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Abstract-Simulation today is one of the most used tools in science and engineering. Traffic engineering is no exception. Simulators to 

be usable passes through processes of verification, validation and calibration. All simulators are based on assumptions and 

parameters that need to be calibrated so as to be practical in real world applications. Some parameters change from site to site. 

Therefore, the calibration process is often needed. Calibration can be seen as an optimization process that seeks to minimize the 

difference between observed and simulated measures. The question of which optimization technique suits more for this particular 

problem remains open. In this paper the convergence velocity of main heuristic optimization techniques, namely Genetic Algorithm 

(GA), Tabu Search (TS), Particle Swarm Optimization (PS) and Simultaneous Perturbation for Stochastic Approximation algorithm 

(SPSA) were used to calibrate a traffic simulation model called SUMO. The results of the calibration of the mentioned optimization 

techniques were compared. Classical optimization techniques, namely Neldear-Mead and COBYLA were used as a baseline 

comparison. Each technique has its own parameters that affect convergence velocity. Therefore, optimization techniques themselves 

need to be calibrated. However, TS and PS are not widely used to calibrate traffic simulators. They perform well in this particular 

problem. PS is highly parallel compared to the TS and SPSA. The paper shows that classical optimization techniques are not suitable 

for this particular problem, PS and TS appear to be better than GA and SPSA. PS seems to be a promising optimization technique. 

Keywords- Traffic Simulation Calibration; Genetic Algorithm; Participle Swarm Optimization; Tabu Search 

I. INTRODUCTION 

Computer simulation is used in many different scientific problems that cannot be tested in practice through field 

experimenting environments. Traffic network is one of these problems. The processing power of modern computers offers the 

possibility to simulate scientific problems and give results at a rate much faster than any real environment [1]. 

 Traffic simulation is classified according to the level of detail of the simulation. Traffic simulation classes are macroscopic, 

microscopic, mesoscopic, and sub-microscopic simulation models. In this research, the microscopic simulation model was 

used, it simulates the movement of every single vehicle on the street. This model assumes that the behavior of the vehicle 

depends on both, the vehicle's physical abilities to move and the driver's controlling behavior [2]. 

Microscopic traffic simulation models have been used extensively by transportation engineers in planning purposes of 

transportation engineering and in cases where field experimentation is impossible or/and costly to conduct [3].  

Many microscopic simulation models are used in transportation engineering such as VISSIM, CORSIM, SUMO and others. 

These models use independent parameters that describe traffic flow characteristics such as driver behavior and traffic control 

operations. These parameters have default values provided by the models or best-guessed values that can be changed by users 

to represent the traffic conditions of the case under study [4]. Therefore, traffic simulation models need to be calibrated and 

validated. Traffic simulation model calibration is a process of adjusting model parameters and fine-tuning certain simulation 

inputs, such as signal control plans and Origin-Destination demand tables, such that local traffic conditions as measured by 

traffic flow, travel speed and/or time, can be matched closely by simulation outputs [3, 5]. Calibration and validation of traffic 

simulation models are necessary in assessing their value in transportation management see [3, 4]. Without validation of the 

traffic simulation models such as testing whether the car-following, lane-changing, gap acceptance, and route choice logic 

represent the real traffic behavior, the calibration of traffic simulation models will be infeasible [5].  

Traffic simulation model calibration can be seen as an optimization problem with a huge search space and often a highly 

nonlinear and complex one. The optimization problem has often no gradient information to assist the search for an optimum. 

Therefore, computing techniques were applied such as Genetic Algorithm, Simulated Annealing, Complex Algorithm,   

Simultaneous Perturbation Stochastic Approximation Algorithm, see [5, 6, 8-11]. The most widely used among all this was 

Genetic Algorithm because of its easy implementation [5], but Particle Swarm and Tabu Search optimization techniques have 

not yet been addressed in the current microscopic traffic simulation models calibration literature that we have reviewed. 

The objective of this paper is to use, evaluate and compare four procedures for calibration of microscopic simulation 

models based on a widely used probabilistic optimization methods, namely Genetic Algorithms (GA), Particle Swarm (PS), 

Tabu Search (TS) and Simultaneous Perturbation for Stochastic Approximation algorithm (SPSA) which were used in many 

engineering and scientific applications. The results and validity of the four calibration procedures were evaluated, compared 

and demonstrated by using two real case studies with a real signalized road segment (simple and complex traffic network). 
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SUMO (“Simulation of Urban MObility” ver. 0.12.1) is adopted as a widely used microscopic simulator. It is distributed as an 

open source, so everyone may modify it, extend it and/or use it [1]. The remainder of this paper consists of the following parts: 

(1) review of previous calibration studies, (2) a brief background of the real test sites, (3) the simulation model SUMO, (4) the 

methodology of the used procedures, (5) analysis, evaluation and comparison of the procedures used, (6) and finally, the 

conclusions and the recommendations. 

II. REVIEW OF PREVIOUS CALIBRATION STUDIES 

Many studies about calibration of traffic simulation models have been published. Table 1 shows a summary of calibration 

research literature, see [3, 7, 11-25, 47]. The source of this research paper is the online e-journals such as EBSCO Academic 

Search Premier and ScienceDirect in addition to the Internet. These studies adopted different simulation models and model 

parameters and various optimization methodologies for calibration. A look at the mentioned calibration studies reveals that GA 

and SPSA were widely used. The relevant literature lacks the use of PS and TS optimization in traffic simulation calibration. 

Both the computational time and the quality of the solution can be improved by means of proper techniques and by using all 

the available information concerning the phenomenon [36]. This study uses PS and TS in addition to the GA and SPSA in 

order to compare the performance of these methodologies on traffic simulation calibration. According to Punzo the search for 

an effective solution to the calibration problem cannot be exhausted by the choice of the most efficient algorithm [36]. In 1997 

Wolpert and Macready derived “No free lunch theorems for optimization.” They state that “the expected performance of any 

pair of optimization algorithms across all possible problems is identical.” [49]. In 2014 Punzo derived “No Free Lunch” 

Theorems Applied to the Calibration of Traffic Simulation Models. He states that “there is a clear dependence between the 

performance of a calibration procedure and the case study under analysis and ascertain the need for global solutions in 

simulation optimization with traffic models.” [48]. 

