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Abstract-An efficient reduction of gaseous hydrogen isotope permeation through a metal wall is essential in several applications like 

hydrogen storage and distribution, hydrogen embrittlement protection, and tritium inventory in future fusion reactors like ITER. 

Hydrogen permeation barrier films often exhibit lower efficiency than anticipated. It is very difficult to identify and quantify the 

responsible mechanism since the defects can be of submicrometer dimensions and very sparsely populated. We considered hydrogen 

permeability through a cylindrical membrane (barrier) in the presence of protective coating defect at the inlet surface of a structural 

material. For various materials, when the processes of diffusion, desorption and dissolution are limiting, we present the 

mathematical models in the form of boundary value problems with non-linear and dynamic boundary conditions. On the basis of the 

implicit difference scheme, a computational algorithm of a boundary value problems solution is developed. Numerical simulation 

results of hydrogen permeation flux and diffusant distribution are presented. Qualitative regularities of steady state permeability 

regime establishment and delay times registered experimentally and depending on geometric characteristics of the membrane and 

physical parameters are identified. 

Keywords- Hydrogen Permeability Models; Nonlinear Boundary-value Problems; Difference Schemes; Computer Simulation 

I. INTRODUCTION 

The problem of hydrogen (and its isotopes) interaction with solids is a multi-faceted one [1-5]. In particular, reduction of 

hydrogen permeation through the protective wall of structural materials is the most important objective when solving the 

complex problems of hydrogen storage and transport, protection from hydrogen embitterment, and reduction of tritium content 

in protective systems of the future thermonuclear reactor project (ITER) monitoring. Structural material barrier provides the 

necessary mechanical resistance of the construction, while superimposed protective coating must block migration of hydrogen 

isotopes. Some areas of the structural material might be exposed to the direct effect of hydrogen and its isotopes due to defects 

in the protective coating. Asymptotic analysis and investigation of the geometrical factors influence on the hydrogen 

permeation on the surface (roughness, ruptures) and inside the membrane volume (defects of structure, interstices) has been 

conducted by Pisarev et al. [6]. A more detailed review (34 references) of the physical-chemical literature on this topic is 

provided in [7], which was the basis for the present mathematical study. The paper also considered permeation through Eurofer 

coated with Al and Pt coated with Al2O3. In [7], the model of hydrogen permeability through a cylindrical membrane (the 

radius of the base  , the height  ) was examined, when diffusion was the only limiting process. At the inlet surface covered 

with a thin protective coating, there was a small radius defect in the coating (―pinhole defect‖) through which hydrogen 

permeated. The remainder of the inlet surface and the lateral surface of the cylindrical membrane were impermeable for 

hydrogen. Vacuum was created on the output side. At the initial time moment the membrane was dehydrogenated. Then, on the 

inlet side molecular hydrogen pressure increase jump-wise. If we disregard the relatively fast interjacent process, one can 

suppose that the concentration of dissolved hydrogen under the defect remained constant  ̄ and in equilibrium with the gaseous 

phase according to Sievert‘s law. Dissolved (atomic) hydrogen diffuses to the outlet surface, recombinates into molecules and 

is desorbed. Mass-spectrometer registered a permeation flux. An analytical study of the corresponding boundary value problem 

without accounting surface processes was carried out only for the case ―an infinite plate‖        [8, 9]. A rather detailed 

discussion and references are given in [7]. The main weakness of such definition of the problem is that the dynamics of surface 

processes which has attracted a lot of attention recently, is ignored in the model. The material sample (for example, partition of 

a pipeline) is assumed to be mechanically strong. The concentration of penetrating hydrogen is low due to the ―pinhole defect‖. 

The linear diffusion equation is adequate for this situation and the effects of stress, strain, and deflection do not appear 

essential. The problem under consideration is to describe the general regularities depending on diffusion, sorption parameters 

(characteristics of material) and the geometric ratio. Even if the barrier retains its mechanical properties, penetration of tritium, 

even in small doses, can be extremely dangerous. The purpose of this study was to build a computational algorithm (in terms of 

difference approximation) for the simulation of hydrogen permeability for a cylindrical membrane through defective barrier 

coating with the account of the influence of surface processes. The results of numerical simulation provide a way, for example, 

to determine the limiting factors for various relations among the parameters (including geometric) and working conditions of 

the structural material, to estimate the value of the permeation flux and the time of its stabilization rate and to evaluate the 

distribution of the hydrogen concentration inside the membrane. These factors give information on the possible ways of 

treatment of the material (pre-training surface, various additives inside). Hydrogen isotopes are exclusively mobile, which is 

why experimental capabilities and the precision of measurements are significantly limited. 
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II. DIFFUSION MODEL 

