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Abstract-To enhance the clustering ability of self-organization network, a quantum-inspired self-organization clustering algorithm is 

proposed based on Bloch spherical rotation. First, the clustering samples are mapped to the qubits on the Bloch sphere by taking all 

the sample values as the phases of the qubits, and the all weight values in the competitive layer are mapped to the qubits randomly 

distributed on the Bloch sphere. Then, the winning node is obtained by computing the spherical distance between sample and weight 

value, and the weight values of the winning nodes and its neighbourhood are updated by rotating them to the sample on the Bloch 

sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the 

classical self-organization network and the K-mean clustering algorithm. 
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I. INTRODUCTION 

Since Kak [1] firstly proposed the concept of quantum inspired neural computation in 1995, quantum neural network (QNN) 

has attracted a great deal of attention from international scholars during the past decade, and a large number of novel 

techniques have been studied for quantum computation and neural network. For example, Gopathy et al. [2] proposed the 

model of quantum neural network with multilevel hidden neurons based on the superposition of quantum states in the quantum 

theory. Michail et al. [3] attempted to reconcile the linear reversible structure of quantum evolution with nonlinear irreversible 

dynamics of neural network. Michiharu et al. [4] presented a novel learning model with qubit neuron according to quantum 

circuit for XOR problem and describes the influence to learning by reducing the number of neurons. Gupta et al. [5] defined a 

new mathematical model of quantum neural network, building on Deutsch’s model of quantum computational network, which 

provides an approach for building scalable parallel computers. Fariel [6] proposed the neural network with the quantum gated 

nodes, and indicates that such quantum network may contain more advantageous features from the biological systems than the 

regular electronic devices. In our previous works, [7] proposed a quantum BP neural network model with learning algorithm 

based on the single-qubit rotation gates and two qubits controlled-rotation gates. Next, [8] proposed a neural network model 

with quantum gated nodes and a smart algorithm for it, which shows superior performance in comparison with a standard error 

back propagation network. Adenilton et al. [9] proposed a weightless model based on quantum circuit. It is not only quantum-

inspired but actually a quantum NN. This model is based on Grover’s search algorithm, and it can perform both quantum 

learning and simulate the classical models. At present, the fusion of quantum computation and neural computation is gradually 

becoming a new research direction. 

In all of the above models, the fusion of quantum computing and supervised neural networks has been widely studied. 

However the fusion of quantum computing and unsupervised self-organizing neural network is relatively few. In the classical 

clustering algorithms, Cai et al. [10] proposed a new algorithm called K-Distributions for Clustering Categorical Data, and 

Huang [11] investigated clustering problem of large data sets with mixed numeric and categorical values. As is known to all, 

unsupervised clustering is the only function of the self-organizing network. For self-organizing network, unsupervised 

clustering process, in essence, is the application process of the network. This is very different from BP network which must 

perform a supervised training process before application. Although [12] proposed a quantum self-organizing networks with 

quantum inputs and quantum weights, this model applied the supervised mode to training, which severely reduces its 

generalization ability. In addition, although quantum computing effectively enhances the performance of the traditional self-

organizing networks, the fusion research of quantum computation and neural computation is still far from mature. It is 

necessary to further research new ways of integration between them, in order to further improve the performance of neural 

computation. Hence, this paper proposed a quantum self-organization network based on Bloch spherical rotation (BQSON), 

and designed its clustering algorithm in detail. In our approach, both the samples and the weights are denoted by qubits 

described in Bloch sphere, the weights of the competition winning node and its neighbourhood nodes are adjusted by rotating 

these qubits to corresponding sample qubit about rotation axis. The experimental results of a benchmark of IRIS clustering 

show that our approach is superior to the traditional clustering methods including common self-organizing networks, k-means 

clustering, and the adjacent clustering. 
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II. THE SPHERICAL DESCRIPTION AND ROTATION OF QUBITS 

A. The Spherical Description of Qubit 

In quantum computing, a qubit is a two-level quantum system, described by a two-dimensional complex Hilbert space. 

From the superposition principles, any state of the qubit may be written as 
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where  0 ,  20  . 