TABLE 1 SUMMARY OF OPTIMIZATION METHODS  

Study 
Optimization 

Method 
Simulation Tool Calibration Parameters 

Objective 

Function 
Network Type 

[11] SPSA PARAMICS 
Mean Target Headway, Mean 

Reaction Time 
Flow, Density Freeway 

[12] N/A PARAMICS 
Mean Target Headway, Mean 

Reaction Time 
Speed, Volume Freeway 

[7] GA PARAMICS 
Mean Target Headway, Mean 

Reaction Time 
Occupancy, Flow Freeway 

[13] GA PARAMICS 

Mean Target Headway, Mean 

Reaction Time, Feedback, 

perturbation, familiarity 

Traffic Count Roadway 

[14] 
Box Complex, 

SPSA 
DYNAMIT-P Speed-Density relationship, Capacity 

Free Flow, 

Minimum Speed 
Network 

[15] 
Simplex 

Algorithm 

CORSIM, 

TRANSIMS 

Car following factors, Driver‟s 

aggressiveness  factor, O-D matrix, 

PT1 parameters 

 

Volume Freeway 

[16] GA CORSIM 
Driver behavior parameters, vehicle 

performance parameters 

Volume, Travel 

time 
Freeway 

[17] Iterative approach MITSIMLab 

Parameters of the driving behavior 

models and rout choice model, O-D 

flow, habitual travel times 

Travel time Urban network 

[18] SPSA algorithm MITSIMLab Driver behavior model parameters Traffic counts 
Freeway, 

Parkway 

[19] 
Complex 

algorithm 
MITSIMLab O-D flow, behavioral parameters Speed, Density 

Freeway and 

arterial 

[20] Trial and error AIMSUN Global, Local parameters Volume Freeway 

[3] GA VISSIM Eight parameters 
Average travel 

time 
Intersection 

[21] SPSA algorithm 
Microscopic 

simulation 

Global parameters (Mean target 

head, mean reaction time etc) Local 

parameters (link headway factor, link 

reaction factor, etc) 

Capacity Freeway 

[22] 

GA with Non-

parametric 

statistical test 

Microscopic 

simulation 

Various  microscopic simulation 

parameters in VISSIM 
Distribution Freeway 

[23] 

MSA 

equilibration 

algorithm 

EMME/2 Local parameters, global parameters 
Travel time, 

Counts 
Network 

[24] 
Transfer function 

model 

DYNASMA 

RT-X 
N/A Speed Network 

[25] GA VISSIM Microscopic simulation parameters 
CPI (Crash 

potential Index ) 
Intersection 

错误！未 Neural Networks VISSIM 
8 microscopic simulation parameters 

in VISSIM 

Travelling time, 

queue parameters 

Urban Area 

(roundabout) 
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III. METHODOLOGY 

A. Calibration as an Optimization Problem  

Calibration of traffic simulation model is the phase of transportation system modeling aimed at defining the values of the 

model‟s parameters in order to have the minimum possible distance between the traffic measurements observable in reality and 

those predicted by the model. This can be formulated in the following optimization framework: 

  Min
β,γ

f Mobs , MSim   

Subject to 

l 
β,i

≤ βi  ≤ u
β,i

   i = 1 … m     and   βi ≤ βj    i ≠ j 
(1) 

Where β i the vectors of continuous decision variables (i.e. The model parameters to calibrate), potentially belonging to m 

different classes of simulation subjects (e.g. Different vehicles classes, different road types, etc.);  f .    Is the objective 

function (or fitness or loss function), measuring the distance between the observed and simulated traffic measurements Mobs 

and Msim; lβ,i, uβ,i are model parameter lower and upper bounds. Msim = S( β1, … , βm ), in which S( . ) is the micro-simulation 

model. The previous calibration studies focused on minimizing the sum of the relative error between the observed data during 

a certain period of time in a typical day and the simulation output for the same time period. The identification of model 

parameters or calibration is therefore a crucial issue [36]. Moreover, in traffic-flow microsimulation, each single evaluation of 

the objective function is very costly, depending on the size of the network and on the number of vehicles simulated. 

Computational complexity, in addition to the cost of single information regarding the objective function, has therefore steered 

calibration studies toward the use of heuristic optimization techniques [36]. 

B. Classical Optimization Methods  

One way to classify optimization techniques is local and global. Global optimization algorithms are defined as 

optimization algorithms that employ measures which prevent convergence to local optima and increase the probability of 

finding a global optimum. Another way to classify optimization techniques is deterministic and stochastic techniques. 

Stochastic techniques use some random number to generate solutions. Unlike Simplex and Gradient Descent local optimization 

methodologies, which are deterministic algorithms, stochastic global optimization algorithms do not get trapped in local 

optima. Another way to classify optimization technique is gradient based and non-gradient based techniques. Gradient based 

uses gradient to find its way to the local optimum. Non-gradient based tries to substitute the gradient by other means (some 

time heuristic).   

1)  Nelder-Mead Simplex Method (downhill simplex) (NM): 

NM simplex method is one of the classical optimization techniques that are still in use. It was introduced in 1965 by Nelder 

and Mead [1]. It is a deterministic simplex method for finding a local minimum of a function of several variables. For a 

function of n parameters, the algorithm maintains a set of n+1 function values evaluated at n+ 1 point in parameter space. This 

set of points defines a simplex in n dimensions. For two variables, a simplex is a triangle, and the method is a pattern search 

that compares function values at the three vertices of a triangle. The worst vertex, where f(x, y) is the largest, is rejected and 

replaced with a new vertex. A new triangle is formed and the search is continued. The process generates a sequence of 

triangles (which might have different shapes), for which the function values at the vertices get smaller and smaller. The size of 

the triangles is reduced and the coordinates of the minimum point are found. The simplex then moves toward optimum by 

reflecting the point with the worst function value through the centroid (average) of the remaining n points, see [40, 41]. Nelder-

Mead can‟t be used as it is for multimodal functions due to its local search nature. Converting it to global optimization method 

is relatively easy by repeating the method starting from randomly chosen points. This technique will add stochastic properties 

of the original deterministic method. For more details and options for globalization of the method, see [42]. The 

implementation that is developed by 'scipy' [43] community was used. Scipy is an open source library of algorithms. 

2)  Constrained Optimization BY Linear Approximation (COBYLA) Method: 

COBYLA developed by Powell in 1994 [44] is a sequential trust-region algorithm, it is based on linear approximations to 

the objective function and each constraint. Like NM for a function of n parameters, the algorithm maintains a set of n+1 

function values evaluated at n+1 points in parameter space an approximate solution xi, and a radius ρi. Approximations to the 

objective function and constraint functions such that their values agree with the linear approximation on the n+1 points.  This 

gives a linear program to solve (where the linear approximations of the constraint functions are constrained to be non-negative). 

However the linear approximations are likely only good approximations near the current simplex, so the linear program is 

given the further requirement that the solution, which will become xi+1, must be within ρi from xi. ρi only decreases, never 

increases. For more details, see [45, 46]. Like NM COBYLA can‟t be used as it is for multimodal functions due to its local 
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search nature. Converting it to global optimization method is relatively easy by repeating the method starting from randomly 

chosen points. This technique will add stochastic properties of the original deterministic method. The implementation that is 

developed by „scipy‟[43] community was used also.  

C. Meta-heuristic Optimization Methods 

Meta-Heuristic-based methods use both exploration and exploitation of search space. The balance between exploration and 

exploitation permits the identification of local minima, at the same time it encourages the discovery of a global optimal 

solution. Among these, GA, PS, TS are algorithms represent currently popular methods which have found a wide range of 

applications in different scientific fields (see Table 1). GA, PS, and TS are population based; each iteration examines several 

solutions unlike SPSA that examines only two solutions in each iteration. So GA, PS and TS can be easily parallelized, but 

SPSA needs more efforts to be parallelized, which will be left to further future work. 

