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Abstract-In the context of problems of hydrogen and thermonuclear power engineering intensive research is being conducted into 

ways to protect construction materials against hydrogen corrosion, chemical reactor design, materials suitable for hydrogen storage 

and transporting. Mathematical models help to specify physical-chemical ideas about the interaction of hydrogen and its isotopes 

with solids, to discover the limiting factors and to significantly reduce the expenses of experimental research by means of numerical 

simulation for different parameters and experimental conditions (including extreme ones). Classical diffusion models are often 

insufficient. The paper is devoted to the model and numerical solution of the boundary-value problems of hydrogen thermo 

desorption taking into account nonlinear sorption-desorption dynamics on the surface and its reversible capture in the bulk. 

Computational algorithms based on difference approximations and the results of computer simulation of the hydrogen thermo 

desorption flux from a structural material sample are presented. 

Keywords- Hydrogen Interaction with Solids; Surface Processes; Thermo Desorption Method; Nonlinear Dynamical Boundary-value 

Problems; Finite-difference Schemes; Computer Simulation 

I. INTRODUCTION 

Interest in the interaction of hydrogen with solids is a multi-faceted one [1-8]. It is sufficient to mention power-engineering, 

metals protection from hydrogen corrosion, chemical reactor design, rocket and missile engineering, vacuum engineering and 

technology problems. For instance, while tritium (radio hydrogen) will presumably be applied (in the long term) to 

thermonuclear reactors, the problem of tritium diffusion leakage and its accumulation in structural materials may arise. The 

main focus had been on the problem of hydrogen embrittlement of metals, but the focus of which is gradually shifting towards 

active use of hydrogen useful properties. Hydrides help to retain substantial amounts of this environmental-friendly energy 

source. Hence the high expectations attached to hydrogen batteries and motors (relatively safe: without high pressures or low 

temperatures). Another example: reversible metal alloyage by hydrogen is the basis for plastification and thermal hydrogen 

processing of titanium alloys. Some special topics are considered in [9-18]. Enthusiasts speak not only of hydrogen energy but 

also of hydrogen economy [4]. Mathematical models of hydrogen isotopes interaction with a solid and methods for their 

parametric identification are needed to enhance the performance of experimental research, solve applied problems and draw 

general conclusions. The focus will be on the problem of the hydrogen permeability of structural materials. Practice has shown 

that the limitations are not only diffusion processes inside the metal, but also physical-chemical effects on the surface [2, 3]. 

Furthermore, transfer parameters depend on the process characteristics of producing the material batch, and one needs effective 

measured curve processing algorithms instead of focusing on ―tabular data‖. The physical-chemical properties of Me–H 

(metal-hydrogen) systems are highly varied. This paper does not suggest a universal hydrogen permeability model suitable for 

different applied problems. Leave aside the problems that can be formalized in terms of continuum mechanics, which is a 

separate wide-ranging topic. The goal is more modest. There is a need in the well-balanced model of hydrogen thermal 

desorption that takes into account the main transport processes in their dynamic interdependence. Adsorption, dissolution, 

diffusion, etc. per se are subjects for in-depth theoretical studies. Each additional coefficient however, leads to a leap to a new 

difficulty level of the inverse problem of parametric identification. The focus is on physical and chemical contents models, 

which correspond to real capacities of the experimental methods considered below. Only the direct problem of numerical 

simulation of hydrogen flux from structural material is considered. 

II. HYDROGEN PERMEABILITY MODELS 

A. Diffusion with Reversible Traps and (De)Sorption Models 

Consider the hydrogen transfer through a test metal sample (plate thickness   ). Physical-chemical terminology will be used 

as little as possible. For brevity the metal membrane is considered, although it may be a multi alloy or intermetallic compound. 

