ0 to cos φT. These readings are measured by the meter 

XMM1 while the second meter, XMM3, measures cos φ2 within the range of cos φT to cos φN. Calculators 1 and 2 are 
incorporated into each channel [9], enabling the calculation of the torques T1 and T2 from the values cos φ1, cos φ2 and cos φT 
using equations (2) and (4). The torque results at low loadings are displayed by XMM2, the first torque meter while at the 
display on XMM4, the second torque meter, indicates the results at high loadings. 
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Fig. 5 Electronic circuit diagram for the proposed induction motor torque meter 

 

V. PROCEDURE FOR THE PROPOSED IMPLEMENTATION  
 

The torque meter of Fig. 5 was used for torque measurements by simulating loads with different phase lags and thus power 
factors. The corresponding torques were read by the two properly calibrated instruments as indicated in Table 5: 

 

TABLE 5: TORQUE AND POWER FACTOR MEASUREMENTS FOR THE CASE OF MOTOR 1 AND MOTOR 2  
 

Parameter Motor 1 Motor 2 

TT 0.5 pu 0.5 pu 

cosφT 0.6 0.6 

cosφ0 0.23 0.24 

cosφN 0.74 0.8 
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The torque meters could be calibrated and properly tuned with the aid of Calculator 1 and Calculator 2 for any other value 
of the loading turning point corresponding to torque TT.  

 

VI. RESULTS FROM THE IMPLEMENTATION OF THE PROPOSED METHOD 

 
One set of experimental results was obtained with the aid of a traditional torque meter. The second set of results was 

obtained by calculation with equation (5). Finally, the last set of results was obtained by means of a MULTISIM-based 
electronic simulation, using the electronic circuit of Fig. 5. Comparisons of the experimental and the calculated results with the 
simulated results obtained from the proposed method are presented in Table 6 and Table 7. It is seen that the results corroborate 
each other closely. While the results of calculations and simulation are almost identical, the error between the simulation and 
experimental results at different loadings lies within the acceptable tolerance of less than 10% [8, 9, 10]. 

 

TABLE 6: COMPARISON OF RESULTS FOR THE CASE OF MOTOR 1  

cos φ T, pu 
Experimental 

T, pu 
Calculated 

T, pu 
Simulated 

Error, % 
 

0.23 0.0 0.0 0.0 0.0 

0.3 0.085 0.094 0.093 10 

0.35 0.145 0.158 0.157 8.9 

0.4 0.21 0.23 0.22 9.5 

0.45 0.275 0.297 0.288 8.1 

0.5 0.37 0.36 0.36 -2.7 

0.55 0.45 0.43 0.436 -4.4 

0.6 0.54 0.5 0.502 -7.4 

0.65 0.64 0.66 0.654 3.1 

0.7 0.78 0.83 0.84 6.4 

0.75 1.0 1.0 1.0 0.0 

 

TABLE 7: COMPARISON OF RESULTS FOR THE CASE OF MOTOR 2 

cos φ T, pu 
Experimental 

T, pu 
Calculated 

T, pu 
Simulated 

Error, % 

0.24 0.0 0.0 0.0 0.0 

0.3 0.8 0.083 0.084 8.4 

0.35 0.14 0.152 0.151 8.7 

0.4 0.2 0.22 0.22 10 

0.45 0.27 0.29 0.288 7.4 

0.5 0.34 0.36 0.36 5.9 

0.6 0.5 0.5 0.5 0.0 

0.65 0.6 0.625 0.623 4.16 

0.7 0.7 0.75 0.74 7.1 

0.75 0.84 0.875 0.873 4.16 

0.8 1.0 1.0 1.0 0.0 

 

VII. CONCLUSIONS 

The proposed method is applicable for automatic measurement of the torque developed by low power induction motors. 
The method is based on the evaluation of the power factor premised on the linearization of the motor’s PF-T characteristic that 
typically increases non-linearly with its loading. The method utilizes the nominal motor data indicated on the motor’s 
nameplate.  
 

An electronic circuit of a torques-meter is proposed. It enables the measurement of the power factor, as well as the torque 
by evaluating the phase lag between the phase voltage and the motor current. The circuit of the torque meter is easy to be 
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realized and calibrated. As a result, such torque-meters could be assembled and implemented in practice as well as be 
employed to advance the induction motors studies. This paper provides a theoretical and experimental analysis of the torque 
meter performance at different induction motor loads. The analysis results back up the results obtained from the actual 
realisation of the suggested practical electronic torque meter device. Theoretical, experimental, and simulation results 
substantiate each other very closely. Whereas outcome result differences may be due to linearization of the PF-T characteristic, 
the errors are however less than 10%, which is well within acceptable error tolerances.  
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