1)  Genetic Algorithm (GA): 

The GA (see Appendix A, Algorithm I) is a search technique, inspired by the concept of biological evolution, where its 

population is evolved by the repeated application of three major operators, namely selection, crossover and mutation operators. 

The algorithm starts from random population, candidate solutions are evaluated, and selection process is applied so that better 

solutions have more probabilities to be used in producing new population. Crossover and mutation are applied to introduce 

new solutions. Performing the loop once is called a generation, and this is then repeated until stop criteria is met.   

The balance between exploitation and exploration of the search space is controlled by adjusting selection pressure and 

mutation probability. Many variations of GA are found in the literature, for example [26]. The one described in [27] is used. 

GA has several parameters which need to be tuned, Mutation Probability (MP), generation size and type of crossover. GA 

operators are defined as follows: 

Crossover operator: in real number gene representations- as used in this study- there are many possible kinds of crossover, 

(for a comprehensive list see [28]). In the following, two widely used variations are presented: 

a) Simple Crossover: Select random crossover point, all the parameters from the first gene to the crossover point comes 

from the first parent, all the parameter from the point to the end comes from the second parent. 

  pi1, pi2, … , pix , pjx+1, … , pjn   (2) 

pi :parameter form the first individual i 

pj :parameter form the second individual j 

n: number of parameters. 

x: crossover point. 

b) Average Crossover: Take the average value of the parameters from all the participating individuals to generate offspring. 

It can have several forms depending on the number of participants (two participants or more). 

 
 

pi1 + pj1

2
,
pi2 + pj2

2
, … ,

pin + pjn

2
  (3) 

Pi :parameter form the first individual  i 

pj :parameter form the second individual  j 

n: number of parameters. 

Selection: Select randomly two individuals, the ones that have better fitness will survive and participate in a crossover. 

Mutation: Randomly change one of the parameters to randomly selected value from its feasible range. 

2)  Particle Swarm (PS): 

Inspired by social behavior of birds, fish and other living intelligence, PS is a global optimization method developed by 

Kennedy, Eberhart and Shi [29] (see Appendix A, Algorithm II), it works by maintaining a swarm of particles that explores the 

search-space influenced by the improvements discovered by the other particles. In PS the candidate solutions are the particles. 

They initially start from random positions and move in randomly defined directions. The direction of a particle is then 

gradually changed to move in the direction of the best found positions of itself and its peers, searching in their vicinity and 

potentially discovering better positions. Small changes in the PS implementation can cause dramatic changes in the behavioral 

parameters that cause good optimization performance [30]. Pederson in [30] has defined good parameters (w, cp, cg) of PS 

passed on comprehensive empirical experiments. For 1,000 fitness function evaluations and problem dimension of 5 
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parameters they found that best convergence velocity will be if we set the  number of particles in the swarm to 47, w to -0.1832 

cp to 0.5287 and gc to 3.1913. See [30]. 

3)  Tabu Search (TS): 

TS was first proposed by Glover 1986 [31] (see Appendix A, Algorithm III) and since then it has become increasingly used 

in many applications. It has been successfully applied to obtain optimal or sub-optimal solutions to such problems as 

scheduling, timetabling, traveling salesperson and layout optimization. For example ([32, 33]). TS memorizes a list of tabu 

candidate solutions that are not repeated in the subsequent iterations and that is updated at each iterative step. The Tabu 

algorithm uses a neighborhood search procedure to iteratively move from a candidate solution to a selected one in its 

neighborhood, until some stopping criterion has been satisfied. The new candidate solution is accepted if it has not previously 

been memorized as tabu, or bad candidate solution [32]. TS is a deterministic algorithm unless some randomness in creating 

neighborhood is introduced. Therefore, a random neighborhood was introduced. The TS result depends on a starting solution, 

so a random set of solutions was used to be starting solutions that differ each time and consequently, introduce another factor 

of randomness. 

The advantage of TS is in its incorporation of adaptive memory and responsive exploration. It explores local minima and at 

the same time it has a strategy to explore new areas of solution space. TS is originally used for discrete optimization. However, 

this paper proposes an implementation of continuous domain problems. In the implementation of the above mentioned 

algorithm which is similar to what is described in [34]. The move can be defined either in a deterministic or stochastic way. 

For each parameter we have two moves, the first move is adding a small amount, and the second one is subtracting a small 

amount (εi) and (εai). (εi) and (εai) were called move distance and anti-move distance respectively. By this definition the 

neighborhood size will be twice the number of parameters. The negative sign move was called an anti-move since it actually 

cancels the effect of the move.  

Move and neighborhood definition N(θ): 

Move distance implementation as deterministic is defined as: 

 εi = 0.05 ∗ (Maxi − Mini) (4) 

and 

 εai = −0.04 ∗ (Maxi − Mini)  (5) 

Where  

Maxi: maximum feasible value of parameter i 

Mini: minimum feasible value of parameter i 

The move is 5% of the parameter range and the anti-move is 4% of the range. These numbers have been obtained after 

preliminary investigation. Smaller values will explore the neighborhood of each solution more extensively. This could make 

the convergence slower and larger values of many local (potentially good) solutions will be skipped. Different percentages for 

move and anti-move (5% and 4%, respectively) have been chosen to introduce diversity to the solutions and to help Tabu 

memory in avoiding repeating the same solutions and enter in cycles. If we make the move and then make the anti-move at the 

same dimension in a row we will be 1% distance from the original point. On the other hand, when we use the same distance for 

a move and anti-move we will return to the same point, when we use a move and an anti-move at the same dimension in a row. 

This setting helps in exploring the search space in more details (see Fig. 1). 

 

Fig. 1 Tabu search move definition 

Stochastic move‟s distance can be defined in many ways. In this research equation (6) was used because it gives a good 

exploratory factor of search to the algorithm; with this method, every number in the range of each parameter could be selected 

to keep solutions more divers than the deterministic of the algorithm mentioned in equations (4) and (5).   

Solution 

Neighbour 

Move distance (ε) 
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 𝑟𝜀𝑖 = 𝑅𝑎𝑛𝑑𝑜𝑚 ∗ (𝑀𝑎𝑥𝑖 − 𝑀𝑖𝑛𝑖) (6) 

Where 

Random: is a random number between 0.0 and 1.0 that could be uniformly or any other distribution. The exponential 

distribution is a good candidate because it gives more emphasis on small numbers. 

Another important aspect of Tabu algorithm is Tabu set T(θ). To define T(θ) two types of memory - short and long were 

used. The latter is simply adding each selected solution to a set where all its members are considered as tabu. This will avoid 

moving in long cycle in the solution space. The second (short memory) is maintained by a table of tabu moves. The move is 

marked as tabu when its anti-move is selected as the next solution. The move is marked for (τ) number of iterations. τ is 

selected usually so that no more than half of the moves are marked as tabu. 4 parameters and 8 neighbors and τ equals to 2 

were used as a first guess. 