Assume that heating is relatively slow, well nigh uniform, so that the temperature gradient is negligible, and the diffusion flow 

can be considered proportional to the concentration gradient. The concentration of dissolved hydrogen (monoatomic hydrogen) 

is low and partly it is compatible with traps. Here, traps are defined as the crystal structure micro defects that can capture 

hydrogen. Assume a system of differential equations as a model of diffusion with reversible capture 
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where    — time,     
 (    )  (   ) ;  (   )  — diffusing hydrogen (monoatomic) concentration;  (   )  — captured 

diffusant concentration;   — diffusion coefficient;   ,    — coefficients of   atom capture by and escape from traps. The 

traps capacity is limited by     . Concentration of diffusible hydrogen is relatively low. However, significant amounts of 

hydrogen can be accumulated into traps, so that the total quantity of hydrogen can be large. Values  ,    are a function of 

current temperature  ( ) from Arrhenius‗s law, where   ,     are preexponential factors, and   ,    — activation energies 

(  is the universal gas constant):         *     ,   ( )-+,           *     ,   ( )-+  

More disaggregate transfer models are known. Among other factors, one can take into account various diffusion channels 

(transcrystalline, grain boundary, along defects). In applied problems only limiting factors are highlighted in order to balance 

the model completeness with the feasibility of parametric identification by measured data. One should bear in mind that 

diffusion coefficient   data are systematized for different materials and temperatures in the reference book. Generally, 

however, these data are computed in the models where the diffusant concentration is believed to equal zero near the surface. 

However, if physical-chemical processes on the surface are taken into account (as it increasingly happens)   values should be 

interpreted as an initial approximation. 

The main problems in computer simulation are associated with dynamic nonlinear boundary conditions. This is in 

agreement with measurement data indicative of a significant effect of surface processes [3]. Assume that the membrane surface 

is in contact with gaseous hydrogen. The boundary conditions are simulated (with allowance for adsorption and desorption 

processes) in the following manner:  

  (   )   ̄( )  (   )   ̄( )    ,   -               (3) 

   ( )   ( )  ( )   ( )   ( )  ( )     ,    -  (4) 
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Here    ( )   (   ),    ( )   (   ) — boundary bulk concentrations of diffusing monoatomic hydrogen;    ( ),    ( ) — 

concentration on the surface (     );   ( ) — parameter of local equilibrium between concentration on the surface and in 

near-surface bulk;    — kinetic coefficient;   ( ) — coefficient indicating that only a small amount of the ―bombarding‖ 

hydrogen is caught as atoms on the surface (denote by   the adhesion coefficient, considering that this coefficient sums up the 

overall process balance of physisorption–dissociation–chemisorption of molecular gas into monoatomic form on the surface); 

   ( ),   ( ) — gaseous (  ) pressures at relevant membrane side;   ( ) — desorption coefficient. 

Formulas (4)–(6) are now clarified. Formula (4) mean that near-surface bulk concentrations   ( ),   ( ) proportionately 

follow current concentrations   ( ) ,   ( )  on the surface, and the dissolution rate is comparatively high. Consider flux 

balances (5), (6). Derivatives on the left-hand side of the expression denote hydrogen accumulation on the surface. The higher 

the external pressure of gaseous hydrogen, the more atoms per unit time fall on the surface unit area (first parts on the right 

side of the expressions). The second addends mean that part of the atoms hitting the surface reunite into molecule and escape 

from the surface (desorption flux). The last parts on the right side of expressions (5) and (6) correspond to the flux of hydrogen 

atoms toward or from the surface through diffusion in the bulk. 

Hydrogen occurs in the model both as molecules and in monoatomic form. For consistency, the count is based on atoms: 

, -       , , -       , ,   -  , -         (     ). In the term of the kinetic theory of gases value    determines 

the number of particles (   molecules, in this context) hitting a unit area per unit time. Taking into account the dimensionless 

coefficient  , the additive component     will be further interpreted as the flux density of the atoms precipitated on the surface. 

This component is an integrated index with no partitioning of the process into stages.   exponents are named activation 

energies although they may represent linear combinations of activation energies and heat energies of unit steps of the processes 

and have different signs. 