As a basic model of the transfer inside the membrane, the boundary-value problem of hydrogen permeability of a 

cylindrical sample with defect protective coating on the inlet surface was considered, when diffusion limiting factor is the only 

one [7-9]: 
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In the above equations,    — radius of ―pinhole defect‖ at the inlet surface    ,          — concentration of dissolved 

atomic hydrogen, diffusing in material;   — diffusion coefficient,          . It is assumed that the experiment is carried 

out at a constant temperature     , the material is nearly homogeneous, so that    and   are constants. For definiteness we 

assume     ̄  √  (according to Sievert‘s law, the equilibrium solubility  ̄ at different inlet molecular hydrogen pressures   

and temperatures   can be found in reference books). The linear dimensions of the defect are relatively small, we consider it 

circular and situated in the center (which is not a fundamental constraint for numerical simulation). The point of time    is the 

determined moment when the permeation flux      reaches the stationary value. It should be noted that the determination is 

asymptotic:           ,     . The point    should not be too large for the transition processes not to get lost against the 

background of the steady-flux process. The boundary condition (2) corresponds to the rapid (in the scale of   ) establishment 

of local equilibrium on the inlet side. The condition               follows from the spatial symmetry of         . 

The aim is to develop the algorithm of numerical simulation of the flux of hydrogen from the outlet surface of a cylindrical 

membrane. For the purpose of this model (1)–(6): 
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The counting is done in atoms (       ), although it is the hydrogen molecules that are registered. Atomic desorption 

becomes significant only at very high temperatures. Change in the formulation of      and the overall model including the 

process of recombination of H atoms to the molecule on the surface (in the near-surface bulk) are described in the next sections. 

Modelling makes it possible to reveal diffusion kinetics specificity and to estimate the significance of sizes membrane and 

defect ratios. It is possible to analyze the spatial distribution of H in the sample at any time. In the first approximation there is 

one physical parameter — the diffusion coefficient  , which ―bifurcates‖ to preexponential factor    and activation energy of 

   due to the temperature dependence according to the law of Arrhenius                      . 

Remark. Formally initial zero data (6) do not agree with the initial condition (2) when       instant jump of 

concentration . From the mathematical point of view, the solution to a boundary value problem should be considered within 

the theory of generalized solutions. A realistic quick transition process  during the first few steps of the experiment    was 

taken into account when the model was discretized and numerical simulation was conducted. The jump can be considered a 

formal notation of this initial stage, in this case all models can be considered as a compact ―continuous‖ representation of a 

discrete process. 

III. NUMERICAL APPROACH: DIFFERENCE APPROXIMATION 

We consider the diffusion model (1)–(6) as a base for further development to take into account the dynamics of surface 

processes, therefore its presentation will be done in detail, then we will point out necessary modifications. 

Following a standard technique [10], the grid in space is introduced 

   {        
                      

                     
}, 

and the grid at the time                        . The value of      and radius of defect          differ 

according to the context. Let us denote approximate values of the inside concentration of             by     
 . To make the 

presentation easier during the transition from  -th to      -th layer at time   if the number of the layer is left out: 
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The implicit scheme of alternating direction is considered for Eq. (1). The scheme is called a longitudinal-transverse or 

Peaceman-Rachford scheme [10]. The transition from  -th to      -th layer is carried out in two stages. At the first stage the 

intermediate values of  ̄    are determined from ratios 
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At the second stage, using the already known  ̄   , we find  ̂    of 
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Approximation data (for the first and second stages) are considered in the internal nodes of the grid (            , 

            ). Approximation accuracy is        
    

  . For     (    ) due to the condition          and 

taking into account         
   for the nodes with the number     we use difference approximation of the equation 
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A. Radius   Sweeping 

The transition from  -th to (     )-th layer is considered. In the notation 
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for every fixed              we obtain 

    ̄       ̄       ̄                       (8) 

The values at the initial moment of time     (the zero layer) are known:     
   . Following the sweep method [10], we seek 

the approximate concentration values in the grid nodes on the        -th layer       in the form of 

  ̄            ̄                       (9) 

The sweep coefficients              are: 
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Let‘s specify the initial coefficients. 

 The ratio of (8) for     is: 
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From the boundary condition (5) (        ) with an accuracy     
   we have (here and further formulae of numerical 

differentiation of the form   
                    ,   

                    are used) 

                          ̄      ̄      ̄     (12) 

Taking into account (11) and (12), we find             ,             . 

 If      we have                                    
  . The initial coefficients of     ,      are found from 

the approximation of the equation          
     

    on the (     )-th layer at     (Eq. (1) is approximated for 

   ) and conditions         :  

    ̄     ̄     
    ̄                     ̄      ̄      ̄     (13) 

due to             ,             . The forms are similar. 

 Axial symmetry of concentration distribution is used for the location of the first sweep coefficients. The value of the 

    corresponds to the axis of the cylinder. Spatial area             can be regarded as half of the axial cross-

section of the cylinder. Formally a symmetrical node        is added then letting 

 ̄      ̄      ̄                                        

Continuing to operate formally, let us write down the Eq. (8) for     (   ), taking into account the condition of 

symmetry: 
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With the exception (division by    ) if the condition  ̄      ̄    ―is reduced‖, we get         ,          . Note 

that when   
        ,      (         ) we have    ,           and almost the same value of     ,     . It is 

expedient to adhere to the comparability of   
         to be able to compare the accuracy of the derivatives 

approximation by time and spatial variables. 

