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Abstract- In some researches, time is a target variable. Factors that may influence the occurring time of an outcome need to be analysed.
The effect of a factor on an outcome is often modified by another factor because there is an interaction between them. The analysis
of the interaction between the factors is very important for us to better understand the mechanism of the effect that factors exert on
an outcome. This paper proposes the method to evaluate interactions of the factors and their 95% confidence intervals in survival
analysis. These factors are influencing the survival time of patients with cancer, and their interactions are successfully analysed by the
method.
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I.INTRODUCTION

Survival time is main observation target in the researches on life issues [6]. The connotation of survival time is in general. It
could be a survival time of patients or animals, and it could be life of the product, or the time of something changed from state to
state. No matter what the field of research, the corresponding data analysis methods are referred to as survival analysis when the
time variable is a main observation target. Survival analysis is widely used in many research areas such as biomedical, industrial,
agriculture, forestry and other industries. In many cases, survival time is affected by many factors. For example, the survival time
of cancer patients can be affected not only by the treatment, but also by the clinical stage, pathological type, nutrition, mental
status, and many other factors. It is very important to identify the influence factors of survival time for improving the survival
time and patient outcomes.

Let x1, x2, · · · , xm be m factors affecting the survival time. The observation target is the time when an event A occurs in
a follow-up study on the objects. If the risk of the occurrence of event A at time t is denoted as h(t, x), then a model of the
relationship between factors and the risk of the occurrence of event A can be described as

h(t, x) = h0(t)e
β1x1+β2x2+···+βmxm (1)

This formula was proposed by Cox [2], where h0(t) is called a base risk, which is the basic incidence rate if x1, x2, · · · , xm
have no effect on survival time. There arem parameters β1, β2, · · · , βm in the model. The formula (1) is also called proportional
hazards model.

If the m factors x1, x2, · · · , xm take the values a1, a2, · · · , am, then the risk of the occurrence of event A of the observed
objects must be h(t, a) = h0(t)e

β1a1+β2a2+···+βmam . On the other hand, if the m factors x1, x2, · · · , xm take the values
b1, b2, · · · , bm, then the risk of the occurrence of event A of the observed objects must be h(t, b) = h0(t)e

β1b1+β2b2+···+βmbm .
In this case, we have,

RR =
h(t, a)

h(t, b)
= h0(t)e

β1(a1−b1)+β2(a2−b2)+···+βm(am−bm) (2)

This value is a relative ratio indicator. It is a multiple of the risk of the occurrence of event A of the m factors x1, x2, · · · , xm
take the values a1, a2, · · · , am on the risk of the occurrence of event A of the m factors x1, x2, · · · , xm take the values
b1, b2, · · · , bm. Therefore, the variable RR reflects the impact of various factors on the survival time.

In many cases, the effects on the lifetime of a factor xi are related to the state of another factor xj . In these cases, we can
say that there exists an interaction between xi and xj [5]. It is very important to analyze the interactions between the factors for
the correct understanding of the mechanism of the influencing factors on the survival time. However, many practitioners do not
know how to analyze the interaction between factors in their follow-up studies. In many textbooks on the multivariate analysis,
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the methods in correctly analyzing the interaction between factors are usually not described. In this paper, we will present a
method to analyze the interaction between the factors by the application of the Cox proportional hazards model. This method is
applicable to any fields of multivariate data analysis when time is an observed variable.

The organization of the paper is as follows.
In the following 3 sections we describe our new method to analyze the interaction between the factors by the application of

the Cox proportional hazards model. In Section 2 we give two applicable methods, product term method and dummy variable
method to analyze the interaction between the factors.

In Section 3 we give an example of the applications of the methods presented in Section 2.
Some concluding remarks are in Section 4.

II.THE METHODS TO ANALYZE THE INTERACTIONS USING THE COX MODEL

Let x1 and x2 be the two factors affecting the survival time. Without loss of generality, we can assume the two variables are
both binary variables taking values 0 or 1. By the definitions of variance and covariance [7], we know that,

If z = ax1 + bx2, then
V ar(z) = a2V ar(x1) + b2V ar(x2) + 2abCov(x1, x2) (3)

If z = x1 − x2, then
V ar(z) = V ar(x1) + V ar(x2)− 2Cov(x1, x2) (4)

where a and b are constants; V ar(x) is the variance of x and Cov(x, y) is the covariance of x and y.
To analyze the interactions between the variables x1 and x2, we will discuss the following two methods of applying the Cox

model.