Remark 1: The model of rapid dissolution on the surface (4) is obtained from more general flux balance formulas  

  ( )  ( )    ( )  ( )    ( )  (   )     ( )  ( )    ( )  ( )   ( )  (   )  

Coefficients   ,    characterize the rate of dissolution in the bulk and rise to the surface. If these processes in the given 

temperature range are essentially faster than diffusion (     ) one can get formula (4) where         . If the surface is 

isotropic (in terms of        ), then  ( ) has weak dependence on temperature. Formally, it is possible to write the 

Arrhenius formula  ( )        *     ,  -+,           , but the ―activation energy‖    is not necessarily positive. 
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Surface coverage and saturation in the bulk can be additionally taken into account: 

  ( )[      ( )    
  ]    ( )     ( ),      ( )    

  -    ( )     ( )           

The presence of the ―threshold‖ factor (        ) results in the following. If concentration   in the near-surface bulk is close 

to the maximum possible dissolution practically ceases. Value   ( )   ( )      signifies the degree of surface coverage. The 

adsorption flux density of   atoms (dissociative hydrogen chemisorbtion to the surface) can be simulated by formula 

   ( ) ( )(   ( ))  in balance Eqs. (5), (6). Within the low concentrations range the ratio      holds, which is in 

agreement with quadratic desorption, diffusion equation linearity and    ̸  ( ). Kinetic constant dependence on temperature 

(     √ ) is usually ignored compared to exponent in  ( ). 

Remark 2: It is not for all materials that the surface matters so much. Eqs. (4)-(6) should be replaced with the following 

boundary conditions of third kind for highly porous (―loose‖) materials: 

   ( )    ( )   ( )    
 ( )     ( ))            (7) 

Formally, formula (7) is obtained from Eqs. (5), (6) at a low rate of accumulation ( ̇   ) on the surface. The desorption 

coefficient is labeled with one letter although the values (including dimensions) are different in formulas (7) and (5), (6). Given 

the multistage process ―average‖ coefficient   in condition (7) is an effective recombination coefficient [7]. 

B. Experimental Method 

The thermal desorption spectrometry method (TDS) [1]. Gaseous hydrogen (under reasonably high pressurize  ̄) is fed into 

a chamber with a strip of the metal or alloy studied. The strip is heated by electric current to a preassigned, fixed temperature   

to increase the sorption rate. After the sample had absorbed a sufficient amount of hydrogen (to the equilibrium saturated state), 

it is quenched (the heating current is turned off). The physical-chemical processes slow down sharply, and significant amounts 

of hydrogen stay inside the sample (in particular, in various trap). The chamber is then vacuumized and the sample is 

simultaneously reheated. The heating rule  ( ) (    ) can vary widely. Heating is usually linear  ( )       , from room 

temperature     ( )  to quite high temperature       (as long as degassing is discernible against the flux maximum 

background). Molecular hydrogen pressure in the chamber is measured by mass-spectrometer. The desorption flux from the 

surface controls the pressure. The desorption flux density is denoted by  ( ): 

  ( )    ∫
 

 

 ( )     * (   )  
  +      ( )   ( )  ( )  (8) 

From now on the contracted notation will be used for simplification (identity sign is interpreted as equality by definition): 

 ( )   ( ( ))  ( )   ( ( ))  ( )   ( ( ))   ( )    ( ( ))  ( )   ( ( ))  

Symmetry conditions are fulfilled for the TDS method: 

  ( )    ( )    ( )   ( )    ( )    ( )    ( )    ( )  (9) 

 ( )  (   )    ( )  (   )  ̄( )   ̄(   )  ̄( )   ̄(   )  

Constant    dependents on the strip surface area (      ). Values    and    are determined by the actual parameters of the 

experimental apparatus, such as chamber volume   and vacuum system evacuating capacity   (      ). 

