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Abstract-Relativistic kinematic effects are deduced immediately from the space-time symmetry.
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The theory of relativity [1, 2], that began primarily with explanations of concrete  physical effects, is now assumed [3, 4] to 

be just a reflection of the space-time symmetry resulting in the relativistic coordinate-time transform [1, 2] without using a 

priori  limitation on speeds of material bodies. Historically, the latter approach was initiated by Proclus [5], who abolished the 

fifth element of Aristotle (the ether) and, so, converted both the motion and the rest from absolute to relative ones. 

The present comment to [3-5] reproduces the author’s talk [6] and exercises with physics students. Following the antique 

methodology [5], start with definitions. Launch two identical crystals into the infinite vacuum along a common direct line (Fig. 

1). In each reference frame, measure any distance, 
 
or

 
' , with an unit equal to N crystal periods, and measure any time 

interval,   or
 

' , with an unit equal to M electron “rotations” around any local nucleus. 

 
Fig. 1 Inertial reference frames representing crystals moving with different speeds (denoted with different thick arrows). From the external viewpoint, the 

identical crystals seem squeezed to different lengths - because of different Lorenz “length contractions” [1, 2] 

To meet the aesthetic “ancient-Greek” symmetry (ζσμμεηρείν = symmetrein means “to measure together"), assume the 

ratio N/M being adjusted so that both coordinates ',   and times ',  are measured with a common uni-dimensional 

etalon. Under this convention, any registration of any event (indicated by a flash in Fig. 1 and Fig. 2) in any of the reference 

frames should be invariant relative to the commutation 

 

''

''








 (1) 

In addition, with account of the counter-directional mutual reciprocity of the identical reference frames, the space-time 

isotropic interrelation is to be invariant relative to the commutation
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Put 0'' 0000    for a primary event and, to meet the symmetry invariance conditions (1)-(2), interrelate 

subsequent events )',',(   by equations  

 

''

''









     




      








'

'
 (3) 

                                                 
At this point, progressive modern students propose: “Let both N periods and M rotations be equal to 1$”.  




'
'
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By putting the right equations into the left ones and by putting the left equations into the right ones, derive equations of the 

following type:       ,22    which result in the common condition  

 122   (4) 

(converted to the Pythagoras theorem in Appendix 1).  

By putting 0'  or 0  into Eqs. (3), find the relative velocity of the reference frames 

 ./   (5) 

By using Eq. (5), convert the cyclic recurrence condition (4) to the form 

   ,1
2/12 

   (6) 

resulting in the limitation 

 1  (7) 

for relative velocities of reference frames and, so, of any material bodies. Thus, the space-time-symmetry postulate (1)-(2) has 

given additional proof (7) for the 12th theorem of Proclus [5]: “Εν πεπεραζμένω τρόνω ηο άπειρον κινείζθαι οσκ έζηιν” = 

“During a limited time it is not possible to go an infinite distance”. 

The space-time transform formulas (3)-(4) are followed by popular effects of the relativistic kinematics [1, 2]: 

 substitutions =0  or =0   into Eqs. (3) give, correspondingly, =    or =   , which is called the Lorenz 

“length contraction” (shown in Fig. 1);  

 substitutions =0  or =0  into Eqs. (3) give, correspondingly, =    or =   , which is called the “twin 

paradox”; 

 if a body is moving with a velocity 
b
      relative to the }','{ 

 
reference frame, then - according to Eqs. (3) 

- the body velocity relative to the },{   frame is  
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'
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b
b
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


 , (8) 

which is called the “relativistic velocity summation” - consistent with the Proclus  speed limitation (7); 

 according to limitation (7) and Eq. (8), in all inertial reference frames all small vacuum perturbations propagate with a 

common – ultimate – speed equal to 1 (exemplified with the electromagnetic pulse propagation [1, 7] - Appendix 2).  

In Appendix 3, formulas (3)-(4) are converted to the conventional relativistic kinematic transform [1, 2]. However, note 

that, economically compared to [1, 2], the commutation Eqs. (3)-(4) have been above deduced from the only postulate - of the 

aesthetic space-time-symmetry [3-5].  
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APPENDIX 1 COORDINATE-TIME TRANSFORM IN COMPLEX VARIABLES 

It may be pedagogical to undertake the Minkowski’s [1, 2] change of variables ， ，ˆˆ ˆi i i          

converting the Eqs. (3) to the form  
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(A1.1) 

and the cyclic recurrence condition (4) to the form 

 

.1
ˆ

ˆ
det 

 

 
 (A1.2) 

These formulas may be illustrated with Fig. 2: taking into account the Euclidean similarity of the triangles, the “Descartes 

coordinates” ，ˆ  and ，    are mutually turned at the angle  arccosarcsin 


. Correspondingly, the Eq. 

(A1.2) takes the form of “Pythagoras theorem” 1sincos 22   , where, the angle   being imaginary, the 

“cathetuses”  cos and 


sin
 

may be longer than the “hypotenuse” 1.  

 

Fig. 2 Rotation of Descartes coordinates  ˆ, and '.ˆ,'   

APPENDIX 2 VACUUM  PERTURBATIONS 

Take the wave equations [1, 7] 
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 (A2.1) 

describing an electromagnetic perturbation 
 

of the vacuum (the unitary coordinate and time in these equations are related to 

the “usual” ones in Appendix 3). These equations satisfy the double symmetry conditions (1)-(2) and, so, should be invariant 

relative to the space-time commutation Eqs. (3)-(4). For checking, use Eqs. (3) to derive  
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 (A2.2) 

put these derivatives into the left (A2.1) and see how the cyclic recurrence formula Eq. (4) converts the left (A2.1) to the right 

(A2.1). 

APPENDIX 3 INTERRELATION BETWEEN UNITARY AND “USUAL” SPACE-TIME SCALES 

To relate the uni-dimensional symmetrized coordinate   and time   to their “usual” (measured, for instance, with meters 

and seconds) equivalents   and t , undertake the linear change of variables 

  btax  ,  (A3.1) 
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converting the “ancient-Greek” commutation Eqs. (3)-(4) to the “usual” Lorenz transform [1, 2] 
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22 /1/1 cv
 where c   is the “usual” relative velocity of reference frames and cba 

 
is the “usual” speed limit common for all 

material bodies. Measured at the end of the previous millennium, this absolute limit - the speed of light – was proved to be 

sm /103 8  [1, 2]. 
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