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Abstract-Titanium Aluminum Silicon Nitride (TiAlSiN) coating has been expected to be applied in the field of cutting new difficult-

to-machine materials such as titanium and superalloys. TiAlSiN coatings in the range of 4-8 at.% silicon content are prepared by 

reactive magnetron sputtering. The results show that the structure of nanocrystal surrounded by amorphous Si3N4 was formed in all 

the TiAlSiN coatings. When the silicon content increases to 8 at.%, the grain size of TiAlSiN coatings is refined to 7 nm and 

distributes in a narrow size range. Meanwhile, the nano-column growth of the TiAlSiN coating with 4 at.% silicon disappeared and 

changed to nanocrystals growth. The hardness as a function of the silicon content showed a nonlinear relationship, and the highest 

hardness is obtained at 6 at.% silicon content. TiAlSiN coating with 4 at.% silicon content has the highest critical load of 87.8 N. 

With increasing silicon content, the preferred orientations change from (111) to (200) and the adhesion strength decreased. The 

optimized mechanical properties of the TiAlSiN coatings, with a hardness of about 32.8 GPa and a critical load of 69.2 N, will have a 

promising application in modern cutting technology. 
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I. INTRODUCTION 

Hard coatings have shown particularly promising for cutting operations [1, 2]. However, the development of high speed 

and dry cutting technology puts forward new requirements to the performance of cutting tool [3, 4]. One of the most used 

solutions is to add substitutional elements such as silicon, chromium and carbon into the traditional transition metal nitride 

coatings to form nanocomposite coatings [5-8] Since TiAlSiN (Titanium Aluminum Silicon Nitride) nanocomposite coatings 

can form a structure of nanocrystallines embedded in an amorphous phase, which can result in high hardness and excellent 

thermal stability [9-11], it is expected to be used in modern cutting. 

Previous studies on TiAlSiN coatings mostly used are ion plating technology [12, 13], TiAlSiN coatings prepared by 

magnetron sputtering were reported relatively less. However, magnetron sputtering can avoid the large particles, thereby 

obtaining a good quality and excellent mechanical properties coating [14]. Moreover, former works on TiAlSiN coatings are 

mostly about the preparation condition, microstructure and hardness. The effect of changes in microstructure on the 

mechanical properties after the introduction of silicon element is a complex issue not well understood. In this work, TiAlSiN 

coatings were prepared by magnetron sputtering method and the relationship between microstructure and mechanical 

properties of TiAlSiN coatings was fully discussed. Two or more alloy targets are usually used to prepare quaternary TiAlSiN 

coatings, but in this work a single TiAlSi alloy target is used to prepare TiAlSiN coatings, so as to simplify operations and 

improve productivity. 

II. MATERIALS AND METHODS 

The TiAlSiN coatings were prepared on cemented carbide substrates using reactive magnetron sputtering method. The 

substrates were first polished with diamond abrasive discs, and then with diamond pastes of 2.5 μm, until smooth surfaces with 

a roughness of Rq = 10 nm were obtained. Then, substrates were cleaned with acetone and ethanol in an ultrasonic cleaner, 

respectively.  

Sputtering was conducted on a multifunctional coating machine, as shown in Fig. 1, under a base vacuum level with 

pressure ≤ 3×10-3 Pa. Pure titanium (99.9%) and TiAlSi alloy targets (titanium and aluminum atomic ratio is 5:4, but change 

the content of silicon: 4, 6 and 8 at. %) were tested during this study. The targets were cleaned by sputtering in argon gas for 5 

min before depositing coatings. A titanium buffer layer about 300 nm thick was deposited preferentially to increase the 

adhesion force between substrate and coating the main coating process parameters are shown in Table 1. 
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Fig. 1 Schematic diagram of the experimental apparatus 

TABLE 1 DEPOSITION PARAMETERS 

Layer Ti TiAlSiN 

Ar pressure (Pa) 0.3 0.3 

N2 pressure (Pa) --- 0.08 

Power (W) 1440 700 

Temperature (oC) 350 350 

Deposition times (min) 5 60 

Target Titanium (99.9%) Silicon content =4 at.%, 6 at.%, 8 at.% 

The morphology and thickness of TiAlSiN coatings were characterized by a scanning electron microscope (SEM, SUPRA 

35). The content of coatings is determined by using an energy dispersive spectroscopy (EDS). The structures were 

characterized by a glazing incidence X-ray diffraction (GIXRD, D/MAX 2400) with an incident angle of 1o. The 

microstructure was determined by transmission electron microscopy (TEM, Tecnai G2 F30); whereas the chemical bonding of 

TiAlSiN coatings was determined by an X-ray photoelectron spectroscopy (XPS, ESCALAB250). A G200 nanoindenter was 

used to measure the hardness and elastic modulus with the indentation depth of approximately 250 nm. The critical adhesion 

strength was measured with an automatic scratch tester. 