Measurement model (8) was chosen relying on practical experience: hydrogen dose injection (delta pulse) into the chamber 

causes a surge in pressure with subsequent exponential decline. Eq. (8) is classical in the measurement theory. Specifics of the 

problem are reflected by function  ( ), in the differential notation  ( )  ( ( )     ̇( ))   . 

After the preliminary equilibrium saturation had settled, then values   ̄,  ̄  

 (   )   ̄            (   )   ̄            ,   -  

are a priori unknown at initial time moment (   ), defined by reheating. But these values are related by 

 ,   ̅    
  -   ̄     ̄  at      (   ( )) 

due to diffusion equations with capture (1), (2). Moment    of the experiment completion is determined by  ( )      

     (    )   (    )       ,   -  No matter how profound a vacuum is generated, some hydrogen will be retained in the 

sample even at very high    because of the pressure and interactions with traps. Thus, such equations should be interpreted 

asymptotically at anywhere. The relatively negligible amount of hydrogen is ignored. 

Remark 3: Usually, the pressure derivative  ̇( ) is neglected at slow heating:  ( )    ( )   ( ) (    ). The coefficient 

    (    ) is determined from calibration results. If the accuracy of   estimation is too low, one has to use relative unit 

measurements only (only the  ( )      ratio is approximately known).  
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III. DIFFERENCE SCHEME FOR TDS-DEGASSING MODEL 

Consider a symmetrical (in the terms of the experiment formulation) nonlinear equations system given a limited capacity of 

traps of different types: 
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Here   (   ) is the concentration of hydrogen atoms trapped by defects of different types (    
        );   

  is coefficients 

of   trapping and escape. For practical purposes trapping is estimated in ―integrated‖ form. If the defect is related not to 

microcavity, but, for example to hydride phase inclusions then   
 ( )   , and   

 ( ) value is positive only after a critical 

temperature:  ( )        had been reached. In this case the initial distribution   ( ) is assumed to be uniform. Diffusion, 

desorption and adhesion coefficients  ,  ,   depend on temperature   by the Arrhenius law; and the formula             is 

expected in the   ,     - range. The heating is practically uniform and linear:  ( )       ,     . 

A. Initial Data Specification 

The equilibrium concentration of saturation  ̄  meets the formula    ̄    ̄     at     (derivatives in boundary 

condition (13) are equal to zero). The model corresponds to the range of  ̄  √ ̄ (Sievert‘s law). When the pressure is high, the 

surface saturation factor is taken into account in parameter  . With a short initial stage of TDS-experiment (cooling-down and 

vacuumization) there is a nearly uniform initial distribution  ( )   . Constant   ( )   ̄  for trap with reversible capture is 

determined from (11): 

             
 ( ),   ̄ (    

 )  - ̄    
 ( ) ̄     

If considerable time had passed after saturation and before the onset of reheating (   ), it is reasonable to use  ( )  
 ̄    ,    -

 ,    ,       to specify the initial data. Constant   is determined by substituting  ( ) into the ―smooth 

start‖ condition  ̇( )    (the equality is conditional: start temperature    and heating rate   are sufficiently low). Function 

  ( ) is fixed by the formula  

   
 (  ),         

 -    
 (  )      (14) 

The problem initial data  ̄    ( )       ,   
  for a hydride phase inclusion defect are derived from information about actual 

chemical compound of the hydride. Higher degrees are easy operated to formulate the initial distribution  (   )   ( ) 

without making essential changes. 

The aim is to numerically model the desorption density  ( )   ( )  ( ),   ,     - ( ( )   ,     ). This function is 

obtained experimentally, so that model flux  ( )  is needed for qualitative estimation to substantiate and test parametric 

identification methods. To wit information is needed on the effect of parameter (bulk and surface) variations on the dynamics 

of hydrogen thermal desorption from structural materials under non-stationary heating conditions. 