Notation like |  is called the Dirac notation, and it will be seen often in the following paragraphs, as it is the standard 

notation for states in quantum mechanics. Therefore, unlike the classical bit, which only equals 0 or 1, the qubit resides in a 

vector space parameterized by the continuous variables   and  . The normalization condition means that the qubit’s state can 

be represented by a point on a sphere of unit radius, called the Bloch sphere. The Bloch sphere representation is useful as it 

provides a geometric picture of the qubit and of the transformations that can be applied to its state. This sphere can be 

embedded in a three-dimensional space of Cartesian coordinates (  sincosx ,  sinsiny , cosz ). Thus, the state 
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By definition, a Bloch vector is a vector whose components ),,( zyx  represent a point on the Bloch sphere. It can be said 

that the angles   and   define a Bloch vector, as shown in Fig. 1. 

 

Fig. 1 A qubit description on the Bloch sphere 

B. The Rotation of Qubit about an Axis on the Bloch Sphere 

In this work, the weights of competition layer are adjusted by rotating them around an axis towards the target qubit on the 

Bloch sphere. This rotation can simultaneously change two parameters   and   of a qubit and can automatically achieve the 

best matching out of two adjustments, which better simulates the quantum behaviour. To achieve this rotation, it is crucial to 

determine the rotation axis, as it can directly impact the convergence speed and efficiency of algorithm. To determine the 

rotation axis, this paper proposes the following method: 

Theorem Let ],,[ zyx wwwW  and ],,[ zyx xxxX  denote two points on the Bloch sphere. The rotation axis for rotating 

the qubit from W to X can be written as tensor product of W and X, and the relation of these three vectors is shown in Fig. 2. 

Proof In the Bloch sphere, the shortest distance between two points is defined as the length of minor arc on the great circle 

through these two points. To make W approximate to X after rotating, W should be rotated along with the minor arc on the 
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great circle. From the definition of tensor product, it is clear that the direction of XW   is perpendicular to the plane defined 

by the vector W and X, and the direction of these three vectors meet to the right-hand rule. Namely, right hand four fingers grip 

from point W to point X with angle less than  , at this time, the direction of thumb is defined as the direction of XW  . The 

relation of these three vectors is shown in Fig. 2. Therefore, if let W rotate around axis XW  , then its path will be the minor 

arc on great circle through points W and X. Hence, the rotation axis is XW  . 

From the above theorem, the approach can simultaneously adjust two parameters  and   of a qubit, and can automatically 

achieve the best matching between the two adjustments. This best matching can rotate W toward X along with the shortest path 

on the Bloch sphere, which improves the clustering ability of BQSON. 

Let the Bloch coordinates of W|  and X|  be ],,[ zyx wwwW  and ],,[ zyx xxxX , according to the above theorem, 

the axis of rotating W|  to X|  can be written as 

 

|||| XW

XW
R




axis . (3) 

 

Fig. 2 The rotation axis of a qubit on the Bloch sphere 

From the principles of quantum computing, on the Bloch sphere a rotation through an angle   about the axis directed 

along the unit vector ],,[ zyx nnnn  is given by the matrix 
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where I  denotes an unit matrix, ],,[ zyx σσσσ   denotes the Pauli matrix as follows 
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Hence, on the Bloch sphere, a rotation through an angle   about the axis axisR  that rotates the current qubit W|  towards 

the target qubit X|  can be written as 
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and the rotation operation can be written as 

  WMW R |)(|  . (9) 

C. The Projective Measurement of Qubits 

From the principles of quantum computing, the coordinates x , y , and z  of a qubit on the Bloch sphere can be measured 

by the Pauli operators using the following equations. 
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III. THE STRUCTURE OF QUANTUM SELF-ORGANIZATION NEURAL NETWORKS 

This paper propose the quantum self-organization neural networks model based on the Bloch spherical rotation, which is 

shown in Fig. 3, where both inputs and weight values are qubits described on the Bloch sphere. 

 

Fig. 3 The quantum self-organization neural networks model 

Let 
T

21 ]|,,|,[||  nxxxX   denote the inputs, and T
21 ]|,,|,[||  jnjjj wwwW   denote the weight values of the jth 

node in competition layer. By the projection measuring, the Bloch coordinates of ix|  and jiw|  can be written as 

T],,[| iziyixi xxxx  and T],,[| jizjiyjixji wwww , respectively. From the spherical geometry, the shortest distance between 

two points on a sphere is defined as the length of the minor arc on the big circle defined by these two points and the centre of 

Bloch sphere. As a result of the fact that Bloch sphere radius equals to 1, the spherical distance between ix|  and jiw|  

equals to the angle between them, and can be written as 
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Hence, the distance between X|  and jW| , namely, the output of the jth node in competition layer may be given by 
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IV. THE ALGORITHM OF QUANTUM SELF-ORGANIZATION NEURAL NETWORKS 

D. Quantum State Description of the Samples 

First, all samples data are converted to [0, 1]. Let ),,2,1(,]~,,~,~[
~ T

21 Llxxx nllll  X  denote the lth sample. This paper 

adopts the following normalization method. 
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where MAX  and MIN  respectively denote the maximum and the minimum of all samples. 