 Function continuation is symmetrical:                    (   ), that is         . The diffusion equation is the 

same. Tractable exception          
    

   ,      is due to          for    . Formally, we ―stick together‖ 

the diffusion equation on       . Similarly, we obtain the ratio of (13) as    ̄      ̄        ̄                 . 

Assuming  ̄      ̄   , we find             ,                 . 

Numerical experiments showed that the considered variants of primary sweep coefficients determination when calculation 

is executed on a rather fine grid, leading to virtually the same results. 

After the forward sweep pass has been executed (coefficients     ,      have been determined) the nearest aim to determine 

the value  ̄    , is required for backward sweep. Writing approximation of the first boundary conditions from (5) taking into 

account     (            ), we have 

                     ̄         ̄         ̄    , 

in the boundary node with an accuracy     
  . We substituted expressions for  ̄      

̄ ,  ̄       in formula (9) and determined 

that 

 ̄     
                        

                  
          

By formula (9), the values  ̄    (      ,       ) are calculated. 

Now we find missing values  ̄    for     and     ,       . We have  ̄        taking into account boundary 

condition (4) when     (          ). Let‘s denote                 , then we obtain  ̄       (      ) and 

 ̄       ̄     ̄       (       ) from the boundary conditions (2), (3) (at    ). 

B.   Variable Sweeping 

The transition from the        -th to the      -th layer is executed in two steps, because cylindrical coordinates have 

an exception at      and on the boundary     we have a mixed boundary condition. 

The first step:    ,      (     ,         
  ), the sweeping algorithm is carried out for the diffusion equation 

         
     

   . Its approximation is: 
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In the notations         
       ,  ̄          

    ( ̄      ̄     ̄   )        ̄   , we obtain 

  ̂         ̂     ̂       ̄            (14) 

We seek approximate values of the concentration on the      -th layer in the form 

  ̂            ̂                          (15) 

We seek sweeping coefficients (      ), substituting formula  ̂           ̂         (      ) in (14): 
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Initial sweeping coefficients     ,      are found taking into account formula (15) when     and conditions (2)   ̂       : 

      ,        . 

The second step: We have           ,     and execute the sweep method for the Eq. (1). We obtain 

  ̂        ̂     ̂       ̄            (17) 

for differential formula (7) using the notation 
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We seek concentration values in the grid nodes at the      -th layer in the form 

  ̂            ̂                          (18) 
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Sweep coefficients (        ) are: 

      
 

        
       

 ̄            

        
  (19) 

We find initial sweep coefficients for      (    ) from (18) for    , taking into account conditions (2)  ̂      :       , 

       . Initial coefficients for             are determined with (17) for    , taking into account the boundary 

conditions (3)                    (   ̂      ̂     ̂     ):           ,       ̄     . 

Boundary values are obtained from the conditions (4):  ̂    
   (      ). These values are necessary for backward 

sweep method executing. We compute  ̂    (      ,       ), assuming formulae (15), (18). 

We find missing approximate concentration values  ̂    for     and     ,       . We obtain  ̂       ̂     ̂      , 

from boundary conditions (5) (        ) and approximation (12). Similarly, we have  ̂        ̂        ̂         , 

according to the first condition in (5)             . 

We may propose another method for computing using an additional (fictitious) node, similar to   radius sweeping section. 

Then, the boundary concentration values (for    ) will be searched during   variable sweep, and values  ̄    will be 

determined, formally assuming, that we will have nodes  ̂     ( ̂      ̂   ). 

The criterion of hydrogen balance control is used for calculation errors monitoring: 
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There is the difference between the number of hydrogen atoms dissolved in the membrane on the inlet surface through defect 

of a coating and the number of hydrogen atoms that left the membrane from the outlet surface is in the left side of the formula, 

the number of hydrogen inside the membrane is in the right side of the formula. Technically, other checking time points could 

be taken instead of   . The input and outward fluxes can be denoted by 
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We monitor disbalance (relating to ―measurements in outlet‖) at the 1 percent level in software support: 
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Richardson extrapolation was used to improve the accuracy of the calculations                            
           

(see [11] for example). The method of a grid condensation (adaptive grid [12]) was used for experiments with radius of 

defect     . 