B. Boundary-Value Problem: Difference Scheme 

A grid  ̄ 
  with steps  ,   on variables  ,   in a closed region   ,     -  ,    - is introduced. Denote by   

  approximate 

values of concentration  (     );      
    (     );    *     +,   *     +;        ,      . Consider the scheme 

with weighting coefficients:    (  ),       (  ),     ,       -, 
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Here, unknown value     
    is replaced (to realize the sweep algorithm on the (   )-th time layer) with its approximation 

from the finite-difference equation linear in  ̃   
    

 ̃   
        

      ,  
 (  ),      

 -  
 (    

 )     
 (  )    

    
 (    ),   ̃   

   -  
 (    

 )     
 (    ) ̃   

   -.    (15) 

Standard nomenclature  ̇   (   ) is used, this formula is an implicit scheme             ,       - for the differential 

Eq. (11) normalized to     
  with time-fixed function     (    ).The iterative procedure of specifying the values of  ̃   

    

shall be described later. 

Then assume       and          . The approximation error is  (     ) . Denote   (      )   ̂  and 

   (      )   ̂   , express     
    from the second equation of the difference scheme and substitute it into the first equation. 

Using notations 
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the equations 

     
      

     
        

      
     (   ) (16) 

are obtained. 

Values at initial time moment     (on zero layer) are known:   
   (  ). Following the sweep method, approximate 

concentration values in grid-nodes on (   )-th time layer are searched for as follows 

   
          

           
                       (17) 

The sweep coefficients are obtained by the formulas:  

   ,  
        -

         (       
 )                        

Writing the ratio (16) for     initial coefficients           
   ,       

    
     are obtained. 

The next task is to find the values   
   ,   

    needed to run the sweep method. Substitute function  ( ) into boundary 

condition (13): 
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Write the difference approximation (   ):     ,      (  ),      (  ), 

       

 
    ,          

       (    ) 

                                                           
         (      )-  (18) 

The integral is calculated approximately from the trapezoid formula: 

       ∫
    

 

 ( )     *,      -  
  +       *     

  +     ∫
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  +         ,         *     

  +  -                           (19) 

The second variant of       value calculation is the following. Apply the implicit scheme mentioned above for the equation 

 ̇   (   ) to equation  ̇           : 

     ,(     )        (       )-,     -    

Approximate in the boundary node with an accuracy up to  (  ) 

      (    )      
 

      
 

    
 
           (20) 

The values of concentration on the  -th time layer are known. Substituting values      
    and     

    from ratio (17) for the 

(   )-th time layer 

   (      )  
 

  
,(      (      ))  
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    (         (      ))-  
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Boundary concentrations are identical due to symmetrical initial data in the boundary value problem, therefore search for a 

solution of the problem such that   
      

   . Approximation of    (      ) is written in a more compact form: 

      (      )  (   )  
                  (21) 

                                    

Formulas (19)–(21) are substituted into (18), denoting   
     : 
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For the second variant of determining pressure      
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Physically, the positive root of the quadratic equation in   is chosen. The approximation accuracy of the boundary condition is 

 (     ), which agrees with the difference scheme inside the bulk. 

C. Computation Algorithm 

Input values  ,   ,   ,   ,   ,   ,   ,  ,  ̄   ̄( ̄  ),   ,   are known. For the parabolic simulation distribution  ( ) 

    is found by substituting the distribution  ( )   ̄   ,    -
  into the smooth start condition 

 ̇( )         
  , ̄    

        (  √ ̄           )-   
  

Set the type of defects, coefficients    and calculate   ( ). The algorithm on the (   )-th layer (   ) is the following. 

1. Values  ̃   
    are calculated from Eq. (15) on the time layer. 

2. Coefficient sets  ,  ,   are iteratively computed by forward sweep stroke in accordance with formulas (16), (17). 

3. Values in boundary nodes are determined by solving the quadratic equation in the variable     
      

     . 

4. Approximate values of concentration in all internal nodes of the grid are determined by backward sweep stroke by (17). 