Aspiration A(θ): is simply ignoring tabu when we have a solution that is better than all the solutions examined so far. 

4) Simultaneous Perturbation for Stochastic Approximation Algorithm (SPSA): 

SPSA is based on gradient approximation (see Appendix A Algorithm IV), it can be used when it is difficult or impossible 

to directly find the gradient of the objective function. Gradient approximation is based on two measures of the objective 

function in each iteration. SPSA was introduced by Spall in 1987 [38]. SPSA starts for an initial guess of θ. It assumes that f(θ) 

is a differentiable function of θ and the optimal point of θ* correspond to zero point of the gradient.  

 
𝑔 𝜃∗ =  𝜕𝑓 𝜃 

𝜕𝜃 
 
𝜃=𝜃∗

= 0 (7) 

The gradient is zero when for global optima in addition to all local optima, therefore the algorithm uses some stochastic 

vector to determine the direction of choosing values to calculate the gradient. The SPSA algorithm (Algorithm IV) described in 

[39] was used. 

D.  Test Site and Simulation Model 

1) Test Site 1: 

A real signalized segment was modelled in SUMO to test the proposed procedures for simulation model calibration. The 

segment is located in a vital city center see Fig. 2. It presents a real signalized segment for arterial streets that penetrate the city. 

The streets and the junctions have very heavy traffic at the peak hours. The traffic flows west from the main street by the 

hospital, which mostly witnesses traffic jam at the traffic signal in front of it. The flow from west to east also has a traffic jam 

because this road merges with another road that joins from the Square in the city center. At peak hours there is always traffic 

jam, especially, in front of the municipality with two traffic signals in only fifty meters distance which lead to a turn to the left 

and joins the other side of the main street. 

 
Fig. 2 Test site 1 

2) Test Site 2: 

Test site 2 is another real segment, which is an expansion of the test site 1 to the west. Test site 2 shows all the joints and 

junctions from and to city center. This expansion has the same heavy and jammed traffic characteristics. It contains more joints 

which may give more complicated interaction between cars see Fig-3. The topographic characteristic of test site 2 is described 

as flat streets up to three lanes without any downhill, but more turns and joints. The arrows inside the Fig. 3 present the 

direction of traffic. 



Journal of Algorithms and Optimization  Oct. 2014, Vol. 2 Iss. 4, PP. 110-128 

- 116 - 

 
Fig. 3 Test site 2  

3) Simulation Model: 

SUMO (“Simulation of Urban MObility”) is a highly portable, microscopic road traffic simulation package designed to 

handle large road networks. It is mainly developed by employees of the Institute of Transportation Systems at the German 

Aerospace Centre (DLR). SUMO is open source, licensed under the GPL. The major reason for the development of an open 

source, microscopic road traffic simulation was to support the traffic research community with a tool into which own 

algorithms can be implemented and evaluated by, without the need to regard all the artifacts needed to obtain a complete traffic 

simulation, such as implementing and/or setting up methods for dealing with road networks, demand, and traffic controls. By 

supplying such a tool, the DLR wanted to i) make the implemented algorithms more comparable, as a common architecture 

and model base is used, and ii) gain additional help from other contributors. Since 2001, with the first running version, SUMO 

has been used within a large number of projects done within the DLR. The main features of SUMO are summarized in Table 2 

[35].  

TABLE 2 SUMO FEATURES  

Category Features 

Simulation 

Complete workflow (network and routes import, DUA, simulation) 

Simulation 

Collision free vehicle movement 

Different vehicle types 
Multi-lane streets with lane changing 

Junction-based right-of-way rules 

Hierarchy of junction types 

A fast openGL graphical user interface 

Manages networks with several 10.000 edges (streets) 

Fast execution speed (up to 100.000 vehicle updates/s on a 1GHz machine) 

Interoperability with other application on run time using TraCI 

Network-wide, edge-based, vehicle-based, and detector-based outputs 

Network 

Many network formats (VISUM, Vissim, Shapefiles, OSM, Tiger, RoboCup, 

XML-Descriptions) may be imported 

Missing values are determined via heuristics 

Routing 
Microscopic routes - each vehicle has an own one 

Dynamic User Assignment 

High portability 

Only standard c++ and portable libraries are used 

Packages for Windows main Linux distributions exist 

High interoperability through usage of XML-data only 

E. Selecting Optimization Parameters  

Like any other simulator SUMO uses physical quantities to simulate car behaviors. SUMO uses the notation of vehicle 

types. Each type has basic properties such as length (of the care and the distance from the heading car), acceleration, 

deceleration and maximum speed. Furthermore, it needs a so-called sigma parameter which introduces some random behavior 

that is needed by following the model used in the simulator (driver imperfection). Setting sigma to 0 makes the simulated cars 

behave in a deterministic way. Not all of simulator parameters have the same effect on its outcomes. Before simulation 

calibration, an analysis of parameters‟ sensitivity was conducted to find the relative importance of simulator parameters. 

Sensitivity analysis was used to find how sensitive simulator outcomes (or in our case the error) to simulator inputs (or 

parameters) and to have more insight on the behavior of the relationship between inputs of the simulator and the error it has. 

Firstly, the relative importance of each parameter and its effect on the simulation (see Table 3) was obtained by calculating the 

effect of changing the parameter from its minimum feasible value to its maximum feasible value while the other parameters 

http://www.dlr.de/fs/en/desktopdefault.aspx
http://www.dlr.de/fs/en/desktopdefault.aspx
http://www.dlr.de/fs/en/desktopdefault.aspx
http://www.gnu.org/licenses/gpl.html
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remain constant. Max speed can be excluded from the optimization process to accelerate the convergence of optimization 

algorithms. Secondly, the Montecarlo based approach was used. 

TABLE 3 PERCENTAGE OF CHANGE IN MEAN TRAVEL TIME WHEN CHANGING EACH PARAMETER 

Parameter Max Min unit 
Change in 

travel time 

Sigma 1 0.0 - 54% 

Acceleration 0.3* 2.9* m/s^2 43% 

Deceleration 0.5* 4.9* m/s^2 30% 

Length 2 10 m 43% 

Max speed 120 10 km/h 13% 

The parameters that have more effects on objective function can be considered as more important. Parameters that have 

more effects on the error need to be calibrated to reach accurate simulation runs. Finding of the slope, which is the division of 

the change in the dependent variable over the independent variable, is one way to determine the relative importance of the 

parameters. The slope changes all over the range of the variable (the objective function is nonlinear). The slope is directed; it is 

negative when the direction of change in the dependent variable is as opposite to the independent variable. For the purpose of 

this research we want to know the effect of the independent parameters on the dependent parameters regardless of its direction, 

the importance of each parameter depends on the magnitude output increase or decrease not on its sign (for example, suppose 

we have two parameters with the same slope magnitude, the first one with negative slope and the second one with positive 

slope, we can say that they have the same importance regardless of the direction), so absolute values of the slopes were used. 

To reduce the effect of the parameters' ranges the parameters were normalized as in formula (8). 