A.Product Term Method

Let x3 = x1x2 be another variable. We will build a Cox model of x1, x2, x3 as follows.

h(t, x) = h0(t)e
β1x1+β2x2+β3x3 (5)

Let β̂1, β̂2, β̂3 be the estimation of the parameters β1, β2, β3 in the formula (5) by actual research data:

h(t, x) = h0(t)e
β̂1x1+β̂2x2+β̂3x3

The amount of modification of x2 to x1 can be estimated by the following method:
Step 1: Compute the ratio of the risk of x1 = 1 event A occurs to the risk of x1 = 0, when x2 = 0. From formula (2) and

(5), we have:
RR0 = eβ̂1 (6)

Step 2: Compute the ratio of the risk of x1 = 1 event A occurs to the risk of x1 = 0, when x2 = 1. From formula (2) and
(5), we have:

RR1 = eβ̂1+β̂3 (7)

Then, the amount of changes of x1 on the survival time due to the different state of x2 can be expressed as

|RR1 −RR0| = |eβ̂1+β̂3 − eβ̂1 |

It is also called the effect of x1 on the survival time modified by x2.
The parameters β1, β2, β3 in the formula (5) are normally estimated based on the research data. Therefore, we have to

calculate its 95% confidence interval. If 0 is not contained in this interval, then we can conclude that there is an interaction
between x1 and x2 [3]. The 95% confidence interval of |RR1 −RR0| can be expressed as:

(eβ̂1+β̂3 − eβ̂1)± 1.96
√
V ar(eβ1+β3 − eβ1) (8)

In above formula,
√
V ar(eβ1+β3 − eβ1) can be estimated as follows:

The Taylor expansion of
√
V ar(eβ1+β3 − eβ1) can be written as [4]:

eβ1+β3 − eβ1 = (eβ̂1+β̂3 − eβ̂1)β1 + (eβ̂1+β̂3)β3

+(eβ̂1+β̂3 − eβ̂1)(1− β̂1)− (eβ̂1+β̂3)β̂3

If we set c = (eβ̂1+β̂3 − eβ̂1)(1− β̂1)− (eβ̂1+β̂3)β̂3, then c is a constant.
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From the formula (3), we then have,

V ar((eβ̂1+β̂3 − eβ̂1)β1 + (eβ̂1+β̂3)β3)

= (eβ̂1+β̂3 − eβ̂1)2V ar(β1) + (eβ̂1+β̂3)2V ar(β3)

+2(eβ̂1+β̂3 − eβ̂1)eβ̂1+β̂3Cov(β1, β3)

(9)

In above formula (9), the values of V ar(β1), V ar(β3) and Cov(β1, β3) can be obtained from the variance and covariance
matrices of the parameter estimations.

B.Dummy Variable Method

There are 4 different combinations of the variables x1 and x2 when they take values of 0 and 1:

(0, 0); (0, 1); (1, 0); (1, 1)

We then set 3 dummy variables z1, z2 and z3 to represent these 4 combinations:

z1 =

{
1 (x1, x2) = (1, 1)
0 otherwise

z2 =

{
1 (x1, x2) = (0, 1)
0 otherwise

z3 =

{
1 (x1, x2) = (1, 0)
0 otherwise

Now, the Cox model becomes,

h(t, z) = h0(t)e
β1z1+β2z2+β3z3 (10)

We can estimate the parameters β1, β2, β3 in the formula (8) based on the our research data as β̂1, β̂2, β̂3. Then we have,

h(t, z) = h0(t)e
β̂1z1+β̂2z2+β̂3z3

The amount of modification of x2 to x1 can be estimated by the following method:
Step 1: Since the two cases of (x1, x2) = (1, 0) and (x1, x2) = (1, 1) are corresponding to the two cases of (z1, z2, z3) =

(0, 0, 1) and (z1, z2, z3) = (1, 0, 0) respectively, the ratio of the risk of event A occurs when (z1, z2, z3) = (1, 0, 0) to the risk of
event A occurs when (z1, z2, z3) = (0, 0, 1) can be computed by formula (2) and (8) as RR1 = eβ̂1−β̂3 .

By formula (4), the 95% confidence interval of RR1 can be expressed as:

e(β̂1−β̂3)±1.96
√
V ar(β1)+V ar(β3)−2Cov(β1,β3) (11)

Step 2: Since the two cases of (x1, x2) = (0, 0) and (x1, x2) = (0, 1) are corresponding to the two cases of (z1, z2, z3) =
(0, 0, 0) and (z1, z2, z3) = (0, 1, 0) respectively, the ratio of the risk of event A occurs when (z1, z2, z3) = (0, 1, 0) to the risk of
event A occurs when (z1, z2, z3) = (0, 0, 0) can be computed by formula (2) and (8) as RR0 = eβ̂2 .

By formula (4), the 95% confidence interval of RR0 can be expressed as:

eβ̂2±1.96
√
V ar(β2) (12)

We can conclude that there must be an interaction between x1 and x2 if the 95% confidence interval of RR0 and the 95%
confidence interval of RR1 has no intersection. Therefore, the amount of modification of x2 to x1 can be evaluated by the
difference of RR1 and RR2.