5. Pressure      and the values of concentration in defects (from the second equation of the difference scheme in the bulk) 

are computed using the formula 

    
        

  
 ̂   

 ,(      
 )  

  (   ̃   
   )  

   -    ̂   
     

 

 ̂   
      

  

6. The correction of  ̃   
    values means that  ̃   

        
        

  can be assumed and the computations can be repeated as 

in sections until  ̃   
        

    are stabilized (2–3 iterations are enough). 

IV. COMPUTER SIMULATION RESULTS 

Physical reasons and material balance are used as the calculation correctness indicator: 

∫
 

 

,  ∑  -     ( )  ∫
 

 

, (   )  ∑  (   )-     ( )   ∫
 

 

 ( )     

Scaling was applied because of a wide range of magnitudes: 

    ̂,  ̂  ,   -,  ̂     ̄  ,   -,  ̂     ̄,  ̂   ̂    (  ),  ̂      ,  ̂   ̂ ̂ ,  ̂    ̄ ,  ̂    ( ̄ ). 
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Experimentally,   value lies in the range             . Let concentration values be bounded by  ̄                 , 

 ̄                 . There are two types of traps (defects): with reversible capture and hydride phase inclusion. The 

examined limits of Arrhenius parameters are presented in Table 1. 

TABLE 1 THE EXAMINED LIMITS OF ARRHENIUS PARAMETERS 

Parameter Range Pre-exponential Factor E, kJ/mol 

                                     

                                       

                           

                                

Data for tungsten are used in numerical experiments as the basic parameter set [7]: 

 ̄   ( )√ ̄   ̄                    ( ̄                )  

 ( )                *             ,  -+               

    ( )             *            ,  -+         

 ( )              *            ,  -+         

Here the coefficient        is according to the model (7) with bulk desorption (effective recombination coefficient). Obtain 

               for the considered model with surface desorption (13). Common parameter values for different curves in 

the figure are according to data for tungsten. In addition, The following basic values are set:       ,       ,  ̇     , 

      ,     ,          ,      ,     ,     (where traps are negligible). 

In the model context,    ̄       ̄
  for equilibrium state is obtained, which is in keeping with Sievert‘s law  ̄   √ ̄. Here, 

 ( )      ( )  ( )  . To ensure definiteness in the numerical experiments relation  ( ) is fixed in consistency with     ,   

data for tungsten and                          . The values of  ( ) are within           . Please note that  ( ) in 

the model is an integrated parameter and includes also the effect of the input surface coverage (for high pressures). 

Equilibrium saturation  ̄ (   ̄) varied simultaneously with the model variation of      (      and  ) since the external 

flux    ̄ is fixed. If the hydride phase (equispaced) formed the determined equilibrium concentration was considered to be the 

total (sum in the solution and the hydride phase). For reversible capture defects it is determined similarly. The initial (after 

cooling and vacuumization) distribution of dissolved hydrogen is fixed by parabolic distribution (but not including the dashed 

line curves in Figs. 1, 2). For reversible capture defects, the initial concentration  ( ) is computed in accordance with Eq. (14). 

Varying coefficients are listed in the order of the maximums (from left to right or in descending order). Under heating 

TDS-degassing moves from the domain of control by surface processes to limitation by diffusion due to      . The wide 

range of dynamic ―scanning‖ of the material is an essential advantage of the TDS-degassing method as opposed to the methods 

of permeability analysis at fixed temperatures. Contemporary vacuum units are strong enough to neglect resorption (return of a 

part of desorbed hydrogen to the surface) at the stage of degassing:      . This statement has been validated numerically for 

the physically based range and the above parameters of      . 

In paper [7] hydrogen permeability was analyzed at fixed temperature (constant pressure    ̄ was maintained on the 

input side, vacuum was created on the output side) for bulk desorption in accordance with (7) (              
 ) and in the 

absence of defects. Thus stated, so called transport parameter         
   √ ̄ (where   √        — was dissolution, 

 ̄   √ ̄) was applied to the problem. This parameter appears through transition to dimensionless problem (add a substitution 

 ̂        to the above described normalizing). It was shown in the paper that keeping in mind experimental accuracy, surface 

processes were the limiting factor at       , and diffusion at      . Let the focus be on this range of 

           ̄ ( ̄    ̄   √ ̄    √   ̄            ) 

and for dynamic boundary conditions (5), (6), (13) at heating  ( ). 