IV. NUMERICAL SIMULATION 

A. Dimensionless Form of the Boundary-value Problem 

To present the results of numerical simulation we pass to dimensionless variables, using values intrinsic for this problem: 

      ,      ,      ,          . The value of      is treated as the characteristic time of the concentration 

stabilization due to diffusion. In the areas with length-scale parameters comparable to   (on vertical direction,  -direction) 

diffusion is faster for    , due to vacuum from the outlet side). Denoting the additional          ,      , we get a 

dimensionless boundary-value problem: 

  

  
 

 

 

 

  
  

  

  
    

   

   
             

                              
  

  
                          

                             
  

  
            

  

  
            

                                  

Varying parameters are     and         . Formally, we obtained a diffusion equation in anisotropic environment:     , 

     . The smaller   (the thinner the membrane) is, the faster the diffusion in the  -direction (on the   axis). Coefficient    
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represents the ratio of the cylindrical membrane geometric characteristics. During the ―time‖   the significant ―length‖ in   

direction is √ , and in   direction is  √ . Steady-state (     ) is determined by the value            . 

Let us introduce a dimensionless, average (on the base of the   square) outward flux 

      
 

 
∫   
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The function      increases monotonically approaching asymptotically a steady-state value         . If a protective coating 

is absent (formally consider     ), we have a maximum of       (     ,       
   ). 

The original averaged flux can be represented by 
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The value of       is the permeation steady-state flux density for a membrane without protective coating (    ). 

Consequently, the number                is a fraction of      in the highest possible density of the output flux      . 

Letting      we have a maximum     . 

To be specific, the range for the diffusion coefficient is fixed as             cm2  . We will consider cylindrical 

membrane dimension as comparable with a coin (the barrier of a local industrial pipeline). We‘ll focus on these parameters 

values:                     ,                                  

There is little doubt that the coating is actually protective for larger values of   . During the initial steps at the time when 

the amount of dissolved hydrogen inside the membrane is small to negligible, but the hydrogen concentration in the near-

surface bulk under coating defect has already reached                , there is a jump-like concentration discontinuity in 

the nodes near the defect. Hydrogen concentration under the defect of protective coating increases gradually but relatively 

quickly to smooth this initial dramatic increase when we solve this dimensionless problem. It corresponds to the physical 

estimates and is only formalized in the model by the initial hydrogen concentration sudden change. Numerical experiment is 

carried out with a small step    (   of the order of seconds — during this time, nothing noticeable will happen in the ―coin‖). 

Defining               ,                ,                ,               , and             ,     , 

during five steps we reach the level of     under the defect. Formally, the start time point of the experiment is shifted for 

monitoring hydrogen balance:      . 

Output parameters of the computing experiment are the values of   ,   ,        , where    is the delay time, calculated by 

             ̇     
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  ̇        . In the original time we obtain       ∫
  

 
            . Geometrically this is the point of intersection of the 

axis   with asymptotes of the graph of the function      ∫  
 

 
      (the number of permeating through membrane of 

hydrogen atoms). The accuracy of calculation of        increases with increasing        taking into account the asymptotic 

behavior of the stabilized mode permeation flux. The time of permeation flux stabilization, the value of the steady-state flux 

and the delay time are experimentally registered data. These values serve as the input information for the inverse problem of 

kinetic parameters estimation of hydrogen permeability by measurements (see, e.g. [13, 14] (    )). In this paper, the direct 

problem is solved, to reveal qualitative dependencies of these values on parameters of the model. 

B. Criteria of Stop and Their Testing 

The following two conditions are used for a criterion of stop:  

                              ̄          

Here the first condition is necessary to exclude stopping at the beginning of the experiment, when the output flux is very small. 

The reference values are the           (    ) and proportionality of    in linear approximation of the defect square 

    
  . The coefficient   is an empirical one, we used the value        for fixing the range of model parameters. The 

second condition is triggered when the flux change is relatively insufficient during detectable time of a real experiment (for 

example,        ̄     min.). Another possible criterion of stop is:   ̈                      ̄           . In this 

case, the first condition takes into account the fact that the flux graphics have a flex point: the curve is convex at the beginning 

of the experiment, and it becomes concave approaching steady state. 

Numerical experiments were carried out for a variety of  :      
  (in Fig. 1 stop moments for different   are denoted  ), 

         ̄  (   in Fig. 1),           ̄ (  in Fig. 1). The results of variation of   and    showed that condition for the 

limitation of the output flux ―derivative‖ works better ( ). For the following calculations we used values      and       . 
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Additionally, calculation checking was carried out for     , and his case corresponds to a membrane without a protective 

coating. Investigation of hydrogen permeability of a stationary plate allows analytic solution for the considered model. 

Calculations confirmed that concentration is              (    ) and the delay time through the plate of thickness   is 

equal to         [1], and it is         under our notation. In addition, we checked asymptotic        for     . 

C. Discussion of Computer Simulation 

Figs. 2-8 present the results of numerical simulation with for different values of   and   . The results of a computational 

experiment in dimensionless form are three main characteristics:          (        ). By default, the sequence of the 

recording of values corresponds to descending maximums. The curve for       is indicated by a dotted line. ―Interfluve 

value‖       is rather nominal. It should suggest relatively small and large   at a qualitative level. Translation to the original 

variables is defined by values  ,  . Weak dependence of dimensionless characteristics   ,    on the radius of the defect is 

observed in Figs. 2 and 3. We restrict the discussion to the case of       , because this is the adopted border when coating is 

really protective. Extremum of functions       ,        is observed for       (derivative sign changes, in Figs. 4 and 5). 