III.APPLICATIONS OF THE METHODS

In order to investigate whether new treatments can improve survival in patients with malignant, we have recorded their treat-
ment method x1 (x1 = 0 corresponding to the new treatment method of treatment; x1 = 0 corresponding to a traditional method
of treatment) and their lymph node metastasis x2 (x2 = 1 corresponding to lymph node metastasis; x2 = 0 corresponding to no
lymph node metastasis), for pathological diagnosis of 63 patients with malignant. We have also made a follow-up observation of
their survival time (time). If we represent the random event ”death” as a random variable outcome, then outcome = 0 for the
patients have not died at the end of the follow-up period, otherwise outcome = 1.
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TABLE 1 The Survival Time and Its Influencing Factors of 63 Cases of Malignant Patients

No. x1 x2 time out No. x1 x2 time out
1 1 0 52 1 33 0 0 120 1
2 0 1 51 1 34 1 1 40 1
3 1 1 35 1 35 0 0 26 0
4 1 0 103 1 36 0 1 120 1
5 0 1 7 0 37 1 1 120 1
6 0 1 60 1 38 0 0 120 0
7 0 1 58 1 39 0 0 3 0
8 1 1 29 1 40 0 0 120 0
9 1 1 70 1 41 0 1 7 0

10 0 1 67 1 42 0 1 18 1
11 0 1 66 1 43 1 1 120 1
12 1 0 87 1 44 0 1 120 1
13 1 0 85 1 45 0 1 15 1
14 0 1 82 1 46 0 0 4 0
15 1 1 76 1 47 1 1 120 1
16 1 1 74 1 48 0 0 16 0
17 1 1 63 1 49 0 1 24 0
18 0 0 101 1 50 0 0 19 0
19 0 0 100 1 51 0 1 120 1
20 1 1 66 1 52 0 0 24 0
21 0 0 93 1 53 0 0 2 0
22 1 1 24 1 54 0 1 120 1
23 1 0 93 1 55 1 1 12 1
24 1 0 90 1 56 0 0 5 0
25 1 1 15 1 57 0 0 120 1
26 0 0 3 0 58 1 1 120 1
27 1 0 87 1 59 0 0 7 0
28 0 0 120 0 60 0 0 40 0
29 0 0 120 0 61 1 1 108 1
30 0 0 120 0 62 0 1 24 1
31 0 1 120 1 63 0 0 16 0
32 1 1 120 1

TABLE 2 The Maximum Likelihood Estimation of the Cox Model Parameters for 63 Cases of Patients with Malignant

Estimations SE of β P values
Treatment method x1 1.591 0.605 0.009

Lymph node metastasis x2 1.353 0.522 0.009
x3 = x1x2 -1.508 1.702 0.032

TABLE 3 The Variance and Covariance Matrix of Parameters

x1 x2 x3
x1 0.366 0.201 -0.365
x2 0.201 0.272 -0.272
x3 -0.365 -0.272 0.493
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The follow-up results for the 63 patients are shown in Table 1.
We input the data in Table 1 into the computer, and then performed a Cox model fitting by using the process phreg of statistical

package SAS 9.0 [1]. We obtained a fitting result of Table 2, and the variance and covariance matrices of parameters of Table 3.
From formula (6) we can see: in the cases of no lymph node metastasis (x2 = 0), the risk of death in patients with traditional

method of treatment (x1 = 1) is about RR0 = eβ̂1 = e1.591 = 4.909 times for those with new treatment method (x1 = 0).
From formula (7) we can see: in the cases of lymph node metastasis (x2 = 1), the risk of death in patients with traditional

method of treatment (x1 = 1) is about RR1 = eβ̂1+β̂3 = e1.591−1.508 = 1.086 times for those with new treatment method
(x1 = 0).

|RR1 −RR0| = 4.909− 1.086 = 3.823

From formula (9) we know,
V ar(RR1 −RR0)

= (eβ̂1+β̂3 − eβ̂1)2V ar(β1) + (eβ̂1+β̂3)2V ar(β3)

+2(eβ̂1+β̂3 − eβ̂1)eβ̂1+β̂3Cov(β1, β3)
= 3.8232 × 0.366 + 1.0862 × 0.493
+2× 3.823× 1.086× (−0.365) = 2.899

Then we know that the 95% confidence interval of |RR1 −RR0| must be

3.823− 1.96
√
2.899 ∼ 3.823 + 1.96

√
2.899

In other words, the 95% confidence interval of |RR1 −RR0| is 0.486 ∼ 7.160.

IV.CONCLUDING REMARKS

This paper has introduced two applicable methods, product term method and dummy variable method to analyze the inter-
action between the factors by the application of the Cox proportional hazards model. An example presented in Section 3 shows
that the two methods are very practical.

The result of this application shows that in the case of no lymph node metastasis the new treatment method is better. While
for the case of lymph node metastasis, the risk of death with new treatment method is not much lower than that of with the
traditional treatment method. From the confidence interval of view, this difference reaches a statistical significance. This shows
that there is an interaction between lymph node metastasis and treatment methods. The efficacy of the new treatment method is
modified by the severity of the disease.
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