Let sample after normalization be T
21 ],,,[ nllll xxx X , and then lX  is converted to the phase of qubits by the following 

equations 

 T
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At this point, lX
~

 may be converted to qubits on the Bloch sphere, as shown in the following equation. 
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E. Competitive Learning Rules 

Let jW|  denote the weight value of the jth node in the competition layer, as follows 

 T
21 ]|,,|,[||  jnjjj www W . (19) 

For the lth sample T
21 ]|,,|[||  nllll xxx ，X , according to the Eqs. (13) and (14), the spherical distance between lX|  

and jW|  can be written as 
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Suppose that the competition layer has C nodes, and that the node with a minimum distance is defined as the winning one. 

Hence, the winning node should satisfy the following equation 
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F. Network Clustering Algorithm 

The self-organizing network is a typical unsupervised clustering model; it is suitable for solving the problem of the 

unknown class number of clustering beforehand. Its training is completely different from the traditional BP neural networks. If 

a self-organizing network must apply supervised information to clustering, it is powerless for clustering problems with no 

supervision information available. The training process of our model does not contain any prior knowledge about samples 

classification results; otherwise its generalization ability will be lost, which is the shortcoming of [12]. The approach can be 

summarized as follows. 

Step 1 Quantum state description of the sample. Convert the samples to qubit states by Eqs. (15)-(18). Measure the 

quantum samples by Eqs. (10)-(12) to obtain their Bloch coordinates. 

Step 2 The weights of networks initialization. Initialize all the networks weights to randomly distribution of qubits on the 

Bloch sphere, as shown below. 

 T
21 ]|,,|,[||  jnjjj www W , (22) 
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where randjiji  22  , Cj ,,2,1  , C  denotes the number of competition nodes, and rand  denote the random 

number in (0, 1). 

Step 3 The parameters of networks initialization, including: the maximum iterative steps G , the initial value of learning 

rate 0 , the finial value of learning rate f , the initial value of neighbourhood radius 0r , the finial value of neighbourhood 

radius fr , the initial value of variance 0 , the finial value of variance f . Set the current iterative step t  to 0. 

Step 4 Compute the current learning rate, neighbourhood radius, and variance by the following equations. 
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Step 5 Measure all quantum weights in competition layer by Eqs. (10)-(12) to obtain their Bloch coordinates. For the lth 

sample lX| ( Ll ,,2,1  ), compute the corresponding winning node 
)(| l

jW  by Eqs. (20)-(21). 

Step 6 For the lth sample lX| , in the competitive layer node array, select the neighbourhood ))(,( * trj  with the centre 


)(| l

jW  and the radius )(tr . For all nodes jW|  in ))(,( * trj , rotate each component jiw|  to the corresponding lix| . The 

rotation angles are computed by the following equation 
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where ),( jjd  denotes the spherical distance between the jth node and the j*th node. 

According to theorem, the rotation axis and rotation matrix of rotating jiw|  to lix|  can be written as 
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Then, the rotation operation can be written as 

  li
i
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where ))(,( * trjj  , ni ,,2,1  , Ll ,,2,1  . 

Step 7 If Gt  , save clustering results and stop, else set t = t + 1, and go back to Step 4. 

V. SIMULATIONS 

A. The Clustering of IRIS Samples 

In order to experimentally illustrate the effectiveness of the proposed BQSON, the IRIS samples are used to compare it to 

the Classical Self-Organization Network (CSON), the K-mean clustering, the Nearest Neighbour Clustering (NNC) in this 

section. In these experiments, the BQSON is performed and evaluated in Matlab (Version 7.1.0.246) on a Windows PC with 

2.19 GHz CPU and 1.00 GB RAM. To enhance the impartiality of the comparison results, our BQSON has the same structure 

and parameters as the CSON in this experiment. The IRIS data set contains 150 four dimensional samples. The sample is 

divided into three classes, and each class contains 50 samples, such as setosa(1-50), versicolor(51-100), virginica(101-150). If 

the first dimension is ignored, the spatial distribution of the three kinds of samples is shown in Fig. 4. 
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Fig. 4 The space distribution of IRIS samples 

1)  Parameter Settings 

Both BQSON and CSON have 4 input nodes and 100 competition nodes arranged in square matrix. Other parameters are 

set as follows: 10000G , 8.00  , 1.0f , 50 r , 2fr , 50  , 5.0f . 