This is caused by the growing influence of the boundary conditions (insulated lateral surface). Functions       ,        for 

      are monotonic. The rate of stationary value change    for variation of   and    can be estimated in Figs. 6 and 8. 

At a qualitative level, we obtained the following results focusing on an ―ideal‖ experimental error under 10% and not 

distinguishing output model fluxes under 1%. The influence of the boundary conditions with     on stationary permeation 

flux is insignificant for        ,       , this membrane may be considered as a plate        (see Fig. 8). This 

corresponds to the findings in [7, 9]. Consequently, analytical methods of research are useable for    . Practically, it is 

possible to estimate when permeation flux is proportional to the number of defects (their density). In addition, the developed 

software allows to analyze spatial distribution of hydrogen in the membrane at any points of time (Figs. 9 and 10). 

 

 

 

Fig. 1 Criterion of stop:    ,         (      ) Fig. 2 Flux stabilization time 

 
 

Fig. 3 Delay time Fig. 4 Rate of    change (     ) 
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Fig. 5 Rate of    change         Fig. 6 Stabilization   value 

  

Fig. 7 Delay time fraction vs experimental time Fig. 8 Steady state permeation flux,           

 
 

Fig. 9 Concentration profile for         Fig. 10 Steady-state concentration level:        ,     
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V. MODEL WITH BULK DESORPTION 

Now, we focus on the model that takes into account the dynamics of surface processes. We shall not consider a multistage 

process of hydrogen permeability in detail, due to limited amount of experimental information. We consider only integral 

parameters. The boundary conditions (2), (4) are substituted by the following 

                   
  

  
|
   

              (20) 

                        
  

  
|
   

            (21) 

                             ∫  
 

 

                  

In the above equations,   is a coefficient of bulk desorption (effective recombination [6, 15]),   is a kinetic constant,   is the 

molecular hydrogen pressure, and   is a coefficient of hydrogen adhesion to the surface. Within the scope of a gas kinetic 

theory,    is particles flux density (in this case, molecule) encountering with the surface. Only a small number of hydrogen 

atoms (―incident‖ particles in the form of H2 molecules) dissolve inside the membrane (   ). Formally, the coefficient   

generally presents the multistage process including adsorption, dissociation of H2 molecules to atoms and dissolution. In the 

context of inverse problems of model parametric identification it is possible to go into detail, if necessary. Additionally, the 

inlet and outlet surfaces may have different properties, they are easily taken into account in the course of modelling:      at 

    and      at     (see asymptotics in [16]). The hydrid phases development and disintegration are more difficult to 

be taken into account (see [17]), if these processes are important. In the paper we focus on relatively homogeneous materials. 

Vacuum is created at the outlet of the membrane, so resorption (item      ) in (21) is ignored. Output desorption flux is 

counted by atoms (       ). In equilibrium state the condition (20) (     ) becomes       ̄ , that is Sievert‘s law. 

The boundary conditions (20), (21) should be read as flux balance:     is the input hydrogen atoms flux density;     is the 

desorption density (generalized process, which includes the output of atoms on the surface and their recombination to 

molecules); and       are the densities of the diffusion inward and outward fluxes. Let the temperature be constant, it is 

technically easy to modify the computational algorithm in terms of       , using Arrhenius dependencies on, for example, 

                      (  is absolute gas constant,   is activation energy). It is assumed that the heating is rather slow 

to consider it uniform when Fick‗s law remains valid with modification               . Kinetic constant   weakly 

depends on temperature (    √ ), this dependence may be formally included in     . The value is used in numerical 

experiments                          . 

Numerical simulation makes it possible to estimate how fast the defect concentration under protective coating is stabilized 

in scale duration time    (outward flux stabilization), and how the concentration           differs from the equilibrium 

concentration level  ̄ . In addition, information about sensitivity of      to variations in diffusion coefficient and surface 

processes (―derivatives‖ on  ,  ,  ) is of special interest. 

We will now explain the basic algorithm modifications. 

A. Counter-Sweep Method 

Consider the transition from the        -th to the      -th layer, sophistication of the algorithm is caused mainly by 

finding the boundary concentrations      (    ),      
. Differential ratio inside the membrane remains the same. We will 

search approximate values of concentration for three point difference Eqs. (14), (17), in the following form (      ,    ): 

 ̂            ̂                     ̂             

 ̂     ̂       ̂       ̂       ̂       ̂    
          

focusing on the idea of the counter-sweep method [10]. The sweep coefficients are 

               
    ̂                   

              ̄            ̂        ̂     ̄     ̂       

                   ̂                   

The benefit of this variation of a sweep method is in fact that initial sweep coefficients are readily determined 

           ̂        ,       . In the notations            , 
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 ̂   ̂     ̂                          
  

we obtain the approximation of conditions (20), (21) with an accuracy up to     
  : 

,
    

     ̂   
    ̂      ̂    

  ̂      
        

    
     ̂    

    ̂    
   ̂        

 

The system of equations has a unique solution  ̂     ,  ̂    
  , at any rate for small       (comparable by the order). 