 𝑋𝑛𝑜𝑟𝑚𝑖 =
𝑥𝑖−𝑀𝑖𝑛 𝑖

𝑀𝑎𝑥 𝑖−𝑀𝑖𝑛 𝑖
   (8) 

5,000 different values uniformly distributed over the feasible ranges of the parameters were obtained. The importance 

index is calculated as follows: 

First sort the data according to the parameter J, then calculate importance index as in formula (9) 

 

 
 

𝑒𝑖+1− 𝑒𝑖
𝑋𝑛 𝑜𝑟𝑚 𝑖+1−𝑋𝑛𝑜𝑟𝑚 𝑖

  𝑛−1
𝑖=0

𝑛
 

(9) 

Table 4 shows the effect of changing the range in Table 3 (column 5 Change in Travel Time) and the Correlation which is 

an indication of linearity (Table 4 column 2 Correlation). Table 4 (column 3 the Parameter Importance Index) shows the index 

of importance that directions have no effect of the range and do not measure linearity. All the measures rank maximum speed 

as least important. We will discard maximum speed from our calibration process (see Table 3 and Table 4 ). 

TABLE 4 THE EFFECT OF CHANGING THE RANGE OF TRAVEL TIME , CORRELATION  AND PARAMETER IMPORTANCE INDEX 

Parameter 
Correlation (5'000 

random runs) 

Parameter Importance index (PII) (formula 9)   

(5'000 random runs) 

Length (+ leading 

distance) 
-0.06 0.95 

Deceleration -0.11 0.86 

Sigma 0.15 0.84 

Acceleration -0.23 0.7 

Max speed -0.02 0.63 

F. Observed Data and Error Measurement 

The observed data were obtained by measuring travel times in the experiment sites. The measurement was conducted in the 

rush hour between 7:00AM and 8:00AM by the research team (see Table 5). 

TABLE 5 OBSERVED VS SIMULATED TRAVEL TIMES WHEN USING DEFAULT VALUES OF SUMO 

Observed travel 

time (s) 

Simulated travel 

time (s) 
Difference Difference / Observed 

22.9 26.5 3.6 0.157 

42.4 71.9 29.5 0.695 

61.1 182.5 121.4 1.987 

66.4 207.1 140.7 2.118 



Journal of Algorithms and Optimization  Oct. 2014, Vol. 2 Iss. 4, PP. 110-128 

- 118 - 

118.3 162.8 44.5 0.376 

93.3 179.3 86.0 0.922 

206.7 258.2 51.5 0.249 

191.6 522.9 331.3 1.729 

380 389.8 9.8 0.026 

74.1 210.0 135.9 1.834 

227 445.4 218.4 0.962 

148.9 255.0 106.1 0.713 

227.5 175.0 52.5 0.231 

26 54.0 28.0 1.077 

62.9 90.5 27.6 0.438 

111.7 198.0 86.3 0.773 

154 365.8 211.8 1.375 

222.2 555.3 333.1 1.499 

122.2 354.4 232.2 1.900 

245.4 410.7 165.3 0.673 

209.6 507.0 297.4 1.419 

337.8 308.5 29.3 0.087 

352.9 632.3 279.4 0.792 

437 509.0 72.0 0.165 

191.5 147.3 44.2 0.231 

805 507.0 298.0 0.370 

624 502.0 122.0 0.196 

79.9 59.0 20.9 0.262 

869 788.0 81.0 0.093 

22 25.6 3.6 0.166 

221.4 428.6 207.2 0.936 

In table 5 each row represents the average travelling time from one source to one destination on the network. Observed 

values were obtained by measuring the travel time of some real vehicles travelling on the network. 

Several cars travelled through the network from their sources to their destinations, measuring time while travelling. Cars 

flow data were counted at the test sites during the same rush hours, this was conducted daily for one week (see Table 6). 

TABLE 6 SAMPLE OF OBSERVED CAR FLOW 

INTERSECTION NAME: Al- Saqeiah Street With Omar Almokhtar Street 

Time ( AM ) 
South Bound East Bound 

TH L R TH 

7:00-7:15 49 18 6 367 

7:15-7:30 104 23 15 475 

7:30-7:45 125 30 33 438 

7:45-8:00 119 21 29 500 

8:00-8:15 133 17 22 379 

8:15-8:30 93 20 28 436 

8:30-8:45 79 22 31 372 

8:45-9:00 77 19 29 388 

The fitness of the parameters was measured by calculating the average error (e) between simulated and observed travel 

times of all possible trips in the network described above as in formula (10). 
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𝑒 =
 

 𝑠𝑖𝑚 𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖

𝑛
𝑖=1

𝑛
  

(10) 

Where: 

sim : simulated travel time 

observed: observed travel time 

n: number of observed and simulated trips  

SUMO is provided with default parameters. Usually engineers use for their simulations to start with. Four model 

parameters in the SUMO were used: Deceleration, Acceleration, Sigma (driver imperfection) and Car length with leading 

distance, their default values 0.8 m/s2, 4.5 m/s2, 0.5 and 5m respectively. The error equals to 35% when default values for 

vehicle type were used. The four parameters were calibrated. The calibration yields the following values: Deceleration 4.11 

m/s2, Acceleration 1.33 m/s2, sigma 0.59 and Car length 4.27m with error equals to 7%. This result reflects the real cases under 

study and could be further interpreted by specialized transportation engineering studies. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

GA, TS, PS and SPSA were implemented using Python programming language. Fitness function was calculated after 

running the simulator, which is implemented in C programming language. Different outputs can be obtained after running the 

algorithms, which in turns running the simulator. Travel times were taken to calculate the error described above. The used 

optimization techniques treating the fitness function as a black-box with parameters in the real domain and output in the same 

domain, taking into consideration minimum and maximum feasible values of each parameter. 

To speed up the running time the master slave parallel computing paradigm was used. Where the master implements the 

optimization algorithm and slaves implements the fitness function. We used Parallel Python (PP) library to manage the parallel 

processes. This worked well and have reserved a lot of time, except for SPSA. 

A. Tuning optimization techniques 

Each optimization technique has its own parameters that affect its convergence to optimal solutions, and how to avoid local 

optima. The performance of each optimization technique depends on these parameters. To have a faire comparison, there is a 

need to find the values of the parameters that make the technique perform well. 

All used algorithms have stochastic aspects. Therefore, the experiments were repeated 10 times, then the average of 

repetitions was used for comparison purposes. Fitness function consists of a simulation run, which is time consuming. The 

total number of fitness function evaluations was kept to be 1000.  

1)  Tuning GA: 

Mutation, crossover and selection are three main components of any GA algorithms. Crossover combines solutions to 

create new ones. Mutation introduces new solution randomly; it is the source of perturbation. Selections eliminate bad 

solutions in favor of better ones, it makes pressure on solutions to force it to evolve to better solutions. High mutation rates 

make the algorithm behaves like random search. Low mutation rates make the algorithm behave more like local optimization 

technique. Likewise, very restrict selection (selection that picks only the best solutions in each iteration) also makes the 

algorithm behave more like local optimization technique. A combination of these operators and parameters determines the 

behavior of the algorithm. A proper combination that explores solution space and finds good optima is required. 