If the clustering results do not change in 100 consecutive steps, algorithm is called convergence. For K-mean clustering, the 

K is set to 3, and if each of variations of class centers is less than 1010  in two consecutive generations, the algorithm 

terminates. For NNC, the clustering threshold is set to 0.2 . If the distance of the sample X from the center of the kth class 

is less than  , the sample X is considered to belong to the kth class. 

2)  Clustering Result Contrasts 

Considering the log likelihood function is more used in evaluation of the performance of the Bayesian classification 

network, and less used in clustering algorithm, therefore, this index is not used in our work. To facilitate comparison, two 

relevant concepts are defined as follows: 

Precision Ratio Let the correct number of samples in the kth class after clustering be NPR, and the total number of samples 

in the kth class after clustering be NA. Precision Ratio is defined as follows 

 
%100

NA

NPR
PR . (31) 

Recall Ratio Let the correct number of samples in the kth class after clustering be NPR, and the total number of samples in 

the kth class before clustering be NB, Recall Ratio is defined as follows 

 
%100

NB

NPR
RR . (32) 

After 9797 iterative steps, the BQSON reaches convergence. All samples are divided into three classes, and each class 

contains 50 samples. The first class contains 50 “setosa” samples. The second class contains 48 “versicolor” samples and 2 

“virginica” samples. The third class contains 48 “virginica” samples and 2 “versicolor” samples. The Precision Ratio and 

Recall Ratio of three class samples reach 100%, 96%, 96%, respectively. The clustering results are shown in Fig. 5, where Fig. 

5(a) shows the distribution of winning nodes of each samples, and Fig. 5(b) shows the winning nodes corresponding to each 

class of sample. 

After 10000 iterative steps, the CSON does not reach convergence, as shown in Fig. 6(a). All samples are divided into 60 

classes, as shown in Fig. 6(b), where the first class contains 50 “setosa” samples, and for the rest of the 100 samples, the model 

is powerless. In addition, continue to run the CSON until 30000 iterative steps, the CSON is still not convergence. 
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Fig. 5 The IRIS clustering results of BQSON 
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Fig. 6 The IRIS clustering results of CSON 
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Fig. 7 The IRIS clustering results of K-mean and NNC 

For K-mean clustering, convergence is reached after 11 iterative steps. The first class contains 50 “setosa” samples, the 

second class contains 61 sample where 47 samples are correct, and the third class contains 39 samples where 36 samples are 

correct. The Precision Ratio of three class samples reach 100%, 77.05%, 92.31%, respectively, and the Recall Ratio of three 

class samples reach 100%, 94%, 72%, respectively. The clustering results are shown in Fig. 7(a). 

For NNC, All samples are divided into three classes. The first class contains 50 “setosa” samples, the second class contains 

62 samples where 50 samples are correct, and the third class contains 38 samples where all 38 samples are correct. The 

Precision Ratio of three class samples reach 100%, 80.65%, 100%, respectively, and the Recall Ratio of three class samples 

reach 100%, 100%, 76%, respectively. The clustering results are shown in Fig. 7(b). 

3)  Clustering Results Analysis 

From the experimental results, it is clear that both Precision Ratio and Recall Ratio of BQSON are the highest in four 

algorithms. These results show that the BQSON is obviously superior not only to the CSON but to the K-mean and the NNC as 

well. 
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The above experimental results can be theoretically explained as follows. First, BQSON adopted a new way to calculate the 

distance of nodes between input layer and competition layer. In the existing clustering algorithms, the distance measurement is 

generally taken the Euclidean distance, which this distance is calculated based on coordinates. In BQSON, however, the 

distance is obtained by calculating the Bloch spherical distance of each dimension between input samples and competition 

nodes. Let )(tyij  denote the jth output corresponding to the ith input sample, where t denotes the current iterative step. Let 
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where C denotes the number of nodes in competition layer, and L denotes the total number of samples. 

For the normalized samples, in CSON, the difference of each dimension between sample and weight || ijd  belongs to [0, 1]. 