We have to obtain the values of  ̂    for    ,     ,       . The changes will affect the boundary    . The 

differential Eq. (17) is executed inside the membrane as before. Sweeping coefficients are determined by (19) as in the 

diffusion model above. Modification appears after running the forward sweep pass. We approximate (21) with accuracy to 

    
   (  

 
                  ) and use (18) to find  ̂    

: 

        ̂    

    ̂    
               

Quadratic equation roots have different signs at small      . Physically, the root is chosen positive. Then we determine 

values  ̂    (    and     ,       ) according to conditions           (approximations on the three-point stencil). 

During the transition from the  -th to the (     )-th layer on   the boundary values of  ̄   ,  ̄    
 (      ) are 

calculated as the positive roots of the quadratic equation obtained after substitution in (20), (21) approximations 

    ̄     
  ̄      ̄      ̄   

   
       ̄   

 ̄         ̄         ̄    

   
  (22) 

where  ̄   ,  ̄   ,  ̄      ,  ̄       are known from the results of   radius sweep. The values of  ̄             are obtained from 

the relations specified above. Inside the membrane and on boundaries    ,    , everything remains as in the base model. 

B. Iterative Method 

The derivative is approximated by                   ̂      ̂     ̂           on the      -th layer taken with 

respect to time. Substituting     in the boundary condition (20), we find  ̂        ̂     ̂     as a positive root of the quadratic 

equation. Similarly, concentrations  ̂    
    

  ̂        ̂        are defined as a positive root of the quadratic equation, 

approximating the condition (21) (   ). Values  ̂   ,  ̂   ,  ̂      ,  ̂       are preliminarily calculated by an explicit difference 

scheme approximating the equation of diffusion (1). We used a standard explicit two-layer four-pointed stencil [2]. With the 

current  ̂   ,  ̂    
, we solve the tridiagonal system of linear algebraic equations using the sweep method on the  -variable 

direction, and we find new concentrations approximation  ̂   ,  ̂   ,  ̂      ,  ̂       (and other values of  ̂    for           , 

          ). We solve quadratic equations relative to  ̂   ,  ̂    
 again and repeat the calculations as long as the boundary 

values are stabilized (usually 2–3 iterations are enough). Finding approximations of  ̂    for      is described above. Then we 

move to the next layer taken with respect to time. 

 

 

C. Discussion of Simulation Results 

Let us pass to dimensionless variables:    
 

  
    

 

 
    

 

 
     

 

       
 

 
      

  

 
   Concentration   ,     ̄  for 

     can be taken as a normalizing concentration. However, we accept     ̄ (   ), having the extensive ―equilibrium‖ 

reference information about metals and alloys available. For the purpose of the model we have  ̄  √     . Conditions (20), 

(21) can be written in the form 

  ̂ ̂           
  

  
|
   

              (23) 

  ̂           
  

  
|
   

             (24) 

 ̂  
    

 
     ̂   ̂       ̂  

  

   

       ̄  

The pressure   of molecular hydrogen on the input surface is constant. The coefficient  ̂ is equal to the ratio of   ̄  (local 

desorption density when concentration is close to equilibrium  ̄ ) to   ̄   (density of permeation flux in the diffusion regime, 

when      ,     ,     ). Meanwhile, the outlet flux (   ) is normalized by value   ̄  . For equilibrium state we have 

      ̄ , hence  ̂   ̂. We denote this parametric variable  ̂ by  . We obtain in the present model 
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        √    √       √           

where   √   ,   √     is dissolution ( ̄   √  ). 

  is called a transporting parameter when protective coating is absent (    ) [6]: if     diffusion limits permeation 

(diffusion limited regime — DLR), and the asymptotic condition     corresponds to the SLR (surface limited regime). The 

transitory area is estimated within             . For the problem under consideration when hydrogen permeates through a 

defect of the protective coating (    ) we have three independent parameters  ,   , and  . The value of    serves as a 

―diffusion coefficient‖ in the   direction, and   parametrizes the left parts of the boundary conditions (23), (24):        , 

              ,           . 

Formally, hydrogen adsorption by the membrane stops at    . Concentration   is less than equilibrium concentration  ̄ 

due to vacuum: resorption is ignored at the boundary condition (24). Inward ―diffusion‖ flux       (   ) can be significant 

for     and        , due to    . For fixed value of   (excluding variants     /     when permeability is 

practically non-existent or the plate is infinite) asymptotic accordance of    ,      to regimes SLR, DLR is valid. It 

should be noted that small   value (due to     ) may correspond to large dissolution value (  √    ). 

To be specific, we focus on the following parameter ranges for numerical simulation:             Torr,              cm, 

              cm2s-1,              ,                  cm4s-1 (        ̄  √       ). 