Literature, for example [37] uses low mutation probabilities. The result of tuning mutation probability of GA1 that uses 

one-point classical crossover is shown in Table 7. 

TABLE 7 GENETIC ALGORITHM 1 (GA1) PERFORMANCE CHANGING MUTATION 

Mutation 

probability 

Average 

fitness 

Minimum Maximum % of min max 

difference 

0.4 → 0.05 0.088 0.74 0.11 20% 

0.5 →0.0625 0.086 0.079 0.10 21% 

0.6 → 0.075 0.087 0.076 0.096 25% 

0.7→ 0.0875 0.087 0.081 0.093 13% 
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Table 7 shows the effect of changing mutation probability on the convergence of the algorithm after 50 iterations or 1250 

loss function evaluations. Dramatic difference can‟t be seen between these values, but the optimal value seems to occur when a 

mutation probability is 50% for each individual (the probability that a solution is changed by changing one parameter in its 

vector) that is equivalent to 6.25% for each parameter.  

Table 8 shows the effect of changing mutation when average crossover was used. Good mutation probabilities are different 

from what was in GA1. Mutation introduces new solution and at the same time average crossover also introduces new values 

for the parameters. This may explain why less mutation probability was needed when using average crossover. GA2 (using 

average crossover) shows better convergence values than in GA1, which implies that average crossover has better performance 

than classical crossover (see Table 7 and Table 8). 

TABLE 8 GENETIC ALGORITHM 2 (GA2) PERFORMANCE CHANGING MUTATION 

Mutation 

probability 

Average fitness Minimum Maximum 

0.1→0.0125 0.88 0.071 0.098 

0.2→0.025 0.090 0.071 0.105 

0.3→0.0375 0.083 0.074 0.088 

0.4→0.05 0.85 0.070 0.099 

2)  Tuning Tabu: 

In each iteration Tabu technique searches the neighborhood of a solution and chooses the best solution to be the next 

candidate point. Two mechanisms prevent TS from being trapped in local optima, long term and short term memory. Long 

term memory is simply keeping track of all solutions used during the iterations, therefore no parameter is needed to control the 

memory. Our implementation of the short memory has two parameters tau for the move and cTau for the contra-move that 

needs to be calibrated, as described above. We have two implementations to neighborhood selection one deterministic and the 

other is stochastic as described above. The results of tuning these algorithms are summarized in Tables 9 and 10. 

TABLE 9 PERFORMANCE OF DETERMINISTIC TABU SEARCH CHANGING TAU AND CTAU 

Tau 

cTau 

0 1 2 

0 0.094 0.089 0.093 

1 0.082 0.079 0.092 

2 0.091 0.084 0.086 

TABLE 10 PERFORMANCE OF STOCHASTIC TABU SEARCH CHANGING TAU AND CTAU 

Tau 

cTau 

0 1 2 

0 0.088 0.095 0.089 

1 0.088 0.083 0.086 

2 0.089 0.083 0.088 

Table 9 shows tuning deterministic one, best results were obtained when tau=1 and cTau=1 as expected from the literature. 

Again best results are when tau=1 and cTau=1 or 2. The results are similar to the theory mentioned above that says no more 

than the half of moves are marked as tabu. It is clear that deterministic TS is better than the stochastic implementation (see 

Table 9 and Table 10). 

3)  Tuning PS: 

PS has 3 main parameters that need to be determined namely (w, cg, cp) all of them are real numbers. w represents the 

inertia, cg represents the contribution of global best individual, cp represents a local best solution contribution. One of the 

attempts to determine the optimal values for these three parameters is stated in [30]. The paper describes a process of finding 

optimal values for algorithm parameters (w, cp, cg). It uses a benchmark of multimodal functions and uses an optimization 

technique to find PS optimal parameters. The result of using these values is shown in the first row in Table 11. Using 

recommended parameters from [30] did not perform as expected. Using different values gave us better solutions as shown in 

Table 12 and Table 13. The parameters‟ values that gave better solutions was (w=0.5 cp=1.0 cg=0.5) that means an emphasis 

on locally found solutions more than global leader will give good results (see Tables 11, 12 and 13). 

 



Journal of Algorithms and Optimization  Oct. 2014, Vol. 2 Iss. 4, PP. 110-128 

- 121 - 

TABLE 11 PS PERFORMANCE USING VALUES RECOMMENDED BY LETRETURE 

Algorithm parameters Average 

fitness 

Minimum Maximum 

W=-0.1832 cp=0.5287 cg=3.1913 0.085 0.074 0.098 

TABLE 12 TABU PERFORMANCE CHANGING CP,CG WITH W=0.5 

   cg 

cp 

0.25 0.5 1.0 2.0 3.0 4.0 5.0 

0.5 0.081 0.085 0.083 0.080 0.085 0.091 0.097 

1.0 0.086 0.076 0.086 0.087 0.093 0.096 0.103 

2.0 0.092 0.081 0.079 0.082 0.091 0.100 0.100 

3.0 0.083 0.088 0.083 0.090 0.090 0.101 0.102 

TABLE 13 TABU PERFORMANCE CHANGING CP,CG WITH W=0.25 

      cg 

cp 

0.25 0.5 1.0 

1.0 0.084 0.087 0.089 

2.0 0.089 0.078 0.082 

3.0 0.084 0.077 0.084 

4.0 0.086 0.080 0.083 

5.0 0.085 0.087 0.085 

4)  Tuning SPSA: 

As mentioned in [39] SPSA is like other stochastic optimization algorithms which has some parameters that need to be 

tuned for each specific problem. There are no one-fit-all values for these parameters. The main part that influences the 

algorithm convergence is the two sequences  

 𝑎𝑘 = 𝑎/(𝐴 + 𝑘 + 1)𝛼  (11) 

 𝑐𝑘 = 𝑐/(𝑘 + 1)𝛾    (12) 

These sequences are controlled by parameters (a , α) and (c, γ). (a) and (c) are the step sizes that influence the changes in 

the solution and the gradient. While (α, γ) influence the speed of change in the sequences. The literature recommends to start 

with, α =0.601 and γ=0.101. We started by some preliminary tuning process, we chose a to be 1 and A =0 and c is 0.4 from the 

valid range of the parameter. Table 14 shows the process of fine tuning (α, γ). 

TABLE 14 SPSA PERFORMANCE CHANGING ALPHA AND GAMA 

     α  (right)  

γ (down) 

0.401 0.501 0.601 0.701 

0.1 0.103 0.091 0.090 0.096 

0.2 0.093 0.088 0.085 0.084 

0.3 0.081 0.082 0.086 0.095 

0.4 0.075 0.073 0.083 0.078 

0.5 0.075 0.079 0.079 0.078 

0.6 0.081 0.080 0.089 0.091 

B. Comparing Optimization Techniques on Site 1 

Fig. 4 summarizes the results of our experiment. Each line represents the average of ten runs of optimization algorithms. 