III. RESULTS AND DISCUSSION 

A. Buffer Layer 

Although the interface problem between coating and substrate has a significant effect on cutting efficiency, many studies 

have shown that the buffer layer is an effective method to solve bond strength of coating and substrate [6, 12, 13]. Since 

titanium has a good wettability with cemented cabide and also a good affinity to transition metal nitride coatings [15], a 

titanium buffer layer about 300 nm was deposited firstly to increase adhesion strength in this study. Adhesion strength of 

TiAlN (Titanium Aluminum Nitride) coatings with and without a titanium buffer layer was tested and the results are shown in 

Fig. 2. The comparison of these results indicates that TiAlN coating with a titanium buffer layer has a better adhesion strength 

than that without a buffer layer. 
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Fig. 2 Critial load values of TiAlN coatings prepared with and without Titanium buffer layer 
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B. Composition and Structure 

Since the nitrogen element cannot be accurately detected by EDS, this study only discussed the relative contents of titanium, 

aluminum and silicon, as shown in Table 2; where S1, S2 and S3 refer to sample 1, sample 2 and sample 3, respectively. They 

were prepared using TiAlSi alloy targets with 4 at.%, 6 at.% and 8 at.% silicon content, respectively. 

TABLE 2 CONTENTS OF TIALSIN COATINGS DETECTED BY EDS 

Sample Ti at.% Al at.% Si at.% 

S1 52.1 44.1 3.8 

S2 50.0 44.4 5.6 

S3 50.0 42.1 7.9 

The XRD diffraction peaks of TiAlSiN coatings are displayed in Fig. 3. The dash line in Fig. 3 represents the standard 

XRD pattern of NaCl-structure TiAlN. All peaks of TiAlSiN coatings were shown to be the NaCl structure of TiAlN phase. In 

addition, there were no peaks related with nitrides of Al and Si. With increasing silicon content, the preferred orientations 

changed from (111) to (200). Moreover, the peak (111) intensity decreased sharply, which may result from the formation of 

nanocrystal or amorphous phase. The results obtained were consistent with the results published elsewhere [12, 13, 16]. 

Furthermore, the diffraction peaks are also considerably broadened with increasing silicon content, which means that the grain 

size decreased [17] or the amorphous phase began to form. 
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Fig. 3 XRD patterns of different TiAlSiN films prepared with different silicon contents: (a) silicon content = 4 at.%, (b) silicon content = 6 at.%, (c) silicon 

content = 8 at.%. The dash lines are the standard peaks of NaCl-structure TiAlN 

In addition, XPS was brought to characterize the chemical bonding state of N (nitrogen) and Si (silicon) in order to 

determine whether there is amorphous Si3N4 in the coatings. The corresponding results are shown in Figs. 4 and 5. Two peaks, 

which are near 396.0 eV and 398.9 eV appeared in the N 1s spectrum. The peak near 396.0 eV is derived from AlN 

(Aluminum nitride) or TiN (Titanium Nitride). The peak at 398.9 eV is derived from nitrogen in Si3N4. 

It can be seen from Fig. 5 that one peak was located near about 101-102 eV in silicon 2p spectrum, which is close to the 

reference value of Si3N4. Thus, the TiAlSiN coating is proved to be composed by nanocrystalline TiAlN or TiAlSiN and 

amorphous Si3N4 according to XRD and XPS results. 
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Fig. 4 XPS spectra of N 1s peaks for the TiAlSiN coatings with different silicon contents: (a) silicon content = 4 at.% (b) silicon content = 6 at.%, (c) silicon 

content = 8 at.% 
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Fig. 5 XPS spectra of silicon 2p peaks for the TiAlSiN coatings with different silicon contents: (a) silicon content = 4 at.%, (b) silicon content = 6 at.%, (c) 

silicon content = 8 at.% 

C. Morphology and Grain Size 

Fig. 6 shows that the surface topography changes with increasing silicon content. From Figs. 6(a)-6(c), a denser and finer 

film was obtained with increasing silicon content from 4 at.% to 8 at.%. Furthermore, some spherical clusters appear on the 

surface of TiAlSiN coatings when silicon content is low (4 at.%) and these clusters disappeared at a high silicon content. 
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Fig. 6 SEM photos of TiAlSiN coatings with different silicon contents: (a) silicon content = 4 at.%, (b) silicon content = 6 at.%, (c) silicon content = 8 at.% 

Fig. 6(a) shows that the lamellar structure at the surface of TiAlSiN coatings are actually composed by rather small nano-

column structure. And these small nano-column structure may be the main reason for a strong (111) orientation TiAlSiN 

coating in the XRD results. When increasing the silicon content from 4 at.% to 6 at.%, these small nano-column structures are 

almost disappeared, which results in a sharp decrease of (111) intensity. This phenomenon means that the growth mode 

changes from columnar growth [18, 19] to nanocrystals growth. 

  

 
Fig. 7 TEM images and particle size distribution of TiAlSiN coatings with different silicon contents: (a) silicon content = 4 at.%, (b) silicon content = 6 at.%, 

(c) silicon content = 8 at. % 

The TEM images of TiAlSiN coatings are shown in Fig. 7. With increasing silicon content, the average grain size decreases. 