We obtain in terms of dimensionless variables 

     ∫
 

 

                  
  ̄

 
                ∫

 

 

 ̂               

The value   formally means the permeation flux fraction of   ̄       (stationary flux value in case of the protective coating 

absence (      and    ̄ (   ),         ). 

Input parameters are  ,   ,  ̂ for the dimensionless problem. As a criterion of stop we assume the following condition 

  ̈                         ̄          ̄        

Here the value        ̄ corresponds to the order of 10 minutes of real experimental time  ,       . For the problem with 

bulk desorption the standardizing value         is equal to  , which is the solution to the equation  √ ̂     ̂          

Indeed, this formula is obtained from boundary conditions (23) and (24) for     , assuming time derivative equals to zero in 

the diffusion equation. Here variable               is equal to                    . In more detail, we find the 

value of normalization   in the following way. Stationary distribution is linear:            (     ,           
   ) 

for     . We obtain            , using (24) and the definition of     . The boundary conditions for     ,      

give  ̂   ̂     ,  ̂           . Excluding  , we obtain the equation  √ ̂    ̂      
    . This equation has the only 

solution            (         ,                    ). 

Now we pass to the results of computational experiments. The difference scheme was presented in physical terms, but the 

scheme (not only experimental results) can be rewritten in the adopted dimensionless units. Figs. 11 and 12 show the influence 

of the membrane geometric characteristics (defect and membrane sizes) on the experimental output parameters. The sequence 

of values listing corresponds to the descending maximums in presented figures. In our numerical simulation we used the 

following values of parameters:         cm4/s,       cm,        cm2/s,       ,      Torr. Here we have 

                              . 
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Fig. 11                                                                                   Fig. 12 Steady state permeation flux,           

VI. MODEL WITH SURFACE DESORPTION 

Boundary conditions (2), (4) substitute the following 

  
   

  
        

        
  

  
|
 
             (25) 

  
   

  
     

       
  

  
|
   

                     (26) 

                                        

                                  ∫
 

 

   
               

Here   ,    are the surface concentrations on the inlet and outlet surfaces,          ;   is a coefficient of concordance 

between the hydrogen atoms concentration in the near-surface bulk and on the surface (a coefficient of fast dissolution, 

        ); and   is a coefficient of surface desorption,          . The diffusion and desorption parameters dependence 

on temperature   we consider by law of Arrenius are                   ,                   . Other dependences 

on   are assumed, if necessary. Temperature dependence of the variable   is formally taken into account in the 

coefficient     . It is not important in what follows because the temperature is constant during the experiment performed by 

the permeability method. 

The meaning of   (without getting involved in the details) is the following:     is the hydrogen atoms flux density where 

mobile atoms are trapped on the surface. Boundary conditions (25), (26) mean adsorption, desorption and diffusion flux 

disbalance is due to hydrogen atom accumulating on the surface. Vacuum system is powerful enough to ignore resorption at 

the outlet (in condition (26)). A more accurate model of ―surface-bulk‘‘ is 

         [          
  ]      [          

  ]                

Both hydrogen flux from the bulk to the surface and flux caused by hydrogen dissolution in the bulk are proportional to 

concentrations with regard to ―vacant spac‖. However, we obtain the condition of relatively fast solubility           , 

        when diffusion is much slower (not at low temperatures) and concentrations are small. If the surface is isotropic 

(i.e. meaning        ), then the parameter   weakly depends on  . Surface and near-surface bulk concentrations 

proportionally ―monitor‖ one another. Dynamic boundary conditions (25), (26) allow to take into account and estimate storage 

effect of hydrogen atoms on the surface. These conditions are agreed (in the classical context) with zero initial data          
  (as     ). However, it should be borne in mind that generally,                 (depending on the material, the 

temperature and inlet pressure). 

The model hierarchy is that we derive the boundary conditions (20), (21) from slight accumulation of        on the surface. 

Values of surface and bulk desorption coefficients (denoted by the same symbol and distinguished by the context) are assumed 

to be agreed:              (       ,     ). 

A. Algorithm of Numerical Solution 
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Counter-sweep method. Let us consider the calculation of the near-surface concentrations  ̂   ,  ̂    
,     . To maintain the 

order of approximation to        
  , we use the scheme with weights 

            
 ̂          

  
          ̂    

         ̂                      
               

 ̂    
       

  
       ̂    

          ̂    
                

              
   

for conditions (1), (2) assuming      . Here   is a step at time  ; and derivatives       ,        
 are approximated 

expressions, similar to (22). As in the modification of the model for the bulk desorption (saving denotes  ,  ,  ̂,  ), finding of 

 ̂   ,  ̂    
 is reduced to solving the quadratic equations system: 

{
 
 

 
  

  
  ̂   

   (
  

   
 

 

  
)  ̂    

  

   
 ̂    

 
  ̂

   
     

 

  
  ̂    

  (
  

   
 

 

  
)  ̂    

 
  

   
 ̂    

  

   
      

 

where            
                          ,             

              
         

. 