Numerical results are illustrated in Figs. 1-10. Fig. 1 shows that if one allows a significant amount of time before reheating 

( (   )   ̄   (   )   ( )   ̄   ,    -
 ), the flux reduction will be is more greater on the ascending part of the 

curves. The total amount of absorbed hydrogen will also be lower. There is the tendency for sticking together of initial 

ascending fronts (Fig. 2), which happens in practice, when diffusion is of essence alongside with surface processes. Please note 

that at a lower heating rate the image point of the plot migrated for a longer time and with a lower flux rate. 
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One can see in Fig. 3 that the pressure derivative  ̇ and resorption can be neglected for a tungsten sample and at a heating 

rate   around tenth of    . An outburst of hydrogen emission from a hydride inclusion trap happened at        . Since the 

TDS-spectrum has temperature on the abscissa, a ―lower‖ curve (     ) corresponds to a longer duration experiment. The 

material balance is retained when calculating ―on the    axis‖ (compare with Figs. 1, 2). 

Curves with lines of higher intensity in Figs. 4, 5 correspond to tungsten parameters. The outward desorption flux increases 

with a reduction in pre-exponential factor    and a rise of activation energy   . This pattern is due to the increase in 

equilibrium saturation concentration  ̄  because of    ̄       ̄
  (   ). The same is true for    effect (see also below Fig. 8, 

            
 ). Fig. 5 illustrates a two peak structure emergence with an increase in   . In experimental studies emergence 

of a new peak is usually associated with additional release of hydrogen from traps with a higher activation energy (compare 

with Fig. 3 and Fig. 10). However Fig. 5 (   ) clearly shows that this effect may arise from the interplay of diffusion and 

desorption activation energies alone. At first desorption quickly ―strips off‖ subsurface hydrogen resulting in the first splash. 

Decrease of      results in a decrease of desorption. It also causes a sharp gradient of concentration in the bulk, which triggers a 

growing pumping from the bulk through diffusion… The same effect is seen at variation of other model parameters (Fig. 6-10). 

Use the logarithmic temperature scale in Fig. 6, because parameter    strongly influences the duration of degassing. Fig. 9 

illustrates that for the fast dissolution coefficient   value      is a ―point of inflexion‖ when the surface behavior is isotropic: 

       . 

Fig. 1 Initial distribution: 1 – uniform, 2 – parabolic Fig. 2 Initial distribution: 1,2. TDS-spectrum 

Fig. 3 Effect of hydride inclusion Fig. 4 Effect of parameter    
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Fig. 5 Effect of parameter    Fig. 6 Effect of parameter    

Fig. 7 Effect of parameter    Fig. 8 Effect of parameter    

Fig. 9 Effect of parameter    Fig. 10 Effect of defects: 1 – hydride inclusions; 2 – microcavities with 

reversible capture; 3 – without defects 

V. CONCLUSIONS 

The direct problem of computer simulation of the density of the thermal desorption hydrogen flux from a structural 

material sample was considered. A computational algorithm is proposed and realized. The TDS-method has advantages over 

the methods of hydrogen permeability at fixed temperature which consists in the feasibility of evolutional material scanning in 
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a wide range of temperatures (from limiting by surface processes to limiting by diffusion). Qualitative dependences of the flux 

and TDS-spectrum on experimental conditions are presented. Flux ―derivatives‖ with respect to surface processes and 

diffusion parameters were estimated. It is shown that an extra peak is not always caused by traps with different hydrogen 

binding energies (as is commonly stated in the experimental works). This effect may be caused also by the difference between 

diffusion and desorption activation energies.  
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