The y-axis represents the error (e) and the x-axis represents the number of executions of the fitness function. To be able to 

fairly compare algorithms, x-axis does not represent the number of iterations because each algorithm consumes a different 

number of fitness function executions in each iteration (GA1 uses 25, PS uses 47 and TS uses 8, SPSA uses 3). Fig. 4 shows 

the convergence of optimization algorithms, the vertical axis represents error and the horizontal axis represents the number of 

loss function evaluations. In terms of error reduction SPSA outperforms other algorithms within the number of loss function 

evaluations. SPSA is efficient and smart in using loss function values. Optimization algorithms can be ordered according to 

convergence velocity (by velocity, we mean error over number of loss function executions) from faster to slower as follows 

(see Table 15): SPSA, TS, PS and GA. Compared this order with the number of loss function values used in each iteration 

(SPSA 3, TS 8, GA1 25 and PS 47), it is seen that they are in the same order, except for the GA and PS. This is the same as 

comparing the number of iterations. Therefore, the more iterations used, the better solutions there would be. SPSA uses the 

biggest number of iterations, followed by TS, GA and PS. From this analysis, a conclusion can be drawn that our 

implementation of PS is better than our implementation of GA.  
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Fig. 4 Algorithms Performance Comparison Test Site 1 

TABLE 15 ALGORITHM PERFORMANCE COMPARISON TEST SITE 1 

Algorithm Average fitness Number of Fitness function executions 

GA1 0.087 1250 

GA2 0.090 1250 

PS 0.076 1034 

Dts 0.079 1000 

sTS 0.083 1000 

SPSA 0.073 1000 

NM(Globalized) 0.104 1240 

COBYLA(Globalized) 0.104 1220 

One of the main advantages of TS over other optimization techniques studied in this research is the low number of 

parameters that need to be tuned. GA is sensitive to mutation and crossover probabilities, generation size and type of the 

operations (mutation and crossover). PS is very sensitive to its three parameters (w, cp, gc), while TS has only one parameter 

(τ). This advantage is especially important when having a computationally heavy fitness function that consumes a great amount 

of time and computational power that makes the task of tuning optimization technique a time consuming task. 

C. The Results Using Site 2 

The experiment of using the optimization techniques of the calibration of simulation model SUMO has been conducted 

again on test site 2. Table 16 shows the effect of mutation on the result of optimization using GA1. The behavior of the 

algorithm of test site 2 is like the behavior of the algorithm in site 1 see Table 7. A dramatic difference can't be seen between 

the results of a mutation probability of 0.6 and 0.5, they are almost the same. From this a conclusion can be drawn that GA1 

behaves almost the same in both experiments despite the change of the test sites. 

TABLE 16 GENETIC ALGORITHM 1 (GA1) PERFORMANCE CHANGING MUTATION ON TEST SITE 2 

Mutation 

probability 

Average fitness Minimum Maximum 

0.4 0.161 0.132 0.186 

0.5 0.167 0.156 0.178 

0.6 0.154 0.130 0.175 

0.7 0.162 0.144 0.184 

Table 17 shows the effect of mutation probability on GA2 results. Even the results of site 2 are similar to the results of site1, 

slight shift can be seen towards more mutation probability in site 2 than in site 1. This can give an indication that site 2 needs 

more diversity in each generation to reach good results. Therefore, the complexity of site 2 traffic network affects the 

complexity of response surface of the optimized function and makes it more complex. This complexity puts more pressure on 

the optimization technique. Functions with smoother surfaces can be optimized easily by traditional and greedy algorithms, but 

real life problems are so complex that need more sophisticated techniques. 

TABLE 17 GENETIC ALGORITHM 2 (GA2) PERFORMANCE CHANGING MUTATION ON TEST SITE 2 

Mutation 

probability  

Average fitness Minimum Maximum 

0.3 0.149 0.130 0.174 

0.4 0.146 0.118 0.168 

0.5 0.146 0.103 0.184 

0.6 0.155 0.135 0.181 
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Table 18 shows the effect of changing short memory parameters on the deterministic Tabu search. Tau equals to two moves 

showed clear better results than tau equals to one. Once again the result was expected. The same observation that has been 

mentioned above while discussing GA1 and GA2 also can be derived from Tabu search. Because test site 2 is more complex 

than test site1, algorithms need to explore more space and to avoid more local minima to reach good results. Algorithms that 

do not have strong mechanisms to avoid local minima are not practical in real problems.  

TABLE 18 PERFORMANCE OF DETERMINISTIC TABU SEARCH CHANGING TAU AND CTAU ON TEST SITE 

                Tau 

cTau  

0 1 2 

0 0.169 0.162 0.176 

1 0.170 0.166 0.157 

2 0.166 0.168 0.161 

Table 19 shows the effect of Tau on stochastic Tabu search. From Table 19, it can be seen opposite results compared with 

deterministic Tabu search (Table 18). It seems that what drives the algorithm to explore the search space and to avoid local 

minima is the stochastic nature of its move. In stochastic Tabu search memory, has miner effect on the algorithm. When using 

deterministic move, memory forces the algorithm to avoid repeating the search in the same region of the search space, but 

when using stochastic move the random nature of the move explores new solution randomly. This can be seen from Tables 9, 

10, 18, 19 that stochastic Tabu search performs better than deterministic version in more complex site. Again the same 

conclusion can be driven as in GA algorithms, which is that complex site 2 needs more randomness than site 1. 

TABLE 19 PERFORMANCE OF STOCHASTIC TABU SEARCH CHANGING TAU AND CTAU ON TEST SITE 2 

               Tau 

cTau  

0 1 2 

0 0.162 0.170 0.162 

1 0.153 0.163 0.167 

2 0.158 0.159 0.154 

Table 20 shows the results of SPSA changing its parameters. It did not perform well in optimizing the error on test site 2, 

compared to other optimization algorithms used in this study. 

TABLE 20 SPSA PERFORMANCE CHANGING ALPHA AND GAMA ON TEST SITE 2 

    α  (right)  

γ (down) 

0.301 0.401 0.501 0.601 

0.3 0.169 0.175 0.172 0.186 

0.4 0.165 0.164 0.167 0.178 

0.5 0.164 0.165 0.164 0.173 

0.6 0.164 0.165 0.170 0.172 

Table 21 shows the performance of PS using values recommended by literature. Once again, it did not perform well as in 

the experiments conducted for test site 1. 

TABLE 21 PS PERFORMANCE USING VALUES RECOMMENDED BY THE LITERATURE ON TEST SITE 2 

Algorithm parameters Average 

fitness 

Minimum Maximum 

W=-0.1832 cp=0.5287 cg=3.1913 0.160 0.147 0.172 

Table 22 shows the effect of changing cp and cg on PS while w equals to 0.5. The best result was obtained when cg equals 

to 1 and cp equals to 2. The same conclusion as in site 1 can be derived in site 2 using PS. Emphasis on locally found solutions 

more than global leader, will give good results. The ratio between cp and cg remains the same, but the magnitude of both is 

doubled. Once again the same observation as with other algorithms can be seen with PS. The complex test site 2 needs more 

exploration forces than site 1. Exploration forces are expressed by accelerating particles more to make them explore more 

spaces and avoid local minima. 