The particle size distribution histogram shown in Fig. 7 was obtained after a statistical analysis of the grain size, where D is the 
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average gain size and   is standard deviation. It can clearly be seen that the grain size of TiAlSiN is refined to 7.0 nm at the 

silicon content = 8 at.%. And the distribution of grain size becomes more concentrated with increasing silicon content. 

D. Hardness and Adhesion 

Results of the nanoindentation tests are shown in Fig. 8. The nanoindentation test results exclude some abnormal data 

points by two principles. One is the irregular shape (not equilateral triangle shape) of indentation observed by scanning 

electron microscopy. The other is the data deviated from other hardness values largely. A commercialized turning insert 

KC5510 produced by Kennametal Inc was also characterized using the same method in order to compare with the TiAlSiN 

coatings experienced in this work. There are two reasons for choosing KC5510. Firstly, KC5510 is a TiAlN coating prepared 

by PVD method. Therefore, we can investigate the effect of the introduction of the silicon element to the hardness of coatings 

roughly. Secondly, since the thickness of KC5510 is close to the thickness of TiAlSiN coatings (approximately 3 μm) of the 

current work; this can avoid the thickness influence on the hardness results of the coatings [20]. 
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Fig. 8 Hardness of TiAlSiN coatings with the change of Si content tested by nanoindentation 

Fig. 8 shows that the hardness of all TiAlSiN coatings exceeds 30 GPa. The introduction of the silicon element can increase 

the hardness; and the relationship between hardness and silicon content is nonlinear. This may be explained by a hybrid 

hardening mechanism, which is the interaction of different mechanisms of hardening. When the silicon content is low (4 at.%), 

the introduction of silicon element can refine the grain while producing solid solution strengthening. So, the hardness of 

TiAlSiN coating has a large improvement over the hardness of TiAlN coating. When the silicon content increases to 6 at.%, a 

further increase in hardness may be due to the formation of a better nanocrystal/amorphous structure. This nanocomposite 

structure (nanocrystal / amorphous structure) can strongly inhibit the movement of dislocations to achieve high hardness [14, 

21-24]. By continuing increase in the silicon content to 8 at.%, although the grain size becomes smaller, the hardness decreased 

slightly. This may be due to the excessive existence of the amorphous phase at grain boundaries. The excessive existence of 

the amorphous phase will weaken the effect of grain boundary strengthening. 

Tsui et al. [25] proposed that the resistance to plastic deformation of a hard coating is proportional to H3/E2; where H is the 

indentation hardness and E is the Young‟s modulus. As it can be seen from Fig. 9 that when the silicon content is 6 at.%, the 

H3/E2 value is the highest, which means that a good plastic deformation resistance and a promising application in modern 

machining. 
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Fig. 9 H3/E2 values of TiAlSiN coatings with different silicon contents 

The results of the scratching tests are summarized in Fig. 10. The larger the critical load value, the higher the bonding 

strength of the coating and the substrate. The dash line in Fig. 10 represents the critical load value of three kinds of hard tool 

coating [12, 26, 27]. Among these coatings, TiN coating in [26] is a commercial product produced by Mitsubishi Corporation. 

It can be seen that the critical load values of all TiAlSiN coatings are good; all the values exceed 60 N. It can be found that low 

silicon content is beneficial to binding force, which can be attributed to a strong (111) preferred orientation. 
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Fig. 10 Critical load values of TiAlSiN coatings with different silicon contents 

IV. CONCLUSIONS 

The main conclusions reached in this work are listed as follows: 

(1) All peaks of coatings were shown to be the NaCl structure of TiAlN phase. No peaks related with nitrides of Al and 

silicon was detected. The TiAlSiN coating is proved to be composed by nanocrystalline TiAlN or TiAlSiN and amorphous 

Si3N4 according to XRD and XPS results. 

(2) With increasing the silicon content from 4 at.% to 8 at.%, the grain size of TiAlSiN coatings is refined to 7.0 nm and 

distributes more concentrated. Moreover, the nano-column structure at the TiAlSiN coating surface almost disappears in this 

process, which may mean that the growth mode changes from columnar growth to nanocrystals growth. 

(3) The hardness and silicon content showed a nonlinear relationship, which may be explained by a hybrid hardening 

mechanism. The highest hardness is obtained at 6 at.% silicon, as it owes a relatively good nanocomposite structure 

(nanocrystal/amorphous) and relatively fine grains (8.1 nm). 
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(4) TiAlSiN coating with 4 at.% silicon content has the highest critical load of 87.8 N, which means a strong (111) 

preferred orientation is good for the adhesion strength. As the silicon content increases, the preferred orientations changed 

from (111) to (200) and the adhesion strength decreases. 

(5) The optimized mechanical properties of the TiAlSiN coatings, with a nanohardness of about 33.8 GPa and a critical 

load of 69.2 N, were prepared by using a TiAlSi alloy target with 6 at.% silicon content. 
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