Iteration method. The scheme with the weighting coefficients (     , the order of approximation to        
  ) is used 

for the boundary conditions (1), (2): 

 ̂     ̄   

     
            ̂    

         ̂                ̄    
         ̄      

 ̂    
  ̄    

     
         ̂    

          ̂    
          ̄    

          ̄    
   

The boundary values  ̂   ,  ̂    
        are determined as the positive roots of the quadratic equations 

 

  
  ̂   

  (
  

   

 
 

  
)  ̂          

     
 

  
  ̂    

  (
  

   
 

 

  
)  ̂    

       

   
 

   
   ̂      ̂     

 

  
  ̄   
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  ̄    

      ̄    
 

 

  
  ̄    

  

Values  ̂       ,  ̂               (in expressions, similar to (22)) are pre-calculated by an explicit difference scheme approximating 

diffusion Eq. (1). Tridiagonal system of linear algebraic equations is solved with the current approximate values  ̂   ,  ̂    
, 

using a sweep method, and new approximate values  ̂       ,  ̂               (and the other values  ̂   ,           ,   

      ) are determined. We solve the quadratic equations in  ̂   ,  ̂    
 again and repeat the calculation, until boundary values 

are stabilized (usually 2–3 iterations are enough). To find boundary concentrations  ̂    
 for     , we approximate (2) with the 

accuracy to        
   and use sweep coefficients determined by direct sweep when condition (3) operates: 

     ̂    

         
             ̂    

      

         
                

     ̄    
                      

       
    

Roots of the quadratic equation have different signs for small   ,  , physically, thus we select a positive root. Calculated 

approximation           in the model (1)–(5); concentration          for boundary conditions (23), (24) and surface 

concentration         for the model modification (25), (26) provide a way to approximately calculate the permeation flux     . 

B. Numerical Modelling Results 
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We may pass to the dimensionless problem, as it was done above. However, the introduction of an additional parameter   

does not reduce the number of independent numeric hydrogen permeability characteristics. In addition, it becomes more 

difficult to ―return‖ to regularities, as observed in a real experiment. Hence we illustrate the model using physical units of 

measurement, focusing on the influence of surface processes parameters on the output flux (―derivatives‖   to  ,  ,  ). The 

following value specifies transport parameter estimation 

           ̄           ̄         √       ̄   √              

General geometric values of parameters:     cm,       cm,        cm were fixed for presented computing 

experiments (Fig. 13-16). It should be noted that, the flux decreases with increasing  , because desorption on the inlet surface 

predetermines hydrogen permeability to a greater extent (decreases the equilibrium level of concentration  ̄ ). 

Interesting effect is visible on Fig. 16. Steady state establishment time    decreases monotonically as the diffusion 

coefficient   (    –    ) increases. In this case, stabilized flux level    increases at first and then decreases, because 

hydrogen atoms come up to the lateral isolated surface faster, get ―reflexed‖ and thus increase concentration, simultaneously 

decreasing gradient (     ) and diffusion flux. 

  

Fig. 13 Effect of a desorption coefficient                                           Fig. 14 Effect of a dissolution coefficient 

 

   

Fig. 15 Effect of an adhesion coefficient                                              Fig. 16 Effect of a diffusion coefficient 

VII. CONCLUSION 

The paper presents the hydrogen permeability models of a cylindrical membrane made of a structural material in the 

presence of protective coating defect on the inlet surface. We take as the basis model the one with local equilibrium gaseous 

and dissolved under defect hydrogen when diffusion is the only limiting factor. Further hierarchy of the models consists in 

sequential accounting adsorption-desorption processes dynamics which results in non-linear and dynamic boundary conditions. 

Limit transition is valid: with reduction of hydrogen atoms accumulation on the surface, and with increase of desorption 

coefficient and inlet pressure, the model with nonlinear dynamic boundary conditions becomes a basic model. 

Iterative computational algorithm to simulate outward hydrogen permeability flux is presented. The algorithm is based on 

implicit difference schemes. Qualitative regularities of the experimentally registered characteristics are identified (stationary 

flux level, stabilization and delay times) depending on the membrane geometric characteristics and on physical parameters 
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of hydrogen transfer into a constructional material. The influence of parameter variations on hydrogen permeability flux 

dynamics is illustrated. 

The conditions under which the permeation flux is ―insensitive‖ to boundary conditions are specified. Then the flux is 

proportional to the number of defects. This saves the cost of additional experiments. Interesting effect is detected: the time 

until steady state establishment decreases monotonically as the diffusion coefficient increases, but the stabilized flux level 

increases at first and then decreases. The described nonlinear effects should be taken into account when processing the 

experimental curves in order to identify the limiting factors and estimate the parameters. The results of numerical simulation 

provide a way to evaluate the distribution of the hydrogen concentration inside the membrane. These factors give information 

on the possible ways of treating the material (pre-training surface, various additives inside).  
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