TABLE 22 PS PERFORMANCE CHANGING CP,CG WITH W =0.5 ON TEST SITE 2 

                     Cg 

Cp 
0.5 1.0 1.5 2.0 

0.5 0.161 0.158 0.161 0.159 

1.0 0.152 0.146 0.152 0.155 

1.5 0.155 0.156 0.148 0.151 
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2.0 0.144 0.140 0.151 0.161 

2.5 0.157 0.153 0.156 0.159 

Table 23 shows that PS is the best algorithm to tackle this particular problem.  The next one was GA2. GA1, sTS and dTS 

have similar results with some difference and SPSA was the worst excluding classical approaches (NM and COBYLA).  

TABLE 23 ALGORITHM PERFORMANCE COMPARISON ON TEST SITE 2 

Algorithm Average fitness 
Number of Fitness function 

executions 

GA1 0.154 1250 

GA2 0.146 1250 

PS 0.140 1034 

dTS 0.157 1000 

sTS 0.154 1000 

SPSA 0.164 1000 

NM(Globalized) 0.187 1239 

COBYLA(Globalized) 0.172 1297 

Table 24 shows the final comparison of the performance of all used algorithms in both test sites. First clear conclusion is 

that classical approaches are not to be used in such problems. The other conclusion is that PS is a promising technique for 

complex problems; it performed better on the site 1 and was the best on site 2 and it can be easily parallelized. SPSA was very 

good in site 1 but it did not scale at the same rate as other algorithms on site 2.  Still GA algorithm performs well and scales 

well toward more complex problems. 

TABLE 24 ALGORITHM PERFORMANCE SUMMARY ON TEST SITE 1 AND TEST SITE 2 

Algorithm 
Average 

fitness 

Site 1 

Average 

fitness 

Site 2 

Number of 

Fitness function 

executions 

GA1 0.087 0.154 1250 

GA2 0.090 0.146 1250 

PS 0.076 0.140 1034 

dTS 0.079 0.157 1000 

sTS 
0.083 0.154 1000 

SPSA 
0.073 0.164 1000 

NM(Globalized) 
0.104 0.187 1239 

COBYLA(Globalized) 
0.104 0.172 1297 

V. CONCLUSION AND FURTHER WORK 

Four instances of global optimization techniques, namely GA, TS, PS and SPSA were used to calibrate microscopic traffic 

simulator in two real case studies (Test site 1 and Test site 2). The result shows that classical approaches are not recommended 

in calibrating traffic simulation models. Particle Swarm optimization technique (PS) is a promising technique for calibrating 

microscopic traffic simulation models and it can be easily parallelized. Simultaneous Perturbation for Stochastic 

Approximation algorithm (SPSA) was inconsistent on both sites. Therefore, it did not scale at the same rate as other algorithms 

on site 2.  Genetic Algorithm (GA) performs and scales well toward more complex problems. The literature heavily depends 

on GA algorithms. This work shows that there are other algorithms that can be used for calibration and could give better results. 

Optimization techniques are sensitive to some internal parameters that affect convergence speed dramatically. These 

parameters need to be guessed and /or calibrated. This process is time and resource consuming. Tabu Search was found to have 

fewer parameters to be calibrated and was not sensitively affected by them.  

Potential further work has been planned to explore the same set of algorithms in other types of problems and fitness 

functions to test the capability of generalizing this result. On the other hand, further researches have been planned to explore 

the potential uses of global optimization techniques in traffic simulation other than calibration. The use of optimization as a 

tool to automate traffic management planning and street design is an example. 
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APPENDIX A 

 

 

Where: 

xvi  : dimension i velocity component 

xi  : dimension i of particle position  (parameter i of the solution) 

random : uniformly distributed random variable in the interval [0,1] 

gbesti :  global best value found so far of dimension i 

pbesti :  particle best value found so far of dimension i 

w,cp,cg :tunable method parameters that affect the convergence velocity. The parameters simply define the contribution of each term. 

ALGORITHM II 

PARTICLE SWARM OPTIMIZATION 

 

1. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝜃)  // initial swarm usually random 

2. for each particle  𝑥 ∈ 𝜃: 

for each dimension i  

𝑥𝑣𝑖 = 𝑤 ∗ 𝑥𝑣𝑖 + 𝑐𝑝 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖) + 𝑐𝑔 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖)  // calculate velocity  

𝑥𝑖 =  𝑥𝑖 + 𝑥𝑣𝑖  // update particle position 

3. While stop criteria not reached, Go to step 02  

 

 

ALGORITHM I 

GENETIC ALGORITHM 

 

1. Randomly generate the first population of individuals potential solutions 

2. Evaluate the fitness function  for each population member 

3. While not ( number of iteration reached) : obtain a new generation by repeat 

1. Selection of two individuals 

2. Crossover of selected individuals  

3. According the mutation probability, randomly mute the output of previous step. 

4. Until a new population has been completed. 

end while 
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𝑎𝑘 = 𝑎/(𝐴 + 𝑘 + 1)𝛼  

𝑐𝑘 = 𝑐/(𝑘 + 1)𝛾  

𝑔 𝑘(𝜃 𝑘) =
𝑦+ − 𝑦−

2𝑐𝑘

 
 
 
 
 
∆𝑘1

−1

∆𝑘2
−1

⋮
∆𝑘𝑝

−1
 
 
 
 
 

 

𝜃 𝑘+1 = 𝜃 𝑘 − 𝑎𝑘𝑔 𝑘(𝜃 𝑘) 

ALGORITHM IV 

SIMULTANEOUS PERTURBATION FOR STOCHASTIC APPROXIMATION ALGORITHM ( SPSA )  

 

Step 1: Initialization 

Set k=0 

Pick initial guess of 𝜃0
  and nonnegative coefficients (a,c,A,α and 𝛾)  

 

 

Step 2: Generation of Simultaneous Perturbation Vector 

  Generate ∆𝑘  which is a Bernoulli  ±1 distribution with probability of 
1

2
 for each ±1outcome 

Step 3: Loss Function Evaluations 

  Obtain two measures of the function: 

 

𝑦+ = 𝑓(𝜃𝑘
 + 𝑐𝑘∆𝑘)  and 𝑦− = 𝑓(𝜃𝑘

 − 𝑐𝑘∆𝑘) 

 

Step 4: Gradient Approximation  

Step 5: Update 𝜃 estimate 

Step 6: iteration or termination 

If termination condition not met, return to step 2 with k+1 replacing k. 

 

 

 

ALGORITHM III 

TABU SEARCH 

 

Generate initial solution θ 

While not finished 

identify N(θ) (Neighborhood set) by applying moves 

identify T(θ) (tabu set)  

identify A(θ) (aspiration set) 

choose θ' in N(θ)-T(θ) U A(θ), for which f(θ') is optimal  

change θ by θ' 

End wile 

 