In BQSON, the difference of each dimension ],0[   belongs to ],0[   by applying the Bloch spherical distance. Hence, in 

order to make fair, the average variance of BQSON after dividing by 2  is compared with that of CSON. The contrast results 

are shown in Fig. 8. 

The Fig. 8 shows that the average variance of BQSON is obviously greater than that of CSON, which suggests that the 

spherical distance has better distinguish ability than Euclidean distance for intensive samples. From Fig. 4, the “setosa” 

samples are relatively independent, which lead four algorithms to obtain the ideal clustering results. Both “versicolor” and 

“virginica” samples present overlapping intensive distribution, where the BQSON has also obtained the ideal clustering results. 

However, the clustering effect is not ideal for both K - mean and NNC based on the Euclidean distance, the CSON is 

completely unable to separate these two classes of samples. 

Secondly, the BQSON adopted a new way of weight adjustment. In CSON, the vector differences between samples and 

weights are directly used to adjust the weighs, which is strongly influenced by learning rate, not easy to achieve fine 

adjustment. In BQSON, however, the weighs are adjusted by rotating them to a sample so as to approximate this sample. Since 

the rotation is performed on the Bloch sphere, it may conduct a subtle adjustment of weights, which enhances the clustering 

ability of BQSON. 
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Fig. 8 The average variance contrasts of BQSON and CSON 

B. TheClustering of the Students’ Knowledge status 

It is the real dataset about the students’ knowledge status about the subject of Electrical DC Machines. This dataset 

contains 403 samples, and each sample has five input values as following: STG (The degree of study time for goal object 

materials), SCG (The degree of repetition number of user for goal object materials), STR (The degree of study time of user for 

related objects with goal object), LPR (The exam performance of user for related objects with goal object), PEG (The exam 

performance of user for goal objects), and one target value: UNS (The knowledge level of user). All samples are divided into 

four classes: Very Low (50), Low (129), Middle (122), and High (102). 
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1)  Parameter Settings 

Both BQSON and CSON have 5 input nodes and 100 competition nodes arranged in square matrix. Other parameters are 

set as follows: 20000G , 8.00  , 1.0f , 50 r , 2fr , 50  , 5.0f . If the clustering results do not change in 

100 consecutive steps, algorithm is called convergence. 

2)  Clustering Result Contrasts 

After 18105 iterative steps, the BQSON reaches convergence. All samples are divided into four classes. The first class 

contains 102 “High” samples and one “Middle” sample. The second class contains 129 “Low” samples. The third class 

contains 121 “Middle” samples. The fourth class contains 50 “Very Low” samples. The Precision Ratio of four class samples 

reach 99%, 100%, 100%, 100%, respectively. The Recall Ratio of four class samples reach 100%, 100%, 99%, 100%, 

respectively. The clustering results are shown in Fig. 9, where Fig. 9(a) shows the distribution of winning nodes of each 

samples, and Fig. 9(b) shows the winning nodes corresponding to each class of sample. 
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Fig. 9 The students’ knowledge clustering results of BQSON 
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Fig.10 The students’ knowledge clustering results of CSON 

After 20000 iterative steps, the CSON does not reach convergence, as shown in Fig. 10(a). The sample was not well 

clustered, there are 72 competition winning nodes in the competitive layer, which is equivalent to all samples that are divided 

into 72 classes, as shown in Fig. 10(b). In addition, continue to run the CSON until 50,000 iterative steps, the CSON is still not 

convergence. 

VI. CONCLUSIONS 

In this work, a quantum self-organization network clustering algorithm is proposed. In this approach, the weights of nodes 

in competition layer are updated by rotating qubits on the Bloch sphere. The comparative experiments of IRIS show that 

the clustering ability of proposed approach is significantly higher than the classic self-organizing network. The Precision Ratio 

and Recall Ratio of BQSON increased by 7.5467% and 8.6667% than that of K-mean and increased by 3.7833% and 5.3333% 

than that of NNC. In addition, the BQSON is inefficient. It is also worth pointing out that, BQSON increases computing 

operations such as the axis of rotation, rotation matrix, projection measurement, which may increase the amount of calculation, 

prolong the running time, and reduce the efficiency of clustering. However, the increase of these operations greatly improves 

the clustering ability of BQSON. In other words, BQSON is at the cost of computing efficiency for enhancing clustering ability, 
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which is consistent with no free lunch theorem. Hence, how to enhance the computing efficiency of BQSON is subject of 

further research. 
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